
UC Davis
UC Davis Previously Published Works

Title
Routing-as-a-Service (RaaS): A Framework for Tenant-Directed Route Control in Data Center

Permalink
https://escholarship.org/uc/item/03s4b035

Journal
IEEE/ACM Transactions on Networking, 22(5)

ISSN
1063-6692

Authors
Chen, Chao-Chih
Yuan, Lihua
Greenberg, Albert
et al.

Publication Date
2014

DOI
10.1109/tnet.2013.2277880

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03s4b035
https://escholarship.org/uc/item/03s4b035#author
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

1

Routing-as-a-Service (RaaS): A Framework For

Tenant-Directed Route Control in Data Center
Chao-Chih Chen Lihua Yuan Albert Greenberg Chen-Nee Chuah Prasant Mohapatra

Abstract—1 In a multi-tenant data center environment, the cur-
rent paradigm for route control customization involves a labor-
intensive ticketing process where tenants submit route control
requests to the landlord. This results in tight coupling between
tenants and landlord, extensive human resource deployment, and
long ticket resolution time.

We propose Routing-as-a-Service (RaaS), a framework for
tenant-directed route control in data centers. We show that
RaaS-based implementation provides a route control platform
where multiple tenants can perform route control independently
with little administrative involvement, and landlord can set
the overall network policies. RaaS-based solutions can run on
commercial off-the-shelf (COTS) hardware and leverage existing
technologies, so it can be implemented in existing networks
without major infrastructural overhaul. We present the design of
RaaS, introduce its components, and evaluate a prototype based
on RaaS.

Index Terms—Computer Networks, Computer Network Man-
agement, BGP, Border Gateway Protocol, Routing-as-a-Service,
RaaS

I. INTRODUCTION

Data center is a key infrastructure for on-line service

providers (OSP) to provide always-on and responsive services

to end-users. Typically consisting 1,000’s to 100,000’s of

servers, data centers are designed to handle tremendous com-

putations, large storage, and quick service delivery. However,

the computational resources in a data center are not used

monolithically. Often, the resources are multiplexed between

different tenants – clients of the data center resources – so

they can simultaneously perform computations, store data, and

provide services to end-users.

In this paper we focus on routing as a service to tenants.

Recent cloud computing infrastructures such as Amazon’s EC2

[2] show promising direction in tenant-empowerment; for ex-

ample, EC2 grants user control of IP-to-Virtual Machine (VM)

binding without administrative involvement. Extending this

notion, routing-as-a-service to tenant promotes the idea that

tenants can programmatically re-route traffic for their services.

For example, instead of a single server handling user traffic,

a tenant might want to load-balance incoming traffic across

10 machines. The traditional paradigm for achieving such

per-tenant routing customization involves a labor-intensive

ticketing process, which we outline below.

Figure 1 shows a typical ticketing process for routing

customization. A tenant first submits a request for routing

customization (a “ticket”) to a ticket distribution system, upon

This work was supported in part by the National Science Foundation
through the grant CNS-0716741.

1Part of this work has appeared in [1].

Fig. 1: Ticketing process.

which a landlord (e.g., a network administrator) is assigned

the ticket. After rounds of clarification between the tenant

and landlord, the landlord sets up routing policies. Further

clarifications might be required if the installed routing policy

is unsatisfactory to the tenant. Finally, when both the tenant

and landlord are content with the routing policy, the routing

customization request is considered fulfilled and the ticket is

mark resolved.

The following problems are common with this paradigm.

Labor intensive process: Many of the steps in Figure 1 involve

manual intervention, which burdens both the tenants and

landlord, but more so the landlord because it takes away

time the landlord can spend improving and maintaining the

network. While tolerable when the request volume is small,

such a system is unsustainable as the volume and variety of

customization increases.

Lack of automated control: The traditional paradigm takes

away tenants’ ability to automatically control routing to their

services. Therefore, tenants often have to submit routing

policies that satisfy a certain class of scenarios (e.g., the

average/worst case scenario). In addition, reacting fast to

changes in this paradigm means more tickets inundated to the

ticket distribution system, further overwhelming the landlord.

Long ticket resolution time: As a byproduct of having a labor-

intensive process, the landlord might not resolve the tickets

quickly. The resolution process could take days if tenants and

the landlord communicate via e-mail, or weeks if in-person

meetings are required. Such a delay might not be acceptable

if tenants desire a quick response to changes in the network.

This paper proposes the Routing-as-a-Service (RaaS) frame-

work. RaaS promotes automated route control to tenants while

2

retaining the landlord’s authority in setting the overall network

policy. The RaaS architecture consists of MultiSpeakers,

Controllers, and Tenant Applications, with the former two

under landlord’s control and the latter maintained by the

tenants.

Our contributions are the following:

• We propose a framework that provides a programmatic

environment for tenants to use routing as a service,

while reducing landlord’s management effort, resulting

in reduced personnel cost (Section III).

• We build a prototype of RaaS (Section IV) based on

commercial-off-the-shelf (COTS) components and exist-

ing protocols, demonstrating that RaaS is immediately

applicable to data center networks.

• We conduct detailed performance micro-benchmarks of

RaaS, in terms of its processing delay, memory con-

sumption, network overhead and success rate in serving

requests, showing that it does not cause overwhelming

burden on the network (Section V).

• We present two scenarios, load balancing and workload

migration, where the RaaS framework can enable routing

customization and automation. In both scenarios we find

that tenants can easily specify their own routing policy

via the tenant application, without knowing the innards

of the network.

The paper proceeds with a high-level discussion of RaaS’

approach in Section II, a system overview in Section III

and the implementation in Section IV. An implementation

based on RaaS, along with a theoretical model for the service

availability, are evaluated in Section V. Related work are

discussed in Section VII and we conclude the paper in Section

VIII.

II. OVERVIEW OF RAAS APPROACH

This section defines the resource provisioning problem

outlined in Section I and the challenges in overcoming the

provisioning problem. Based on the challenges presented, a

high-level approach to the solution is presented, with the

details left to Section III.

A. Resource Provisioning Problem

The resource provisioning problem that RaaS solves is

the following: given that tenants have a set of services and

resources that handle the service workload, allow multiple

tenants to simultaneously change the resources that will handle

their services, while avoiding the problems of labor intensive

ticketing process, lack of automation, and long ticket resolution

time. Services in the context of RaaS are externally visible

offerings, such as search engine or multimedia streaming;

resources are servers made available to tenants to handle the

workload generated by the services. Since the resources are the

physical servers, several tenants could use them at the same

time. We will refer to both the services and resources by the IP

addresses assigned to them, with the service IP address being

the tenant IP address (TIA) and the resource IP address the

resource IP address (RIA).

B. RaaS Approach

The RaaS approach to the resource provisioning problem

is to enable automation. By automating the ticket resolution

process, administrators are relieved from handling the routing

requests, and tenants can re-route traffic to their resources

more quickly. RaaS achieves automation by exposing a set of

application programming interfaces (APIs), whereby tenants

can use their own applications to submit routing requests, and

quickly receive replies back on the success of their requests.

Under this environment, tenants can automatically control

routing of their services, and the ticket resolution process

is automated and shortened. Achieving automation requires

overcoming three design obstacles: practicality, policy control,

and multi-tenancy. We outline the three problems and RaaS’

approach to solve these problems below.

C. RaaS Practicality

One design requirement for RaaS is that it can be deployed

without major infrastructural overhaul. This constrains us to

consider methodologies and tools that are widely available,

and prohibits us from modifying the router in any way. To

achieve this, RaaS leverages well-established routing protocol

as the platform for route control, similar to the approaches

taken in [3]–[5]. Tenants’ routing customization requests are

then realized by manipulating the routing protocol. RaaS

introduces a component called MultiSpeaker to interact with

and manipulate routers running the routing protocol (Section

III-B).

Using a well-established routing protocol also has two

benefits: first, routing protocol already enables the main

functionality that RaaS requires (i.e., distributing routes to

services), so there is no need to re-invent the wheel. Second, a

well-established routing protocol is likely to be implemented

on all commercial routers, so RaaS is not dependent on a

specific vendor’s router. These two traits imply that RaaS can

be practically implemented in any existing network.

D. Hierarchy of Control

Giving tenants control over routing raises a new source of

tension between the landlord and the tenants. While giving

tenants control over routing relieves landlords from handling

tenant requests, giving tenants too much control could be dis-

astrous, since tenants generally do not understand the overall

network policy. This means tenants could route their services

to resources not intended for them, or even worse, change the

routing of other tenants’ services.

The proper balance would be to enforce least privilege, a

concept well-known in computer security. Least privilege in

RaaS’ context means tenants should have only the minimum

ability they need to control routing to their services; the overall

network policy should remain in the control of the landlords.

RaaS achieves this by delegating the software component that

handles tenant requests, the Controller, to the landlord. The

Controller can then examines each incoming tenant request

and reject those that violate the policies set by the landlord

(Section III-C).

3

The task division between the Controller and MultiSpeaker

also creates abstraction layers where administrator can hide

information about their network, making RaaS not only prac-

tical but more acceptable to administrators. The physical topol-

ogy is shielded from users and Controller via MultiSpeaker,

where routing requests can be issued by simply knowing

the MultiSpeaker address and API. IP topology can also be

hidden away from users by assigning tenants with virtual

server IP addresses, and only map these virtual server IP

addresses to physical server IP addresses when the routing

request is accepted. In the rest of the paper we assume server

IP addresses will be used, with an understanding that hiding

the IP topology is also possible.

E. Multi-Tenancy Tolerance

Another design requirement for RaaS is the ability for

an instance of RaaS to handle requests from multiple ten-

ants. In addition, tenants should be able to make requests

simultaneously and independently of other tenants, and RaaS

should quickly respond to each tenant’s request. To make

RaaS capable of handling multiple tenant requests in a timely

manner, Controller and MultiSpeaker are made to be scale-

out, so redundant components can be brought up when the

tenant request volume exceeds available capacity. A scale-

out architecture is possible because redundant Controllers

and MultiSpeakers do not have heavy dependency amongst

themselves, so they can service different tenant requests inde-

pendently of each other.

F. Illustrative Examples

To tie the ideas presented together, consider the traffic

migration example outlined in Figure 2. Tom and Alice are

two tenants that are making requests, where both want to move

traffic destined for their service from their initial resource to

their new resource. Note that the new resource for Tom and

Alice happens to be the same RIA. To make this transition,

both Tom and Alice make a request, via their application, to

the Controller. The Controller inspects the requests to ensure

that Tom and Alice are making a request to their service

only, and they are allowed to use the RIA outlined in the

request. Once the Controller approves the requests, it replies to

Tom and Alice that the request was approved, and notifies the

MultiSpeaker. The MultiSpeaker, upon receiving the Tom and

Alice’s requests, interacts with routers via the routing protocol

to change routing for their TIA from the initial RIA to the new

RIA. If the lone Controller in the figure is overwhelmed with

requests, another Controller can be brought online and some

tenant requests can be diverted to the new Controller. Besides

the network policy set by the landlord, the new Controller

does not need any other information, so the new Controller and

the original Controller can serve tenant requests independently

of each other. Similar expansion is also possible for the lone

MultiSpeaker because new MultiSpeakers do not need to know

about requests processed by the existing MultiSpeaker.

Besides the traffic migration usage scenario, another practi-

cal scenario possible under RaaS is load balancing, shown

in Figure 3. Here Tom and Alice want to add additional

resource to serve their load, so they go through the same

process as before, except now they request for more resource.

Once approved by the Controller, MultiSpeaker will enable

the added resources (RIA2) by instructing the routers to insert

RIA2 without removing their initial resource.

III. RAAS DESIGN

This section presents the design of RaaS, and details the

components that enable tenant-directed route control. The

RaaS framework consists of three components: MultiSpeak-

ers, Controllers, and Tenant Applications. MultiSpeakers act

as an interface to the network elements, shielding Controllers

and Tenant Applications from the innards of the network.

Controllers provide an API for tenants to submit routing

requests, check validity of tenants’ requests, and implement

landlord’s overall routing policies. Tenant applications imple-

ment tenants’ routing policy logic, and issue routing requests

to the Controllers based on their routing policy.

A. Design Considerations

In designing the RaaS framework, we task ourselves to

come up with a framework that not only achieves the practical-

ity, hierarchy of control, and multi-tenancy tolerance outlined

in Section II, but also design the critical components to be

lightweight and stateless when possible, so they can be de-

ployed in various configurations. In the end, RaaS is designed

to be a modular framework that is capable of giving multiple

tenants routing customizations without burdening the existing

network infrastructure.

B. MultiSpeaker

MultiSpeakers actively maintain routing sessions to the

router, so it could relay the requests approved by the Con-

trollers. To ensure no fundamental changes are made to

routers, MultiSpeakers communicate with routers over well-

known protocols. In RaaS, MultiSpeakers use Border Gateway

Protocol (BGP) [6] to install tenants’ routing requests. Mul-

tiSpeakers provide API for the Controllers to relay approved

tenant routing requests to the router.

Deployment of redundant MultiSpeakers is easy in RaaS,

since MultiSpeakers do not cross-communicate – all the co-

ordinations are orchestrated by the Controllers. Also, Multi-

Speakers do not store states that would otherwise require a

coherence protocol (e.g., BGP messages sent by the Multi-

Speakers), or need to be persisted across restarts. This enables

MultiSpeakers to be lightweight and stateless agents that act

as relays for tenants’ routing requests.

It may seem counterintuitive to use BGP, an inter-domain

solution, for route control within a single administrative

domain. Indeed, Interior Gateway Protocols (IGPs) such as

Routing Information Protocol (RIP) [7], Open Shortest Path

First (OSPF) [8], and Immediate System to Immediate System

(IS-IS) [9], [10] are IGPs that are well established and may

seem more suitable within a single administrative domain.

However, there are several good reasons for using BGP:

Simple State Machine: Compared to protocols such as OSPF,

4

(a) Tom making request to move his traffic from RIA1 to RIA2. (b) Alice making request to move her traffic from RIA3 to RIA2.

Fig. 2: Example of traffic migration using RaaS.

(a) Tom making request to spread his traffic between RIA1 and RIA2. (b) Alice making request to spread her traffic between RIA3 and RIA2.

Fig. 3: Example of load balancing using RaaS.

5

the state machine necessary to establish a functional session

is simpler in BGP. A simpler state machine not only eases

code verification to minimize bugs, it also makes additional

augmentations easier, as explored in Section IV-D.

Flexible placement of MultiSpeakers: While a simple state

machine such as RIP is desirable, flexible placement of

MultiSpeakers is a desirable trait that RIP cannot satisfy. In

RIP, each router exchanging RIP messages must be directly

connected. This constrains the placement of MultiSpeakers to

machines that are one hop away from routers, thus dimin-

ishing MultiSpeakers’ flexibility and agility. BGP supports a

mode (“Multihop eBGP”) that enables BGP-capable peers to

exchange routing messages even when they are not directly

connected. Under multi-hop eBGP, it is now possible for

MultiSpeakers to exchange messages with routers that are

more than one hop away.

Easy Resource Management: In RaaS, resource management

equates to manipulating routing to specific RIA (to be dis-

cussed in more detail in Section III-D). If the routing is

manipulated by IGPs such as OSPF, it could affect the data

plane and cause route instability for their external counterpart

(e.g., BGP). For example, consider a RaaS alternative where

OSPF is used to interact with routers that also have BGP-

learned routes. If a tenant distributes the traffic over several

RIAs, OSPF would need to change link metrics to ensure the

path metric to all RIAs are equal. Changing the link metric,

however, can affect the egress point of BGP-learned routes.

On the other hand, a BGP-based RaaS implementation avoids

such a ripple effect because changing routing to an RIA only

affects the said RIA.

C. Controller

Before tenant requests are received by MultiSpeakers, they

must first pass through the Controller. The Controller provides

an API for tenants to submit routing requests per their policy.

By providing an API to tenants, RaaS lessens the need for

landlord to manually change tenants’ routing, since such a

task can now be automated via the Controller.

To prevent tenants from making erroneous routing requests,

landlord and tenants need to agree on the set of resources ℜ
(i.e., the RIAs) where tenants can host their services. Upon

agreeing on the ℜ, the landlord can implement policies that

reject routing requests for resources that are not in ℜ. The
admission policy can be much more complicated, involving

dynamic conditions of the network, and it will be up to the

landlord to set up the admission policy. Since tenant-specific

policies are now delegated to the tenants, landlord now only

need to understand and implement the constraints (i.e., ℜs)
imposed on each tenants.

In addition to providing API and policy enforcement, the

Controller also coordinates MultiSpeakers. When the Con-

troller accepts tenants’ routing requests, it first records the

requests and to which MultiSpeaker they are destined before

forwarding them. This helps the Controller to verify if future

routing requests are duplicates, a likely indication of tenant

application error, and inform the tenant application of such

a duplication. Storing the requests also allows MultiSpeakers

to be bootstrapped upon restart; this enables the Controller

to be the state memory for MultiSpeakers. To eliminate the

need for Controllers to synchronize their states, each tenant

can be assigned to communicate exclusively with one of the

Controllers and only that Controller will hold the routing

request history for that tenant.

D. Tenant Application

Tenant application is the component is implemented by

tenants and executes their routing policies. Through the APIs

provided by the Controller, tenants can choose how to control

traffic to their services. In order for tenants to control routing

to their services, RaaS requires each tenant to be assigned

unique TIAs that are bound to the services and subsequently

used for routing requests.

To control routing to their services, tenants issue API

calls to the Controller to change the binding between TIAs

and the RIAs. Instead of network administrators manually

configuring routing policies, tenants can develop programs to

automatically change routing to their resources (i.e., changing

the TIA-to-RIA binding).

One nice property of using TIAs is that independent and

safe route control is possible. For each routing request, the

Controller checks the origin of the call through a security

token. If the TIA is not listed under the requesting tenant’s

control, the request will be rejected. Since TIAs are unique

to each tenant, they are mutually exclusive and tenant appli-

cations cannot modify routing to TIAs they do not own; this

prevents unintentional or malicious route hijacking by other

tenants. Also, tenant applications are separated, so tenants can

control routing to their resources independently.

Although the TIAs are unique to each tenant, the RIAs

being routed to are shared amongst tenants. For example, if

ℜAlice = resources for Alice and ℜBob = resources for Bob,

ℜAlice

⋂

ℜBob is not necessarily an empty set. This separation

of virtual resources (i.e., TIAs) and physical resources (i.e.,

RIAs) enables resource multiplexing amongst different tenants,

while providing safe route control amongst tenants.

E. TIA-RIA Mapping and BGP

The discussion thus far presents tenant routing in the context

of changing the TIA-RIA mapping, but how is the mapping

installed and changed using BGP? In BGP, routing changes

are announced via the BGP Update message type, in which

an IP prefix originator (i.e., the entity who owns the IP

prefix) announces or withdraws a route to the prefix. In a

route announcement, the BGP Update message contains the

destination IP prefix and next hop address, where the next hop

address indicates the next network device that packets should

traverse to reach the IP prefix. In a route withdrawal, the BGP

update message simply contains the IP prefix and the routing

entry corresponding to the prefix is removed from routers.

In the context of TIA-RIA mapping, the TIA address is

represented by the IP prefix, and the RIA is represented by the

next hop address. Thus, to install a TIA-RIA mapping, a BGP

Update message to the router should be an announcement, with

the TIA address being the IP prefix and the RIA being the

6

next hop address. To change the TIA-RIA mapping, one BGP

Update message to the router should be a route withdrawal to

delete the existing mapping, followed by a second BGP Update

message announcing the new TIA-RIA mapping. Alternatively,

sending just a BGP UPDATE message with the new next hop

address will achieve the same effect, since the router will treat

it as an implicit withdraw.

F. More on Using BGP

While BGP is a common protocol, it is possible that

switches in some hierarchy of the data center might not have

the routing stack. One such possible location is the top-of-rack

(ToR). In cases where the switches at a certain hierarchy is

purely switched, RaaS could not be deployed. But we note that

large-scale data center network often have a L2/L3 boundary

to aggregate traffic (as shown in [11]), in these cases we can

RaaS can be deployed at the L3 routers and perform control

routing control from there on.

One concern for using BGP is that in a general network,

different factors such as diverse MRAI [12] can induce pro-

longed or even unstable convergence behavior. However, we

note that data center environment is often managed by a

single administrative entity, and this unique property can be

exploited to encourage BGP convergence stability. Under a

single administrative entity, parameters such as MRAI timer

and BGP policies can be unified and adjusted to modify BGP’s

convergence behavior. While other factors such as pathological

physical topology [13] may cause prolonged convergence

but is difficult to re-architect, they can be altered via other

means (e.g., deactivating links) to remove pathological cases.

They key takeaway is that, while having visibility into and

modifying policies and parameters globally is difficult in the

interdomain setting, these tasks are feasible within the data

center and can be exploited to ensure the network remains

stable under RaaS.

IV. RAAS IMPLEMENTATION

This section presents the implementation of the Multi-

Speaker and Controller. Tenant application will be briefly men-

tioned, since the actual implementation is tenant-dependent.

In addition, we present one enhancement to MultiSpeaker

here. The MultiSpeaker and Controller components and their

overall interactions are shown in Figure 4.

A. Tenant Application

When tenants want to customize the routing to their RIAs

(ℜ), their applications can issue calls to the Controller’s API,

which is shown in Table I. For portions of the policy that in-

volve changing the TIA-to-RIA mapping, the applications can

issue calls to the Controller’s API. As mentioned in Section

III-E, changing the TIA-to-RIA mapping equates to changing

the next hop of the IP prefix. So, if a tenant Alice was given

ℜ = {server1, server2, server4}, to initialize her service to

server1, she sets FirstServiceRoute = {destination: TIAAlice,

next hop: IPserver1}, and calls AddRoute(FirstServiceRoute,

TokenAlice). To switch the service-to-resource mapping to

Fig. 4: MultiSpeaker and Controller components and interac-

tions between them.

server4, Alice would create a new route ReplaceServiceR-

oute = {destination: TIAAlice, next hop: IPserver4}, and

call WithdrawRoute(FirstServiceRoute, TokenAlice) followed

by AddRoute(ReplaceServiceRoute, TokenAlice). Additional

capabilities such as service fault recovery can also be imple-

mented using these primitives.

B. Controller

Controller implements three modules: Tenant API, Valida-

tion Module, and MultiSpeaker Management Module.

The tenant API enables on-demand remote procedure calls

and reliable messaging exchange via TCP. Setting up the API

this way ensures each request can be reliably sent to the

Controller without having to implement a reliable service at

the application layer. The API exposed by the Controller is

shown in Table I. Although the methods provided are few, they

are sufficient in producing complicated resource remapping

logics.

The validation module takes in tenants’ routing requests as

input, decides whether the routing request is valid and then

outputs a binary result. The output is fed to both the Multi-

Speaker management module – for the module to determine

whether to forward the request onto the MultiSpeaker – and

the tenant API so it can indicate to tenants the outcome of the

request. Validity of the tenant request depends on whether the

TIA in the request belongs to the tenant and whether the RIA

is assigned to the tenant.

7

The MultiSpeaker management module manages the com-

munication between the Controller and the MultiSpeaker. In

addition to passing routing requests and route inquiries, it also

ensures MultiSpeaker states reflect the state memory stored

at the Controller. To achieve this, both the MultiSpeaker and

Controller maintain an acknowledgement table. Each table

entry is a (TIA, destination IP, action type) tuple that denotes a

request that Controller has forwarded to the MultiSpeaker but

does not know whether it has been submitted to routers. The

MultiSpeaker management module also detects MultiSpeaker

restart so the Controller can bootstrap MultiSpeakers when

they restart; MultiSpeaker management module can detect

MultiSpeaker restart by periodically polling the MultiSpeaker.

C. MultiSpeaker

MultiSpeaker consists of three components: protected API,

BGP module, and translation module.

The protected API specifies methods for MultiSpeaker to

exchange messages with Controller’s MultiSpeaker manage-

ment module. The methods are similar to those exposed by

the Controller in Table I, so we omit it here.

The translation module takes tenant requests as input, and

outputs well-formed BGP UPDATE messages. By translating

the messages here, tenants and Controllers are shielded from

having to know the innards of the network.

For WithdrawRoute() calls, the translation module generates

a BGP UPDATE messages with the WITHDRAWN ROUTES

fields filled. For AddRoute() call, the module generates a BGP

UPDATE message that includes the NEXT HOP and the IP

Prefix (NLRI) fields. In addition to the destination IP prefix

and next hop IP address, Update messages for AddRoute()

calls also include the AS paths. AS path is a mandatory

attribute that encodes the autonomous system (AS) numbers

by which the BGP UPDATE message has traversed since the

prefix origin. Even though tenants are the origins in supplying

the destination IP prefix, having tenants supply the AS number

would imply tenants having knowledge of the innards of the

network. To avoid such a burden on tenants, MultiSpeakers act

as the origin of tenants’ prefixes. Thus, the translation module

uses the AS number – possibly a private AS number that are

removed at the data center boundary – of the MultiSpeaker as

the first AS in the AS path.

The features and attributes implemented by the BGP module

is minimized to the set of features necessary to establish BGP

sessions, add/withdraw routes, and react to BGP notifications

in order to reduce MultiSpeaker complexity.

Using a BGP module, MultiSpeaker provides informa-

tion isolation between the tenants and routers, much like

BGP MUX [14]. For tenants, they are isolated from the inter-

actions between MultiSpeakers and routers, but are still able

to perform route control. On the other hand, routers are not

exposed to the RaaS internals and interact with MultiSpeaker

as if it is another BGP-capable speaker. This separation enables

RaaS’ implementation to vary with minimal impact to routers

and the tenants.

Method Name Purpose

bool AddRoute(Route r, Token t) Adds specified route to router

bool RemoveRoute(Route r, Token t) Removes specified route to router

Status GetRouteStatus(Route r, Token t) Check status of route

TABLE I: Controller interface to tenants. Route = resource

routing info, token = tenant identity.

D. Equal-Cost Multi-Path Enhancement (ECMP)

Discussions on the BGP module thus far assumes each BGP

module can only establish one BGP session with each router

(as depicted in Figure 4). Such a configuration would be fine

if tenants only announce a single TIA-RIA mapping at a time.

However, in cases where tenants announce one-to-many TIA-

RIA mappings (e.g., for load balancing), multiple MultiSpeak-

ers would be required. This method would require the number

of MultiSpeakers, N , to be k×max∀t∈tenants mappingSizet,

where k is the number of routers a MultiSpeaker connects to,

and mappingSize is the cardinality of one-to-many TIA-RIA

mapping. Intuitively, the equation above says the number of

MultiSpeakers needed is the number of routers establishing

a BGP session to a MultiSpeaker, multiplied by the maxi-

mum count of one-to-many TIA-RIA mapping needed by any

tenant. If redundancy is required, an unmanageable number of

MultiSpeakers would need to be deployed. A simple extension

to the BGP module could be implemented to avoid such an

explosion, in which each BGP module instantiates multiple

BGP sessions (hence the name MultiSpeaker), with each

session capable of announcing one TIA-RIA mapping per

tenant. Implementing this extension simply requires the BGP

module to keep separate state machines and data structures

for each session. Since there is no need for the instantiated

sessions to share state, MultiSpeaker complexity does not

change. We note that implicit withdraw (Section III-E) will

not work here if the message is sent over a different peering

session, as router will treat it as another equal-cost multi-path

(ECMP) route.

V. COMPONENT EVALUATION

In this section we evaluate the performance of our RaaS-

based implementation via several micro-benchmarks. We

present the methodology in Section V-A and the evaluation

results in Section V-B.

A. Methodology

The main metrics of interest are i) the time for the Con-

troller and MultiSpeaker to process each request, ii) memory

consumptions of various data structures, iii) network overhead

incurred by the requests, and iv) availability of the Controller

to serve tenant requests. To demonstrate the utility of RaaS, we

developed a prototype based on RaaS using C# and Windows

Communication Foundation (WCF) [15] for the remote proce-

dure calls. Our choice of programming language was based on

the ease of development and the use of WCF was its seamless

integration with C#. The experiments were carried out on

COTS hardware that include a dual-core 2.80GHz machine

with 4GB of RAM and two single-core 1.7GHz machine with

less than 1GB of RAM. The timing experiments were carried

8

out on the dual-core machine, and the network overhead

experiments were carried out across the three machines.

To collect detailed memory usage of the various data

structures, a custom program loads each data structure, one

at a time, and drives realistic loads on the data structures.

For example, to collect the memory usage of the acknowl-

edgement table, the program loads an acknowledgement table

and inserts various amount of entries to it. The processing

time is collected by implementing a tenant application that

sends routing requests and collect the end-to-end response time

back to the tenant. Both the memory usage and processing

time experiments described above were carried out on a single

machine, since they are not affected by the network. A second

set of experiments was carried out between two machines to

measure the network overhead.

Since MultiSpeaker’s configuration affects the processing

time and the memory consumption of both the Controller

(e.g., time: route assignment, memory: MultiSpeaker state

table) and MultiSpeaker (e.g., memory: BGP sessions, time is

heavily impacted only if all request-serving threads are being

contended), we vary MultiSpeaker’s configuration parameters

and collect the time and memory metrics. Specifically, for each

experiment, we vary the number of routers (denoted as RS)

and ECMP sessions to each router (denoted as E). In addition,

for the Controller we also vary the number of MultiSpeakers

(denoted as S) being managed by the Controller. Because we

do not have many routers for the MultiSpeaker to establish

BGP sessions, we implemented a simple router emulator that

simply waits for and maintains BGP sessions once they are

established.

We also demonstrate RaaS’ feasibility by showing that with

a small number of redundant components and pessimistic

settings for equipment uptime and replacement time, tenants

has a good chance of successfully submit routing request on

the first try. To do so, we use alternating renewal process

(ARP) [16] to formulate a theoretical model for the availability

of all equipments on the path from tenant to the Controller,

and evaluate the success rate for a given tenant request to

reach the Controller. We only model the success rate from the

tenant to the Controller because tenants only interact with the

Controller. Additional details can be found in the appendix.

B. Evaluation

1) Speaker-only evaluation: Table II shows MultiSpeaker’s

processing time for route announcement and withdrawal op-

erations. The processing time measures, per BGP session,

the time between receiving the route operation request from

the Controller and sending the well-formed BGP request out.

Since the time taken to send BGP messages to routers is par-

tially influenced by network delay, which we cannot control,

we eliminate the network delay by co-locating the router em-

ulator and MultiSpeaker. The result shows that MultiSpeaker

can handle Controller’s request quickly, often under 1 ms.

Factoring in the network delay, the true response time might be

over 1 ms, as the MultiSpeaker can establish BGP session with

routers via Multi-hop BGP for better MultiSpeaker placement

flexibility. Barring network anomaly, given the current network

bandwidth in data centers and the small size of BGP messages,

the network delay should be small.

Figure 5a shows MultiSpeaker’s memory usage with respect

to number of BGP sessions established. Here we do not

distinguish whether the session is connected to the same or

different routers, because the amount of states being kept

for each BGP session is the same regardless. This figure

shows that the MultiSpeaker can maintain 1,000 sessions with

moderate amount of memory, making a single MultiSpeaker

process scalable up to thousands of sessions.

Figure 5b shows MultiSpeaker’s memory consumption

when storing outstanding entries with various configurations

of RS and E. In this experiment, we assume that the number

of outstanding entries per sessions are the same across all

BGP sessions. Memory usages are similar for configurations

where RS=1 or RS=10, so we only plot one configuration

here (RS=10, E=16). We observe significant differences when

RS=1000; RS=1000 and E=16 configuration has only two data

points as memory usage exceed 2GB when outstanding entry

is 1000. The reason that memory usage increases rapidly when

RS=1000 is due to the number of total entries added, as each

additional outstanding entry per session results in 1,000×E

total outstanding entries. For example, in the configuration

when RS is 1,000 and E is 4, having 10 outstanding entries per

session results in 40,000 total outstanding entries and having

1,000 outstanding entries per session results in 4,000,000 total

outstanding entries. In reality we do not expect the amount of

outstanding entries to be as high as 4,000,000, unless they are

not periodically cleared by Controller.

2) Controller-side evaluation: The Controller processing

times for route operations are shown in Table II. We show the

result for a MultiSPeaker configuration that amounts to little

over 1,000 total BGP sessions, corresponding to the maximum

memory usage shown in Figure 5a. Assuming the maximum

ECMP possible (i.e 16), the MultiSpeaker is connected to 63

routers.

Table II shows the average and standard deviation of Con-

troller’s processing time for the AddRoute and RemoveRoute

operations. It shows that both operations can respond to the

tenant request within milliseconds of receiving the request, and

thus can handle close to 1,000 requests per second on average.

This processing speed is fast considering that for each tenant

request, the Controller has to inspect up to 1,000 sessions to

find route assignments for all the routers. Route addition is

slightly slower than route removal because it performs one

additional check for the case when the route was withdrawn

over a session but is still outstanding (i.e., the route removal

has not been sent to the router). In this case the AddRoute

operation use the same session in order to avoid a temporary

and unintended ECMP.

Figure 5c shows the memory usage to store the Multi-

Speaker state. We vary the number of MultiSpeakers managed

by the Controller (S = 1, 2, 4). And for each MultiSpeaker

we vary the number of routers it connects to (RS = 1, 10,

1000), and the number of ECMP sessions per router (E= 1,

4, 16). Memory utilizations are similar for all configurations

where RS6=1000, so we only plot one configuration here

(S=4,RS=10). The plot shows that the memory consumption

9

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 100 200 300 400 500 600 700 800 900 1000

M
e
m

o
ry

 S
iz

e
 (

B
)

Number of BGP Sessions

Memory Usage

(a) MultiSpeaker memory usage with various
number of BGP sessions.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

M
e
m

o
ry

 S
iz

e
 (

M
B

)

Number of Outstanding Entry Per Session

RS10, E16
RS1000, E1
RS1000, E4

RS1000, E16

(b) MultiSpeaker outstanding ACK table mem-
ory usage. RS = # of routers per MultiSpeaker,
E = # of ECMP sessions.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 2 4 6 8 10 12 14 16

M
e
m

o
ry

 S
iz

e
 (

K
B

)

Number of Sessions Per Router

S1, RS1000
S2, RS1000

S4, RS10
S4, RS1000

(c) Controller memory needed to keep Mul-
tiSpeaker state. S = # of MultiSpeaker per
Controller, RS = # of routers per MultiSpeaker.

Fig. 5: Memory Usage Results.

Mean Std dev

Controller Processing Times (ms)

Adding Route 1.24 3.38

Removing Route 1.14 2.93

MultiSpeaker Processing Times (ms)

Announcing Route 0.091 0.67

Withdrawing Route 0.082 0.38

TABLE II: Route Operation Processing Time.

increases noticeably only when the number of routers per

MultiSpeaker (i.e., RS) is 1,000. This is intuitive because when

the number of routers is 1,000, each additional ECMP session

per route adds 1,000 more total entries to the MultiSpeaker

state table. We note that in the worst case (4 MutiSpeakers,

1000 routers per MultiSpeaker, 16 ECMP sessions per router,

64,000 total sessions), the per-session state consumes about

300 bytes of memory.

3) Network Overhead: In this experiment we are interested

in observing the network overhead for the communication

between tenant/Controller and Controller/MultiSpeaker. We

capture the network traffic at the Controller to record traffic

between the tenant/Controller and Controller/MultiSpeaker,

and later filter the traces to separate the two types of traffic.

While running the experiment using the ECMP configuration,

we realized it was difficult to separate traffic from different

ECMP sessions. Therefore, we enable only one session and

sent a single request to capture serialized conversation between

the tenant/Controller and Controller/MultiSpeaker. The result

can be easily scaled to multiple ECMP sessions, as each

distinct session will have roughly the same amount of network

overhead.

Result from Figure 6 implies that, given a typical 1Gbps

edge bandwidth, our prototype will saturate the link at around

12,500 requests/second (Assuming around 4KB per request.

4KB incoming request and 4KB outgoing reply). Since our

prototype serves around 1,000 requests/second, we will only

be using up to 10% of the link capacity. We also see room for

improvement, as a majority of the overhead comes from HTTP,

which includes exchanges needed by the WCF framework.

Additional bandwidth can also be conserved by avoiding the

use of the serialization engines in WCF [17], which converts

data into XML format.

 0

 1000

 2000

 3000

 4000

 5000

Add_C
lient_C

ontroller

Add_C
ontroller_Speaker

R
em

ove_C
lient_C

ontroller

R
em

ove_C
ontroller_Speaker

O
v
e

rh
e

a
d

(b
y
te

s
)

Session

HTTP Overhead
RaaS Data

Fig. 6: Network overhead over various operations. x y z refers

to operation x, with caller x and callee z.

4) Service Availability: Based on the derivation made

in the appendix, we use R [18] to evaluate the amount of

redundant Controllers needed to be deployed. We perform

the evaluation by setting various values for the number of

Controllers deployed and their expected downtime, and record

the success rate. We use the Weibull distribution to model

the uptime distribution, due to its ability to model different

hazard rate characteristics with age. Weibull distribution has

the shape (k) and scale (λ) parameter, with the former affecting

the hazard rate over time and the latter the expected uptime.

To understand the effect of the hazard rate parameter, we plot

the success rate against varying k, setting path length = 6,

expected uptime = 6 months, expected downtime = 3 days,

required equipment uptime during request submission (i.e.,

∆T) = 4 minutes. We choose these parameters based on the

reference data center topology shown in the Cisco reference

[11], a pessimistic estimation of a typical equipment’s uptime

and time required to replace it, and maximum possible TCP

retransmission timeout (RTO) as defined by RFC 1122 [19].

We do so because that is the maximum time the tenant

will wait before considering the Controller dead. We found

that the request success rate is insensitive to k, with the

difference between the maximum and the minimum success

rate less than 0.1% across all k. This is due to the fact

that the stable-state success rate is dominated by the ratio

of the expected up/downtime, and the temporal variation of

10

2 4 6 8 10

0
.6

0
.7

0
.8

0
.9

1
.0

of Controllers

S
u

c
c
e

s
s
 R

a
te

Downtime=3day

Downtime=4day

Downtime=6day

Downtime=10day

Downtime=14day

Downtime=3day

Downtime=4day

Downtime=6day

Downtime=10day

Downtime=14day

Downtime=3day

Downtime=4day

Downtime=6day

Downtime=10day

Downtime=14day

Downtime=3day

Downtime=4day

Downtime=6day

Downtime=10day

Downtime=14day

Downtime=3day

Downtime=4day

Downtime=6day

Downtime=10day

Downtime=14day

(a) No shared path.

2 4 6 8 10

0
.8

5
0
.9

0
0
.9

5
1
.0

0
of Controllers

S
u

c
c
e

s
s
 R

a
te

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

Shared_Path_Length=0

Shared_Path_Length=1

Shared_Path_Length=2

Shared_Path_Length=3

Shared_Path_Length=4

Shared_Path_Length=5

Shared_Path_Length=6

(b) Shared path with expected down-
time = 3 days.

Fig. 7: Availability experiment results.

the uptime distribution becomes insignificant. Following this

observation, we set k=1 for subsequent evaluations. Setting

k=1 results in exponential distribution, a common distribution

used in reliability engineering. Next, we evaluate the effect

of having several Controllers for the request to be served.

We assume that each Controller is deployed under different

routers (so malfunction of one router does not remove all

of the Controllers) and has a completely disjoint path from

other Controllers. Then, given the number of disjoint paths,

we calculate the success rate using the same parameters as

the previous experiment. The result is shown in Figure 7a. It

shows that, given the same pessimistic setting, the availability

of the overall service is above 90% even when the Controller is

hosted in only one location, and the overall service availability

quickly converges after having more than 2 distinct paths.

To gain more insight about the availability, we increase the

expected downtime and obtain the new success rates. We

find similar conclusion holds: the success rate converges to

a stable value quickly and overall service remains highly

available. We also see that deploying multiple Controllers can

be high beneficial when services are expected to be down for

a prolonged period of time. In the case of expected downtime

equal to 2 weeks, adding another Controller increases the

overall service availability by 30%.

The experiment above makes an unrealistic assumption that

paths to additional Controllers are disjoint, but in reality many

components are shared amongst different paths. We modified

our formulation to take into account the shared path length and

performed the calculations again. Figure 7b shows the result

for the case when expected downtime = 3 days. We find that

Controller availability relative to the ideal case can deteriorate

as much as 10% when shared path is taken into account, and

a maximum availability is visibly less when paths are shared.

The upside is that the overall service availability is above 90%

in all cases. This is an indication that network administrators

should be careful in deploying the Controllers, and should

strive to have as much path diversity as possible.

In summary, the experiments show that RaaS obviates the

need for landlord to deal with individual requests, resulting

in less personnels needed to process tenants’ requests. In

addition, RaaS components can be implemented on COTS

hardware, making it easily deployable into data centers; and

the deployment will not cause overwhelming burden to the

network due to the small number of redundancy required.

This makes RaaS a flexible framework that can be used to

reduce personnel cost and expose network programmability to

multiple tenants.

VI. USAGE SCENARIOS

In this section we investigate real-world applications of the

RaaS framework. We experiment using the RaaS prototype,

and present the results for two likely scenarios: load balancing

and workload migration. We detail the experimental set-ups

and evaluation results in the respective subsections below.

A. Load Balancing

Load balancing refers to a technique where the traffic is

distributed evenly across multiple outgoing links. With load

balancing enabled, the network increases its resilience against

random link failures. Resilience against random link failures

is an important feature, because as failures occur closer to the

core the effect might become more severe. We demonstrate

that RaaS can empower tenants to programmatically perform

load balancing on their traffic by requesting additional links

to their VIP; the set-up is shown in Figure 8a.

Two servers, 10.0.0.2 and 10.0.0.3, are used to receive the

traffic destined for an application with its service IP set to

10.0.10.1. The two servers host the service IP on its loopback

interface, so no IP address conflict occurs during the address

resolution process. A third server hosted on a different subnet

acts as traffic generator, sending traffic to the service IP during

the run of the experiment. The traffic generator generates two

simultaneous 10Mbps UDP traffic streams, with the source

IP addresses chosen so that the two streams will be routed to

different servers if multiple paths were available. To ensure no

devices in the network can reach each other initially, all routing

information are removed with the exception of the router as the

default gateway. At the router, equal-cost multipath for BGP

is enabled. Initially, all the traffic destined for the service IP

are directed to 10.0.0.2, and after some time tenant Tom’s

application issues a load balancing request to add 10.0.0.3 to

serve the load.

Figure 9a shows the result. Initially, all of the traffic are sent

to 10.0.0.2 while none are going to 10.0.0.3, as demonstrated

by the 20Mbps traffic observed at 10.0.0.2. At time 30, a load

balancing request is issued, and after several seconds of traffic

disruption the traffic is redistributed as intended. We note that

traffic never drop to 0 Mbps, and load balancing is completed

in two seconds.

We note that although in this experiment we pre-select the

IP addresses to allow the two traffic volume to be directed to

different servers, in general this should hold true as well. When

ECMP is enabled on a router, the router uses a hashing scheme

to choose the traffic destination, with the goal of distributing

the incoming flow equally amongst the available next-hops.

While some imbalance might occur due to bad luck (i.e., most

of the incoming traffic are hashed to the same destination), this

chance occurrence should happen less as the number of flow

in the network increases. Since in this experiment we want

11

to demonstrate that load balancing is possible, we exclude the

possibility of such imbalance by choosing specific IP addresses

so the hashing scheme chooses different destination.

B. Workload Migration

Workload migration is the idea of moving traffic from one

place to another. We show that such a simple idea, when

coupled with the RaaS framework, can be used as a foun-

dation upon which custom policies can be built. The policies

possible for these expressive actions is only constrained by the

information available to tenants, which is enormous due to the

amount of information modern operating systems expose. For

instance, the Windows event tracing framework [20] exposes

some 600+ data sources upon which users can query. In this

experiment, we developed a simple application to demonstrate

how a tenant could implement a custom policy using the RaaS

framework.

The policy tenant Tom wishes to achieve here is service

availability, with the constraint that at least one server must

be used to serve incoming traffic. Furthermore, there is a set of

primary and secondary servers which imposes the order that

Tom would like to use the servers. The application then should

direct traffic to the primary server whenever possible, and only

use the secondary servers when the former is unavailable. The

set-up of the experiment is similar to that of the load balancing

experiment, with the change that 10.0.0.2 is designated as the

primary server and 10.0.0.3 the secondary server. The traffic

generator in this experiment is emitting only one 10Mbps

stream to the service IP (10.0.10.1).

The result is shown in Figure 9b. As the policy indicated,

upon start-up the traffic is directed towards 10.0.0.2. Some

time later (time 30) 10.0.0.2 is rendered unavailable by

disconnecting its Ethernet cable. After a similar disruption

phase observed in the load balancing experiment, the traffic

is restored onto 10.0.0.3. The result shows that during both

transitions there were some packet loss. This is expected

as the connection terminated abruptly and it takes time to

detect the connection termination. It is worth noting that traffic

migration technique is still possible for session-oriented traffic.

The concern here is that once the session-oriented traffic has

been migrated, the new server would not be able to serve these

requests, as it does not have the necessary network stack states

established. This problem can be mitigated by process and

virtual machine migration [21], in which the system a priori

migrate necessary states over to the new systems. As many

multi-tenant platform (e.g., cloud providers) already employ

virtual machines, migrating system states is simplified. As

migration is outside the scope of this paper, we refer the reader

to [21] for more details on virtual machine migration.

One can imagine that more complicated policies than the

one shown here can be defined. For example, one could add

a restore policy to describe the condition under which traffic

will be restored to the primary server. Or, the policy can be

updated to include additional considerations such as bandwidth

and processing latency. With the RaaS framework, tenants

are no longer constrained to receiving alerts and contacting

landlords for routing modifications, they can now control how

their services react to adverse conditions.

In summary, we have shown that the RaaS framework can be

used in realistic scenarios such as load balancing and traffic

migration. Even though the use of custom policy was only

demonstrated for traffic migration, it is also possible to create

custom policies for load balancing (i.e., defining conditions

upon which to expand or shrink redundant paths).

VII. RELATED WORK

Dynamic and programmable routing platforms are not

unique to RaaS, as there are prior proposed works in both

academia and industry. Here we discuss the relevant works

and the difference between RaaS and them.

Previous academic works such as OpenFlow [22], NIRA

[23], Tesseract [24], RAS [25], PaaS [26], Morpheus [3],

Transit Portal [5], and RCP [4] proposed customizable routing.

These works had a similar goal in providing end-users or

tenants with the ability to choose how their packets would

be routed. However, some of these works ([23], [24]) require

technologies that do not yet exist in the transport hardware

or are in nascent stage, whereas RaaS leverage well-known

and mature technologies. This allows RaaS to be imple-

mented without infrastructural overhaul. OpenFlow [22] is

a proposed interface specification that can also implement

RaaS-like framework, and project such as FlowVisor [27]

leverages OpenFlow-capable switches to provide traffic slic-

ing and custom actions in a traffic slice. While OpenFlow

allows for FIB programming to enable functionality similar to

what RaaS provides, RaaS builds upon a more mature and

widely available technology, making deployment to legacy

data centers possible. This makes RaaS complementary to

OpenFlow by giving administrator an evolution path to im-

mediately enable route programming in legacy data centers,

and over time introduce OpenFlow-capable switches into the

network to enable additional programming. Another approach

to enable network programmability is to implement OpenFlow

capabilities at network edge (e.g., Open vSwitch [28]), and use

existing routing protocol in the network core. While this is a

valid alternative, the maintenance cost scales with the number

of participating servers while RaaS scales with the number

of switches, which is generally smaller than the number of

servers. Other works leverage existing routing technologies,

such as BGP, to control routing either within a single AS

[3] [4] or to various upstream ISPs [5]. RaaS also leverages

the same set of technologies to make route-control possible,

but it also provides programmatic interface to tenants directly,

while providing performance isolation and independent route

control. These were not discussed at great length or at all in

previous works. There are also proposals that attempt to extract

routing purely as a service [25], which is similar to what RaaS

is achieving. However, RaaS provides this control directly

to tenants, instead of going through a third party, providing

routing as a first-class service. PaaS [26] provides a similar

abstraction to tenants, however, it is unclear the technologies

required and what fundamental changes are required. In RaaS

we provide a concrete framework and working prototype

to demonstrate the utility of a tenant-directed route control

framework.

12

controller

API

MultiSpeaker

Tom's

Application

Original Data Flow

Changed Data Flow

Control Traffic

10.0.0.2 10.0.0.3

Loopback:

10.0.10.1

Loopback:

10.0.10.1

10.0.0.1

192.168.0.1

192.168.0.2

192.168.0.3

Traffic Generator

192.168.0.0/16

10.0.0.0/16

192.168.1.1

192.168.1.2

(a) Load balancing scenario setup. The entire RaaS
framework is hosted inside a single machine. Unless
indicated, addresses are installed on physical interfaces.

controller

API

MultiSpeaker

Tom's

Application

Original Data Flow

Changed Data Flow

Control Traffic

10.0.0.2 10.0.0.3

Loopback:

10.0.10.1

Loopback:

10.0.10.1

10.0.0.1

192.168.0.1

192.168.1.1

192.168.1.2

192.168.0.2

Traffic Generator

192.168.0.0/16

10.0.0.0/16

(b) Workload migration scenario setup. The entire RaaS
framework is hosted inside a single machine. Unless
indicated, addresses are installed on physical interfaces.

Fig. 8: Evaluation set-ups.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

B
a

n
d

w
id

th
(M

b
p

s
)

Time

Load Balancing Started
10.0.0.2
10.0.0.3

(a) Load balancing result.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

B
a

n
d

w
id

th
(M

b
p

s
)

Time

Connection Terminated
10.0.0.2
10.0.0.3

(b) Workload migration result.

Fig. 9: Experimental results.

On the industry side, services such as Amazon’s EC2 [2]

and Route 53 [29], Internap’s Performance IP [30], Route-

Science’s(RouteScience has been acquired by Avaya) [31]

PathControl offer route control services to end-users. EC2

is an infrastructure-as-a-service (IaaS) system that gives their

tenants control over virtual machine (VM) placement, load bal-

ancing (in a service called elastic load balancing, also known

as ELB), and IP-to-VM mapping. RaaS differs from EC2 in

that RaaS offers the underlying routing plane as a service

instead of individual capabilities. Rather than providing IP-to-

VM mapping, for example, RaaS can support mapping of IP

to any entities in the network that is IP-addressable. Internap’s

Performance IP service offers automatic route control based on

network conditions, and would automatically change routing

so customers’ packets traverse through the optimal ISP links.

RouteScience’s PathControl solution is similar to Internap’s

Performance IP, and it is sold as a hardware solution [32].

However, in both solutions there is no programmable API for

tenant to implement their own route-control logic. While Route

53 does not offer routing ability on the IP address level, it is

able to direct user traffic by changing the domain names to

IP address mapping. RaaS could complement services such

as Route 53 by providing another level of control after the

domain names have been translated to IP address.

13

VIII. CONCLUSION

The traditional paradigm for routing customization involves

a laborious and lengthy process, in which landlord and tenants

are tightly coupled. In this paper we introduced the Routing-

as-a-Service (RaaS) framework, where the coupling between

landlord and tenants are lessened. In the RaaS framework,

the landlord only needs to understand the resource set ℜ
of the tenants, and tenants can perform route customization

independently of other tenants. This results in less dedicated

personnel to process tenants’ requests and more independent

route control for the tenants. We showed that our prototype

based on the RaaS framework can process requests quickly,

often less than a second after receiving the request. In addition,

we also showed that it is possible to offer more aspects of the

data center as a service without major infrastructural overhaul.

With data centers becoming more popular and widespread, we

believe RaaS is an important addition to the set of services that

can be offered to tenants.

APPENDIX A

SERVICE AVAILABILITY

A. Basics

We model the data center network as a fat-tree, with

non-leaf nodes as routers/switches and leaf nodes as servers,

with the service reside on the servers. The availability of

the RaaS depends on the availability of the path from one

leaf of the tree to another leaf; we assume the worst case

scenario, where all requests to Controller travel the longest

path. For simplicity, we also assume that no redundancies

are in place. While this assumption does not hold in practice,

we assume this as a worst-case scenario and derive our result

for such a case. For a path p, each equipment’s availability

is modeled by an alternating renewal process (ARP) [33].

Mathematically, let Aa(t), Ab(t), ..., An(t) be ARPs for

components a, b, .., n, along a path where

Ak(t) =

{

1, if component k is in the up state at time t

0, if component k is in the down state at time t
(1)

Ak(t) is described by bivariate independent and identically

distributed (iid) random variables {(Uk
n , D

k
n), n ≥ 1}, where

(Uk
n , D

k
n) are random variables describing the nth up-time and

down-time intervals for component k, respectively.

S be a random variable where,

S(t,∆T) =







1, Aa(ta) = 1 ∩ ... ∩ An(tn) = 1,
t ≤ ta ≤ t+∆T, .., t ≤ tn ≤ t+∆T

0, otherwise

(2)

Intuitively, the success of the request is dependent on the com-

ponents along the path to be in the up state, and the minimum

up-time across all components be at least the time needed to

service the request (∆T). We are ultimately interested in the

stable-state probability that a request is served:

lim
t→∞

Pr(S(t,∆T) = 1) (3)

B. Result

Theorem 1. Given a path p to the services, where p is the set

of nodes {N1, N2, ..., Nn}. If the state of each node and S(t)

are defined as in Section A, then:

lim
t→∞

(Pr(S(t,∆T) = 1) =

(

E[U]−
∫∆T

0
(1− FU (t))dt

E[U] + E[D]

)n

(4)

Proof: The proof consists two parts: Finding

Pr(S(t,∆T) = 1) and finding the limiting probability

of Pr(S(t,∆T) = 1) as t → ∞. To find Pr(S(t,∆T) = 1),
note that

Pr(S(t,∆T) = 1) = Pr(Aa(ta)

= 1 ∩ Ab(tb) = 1 ∩ ... ∩ An(tn) = 1,

t ≤ ta ≤ t+∆T, .., t ≤ tn ≤ t+∆T) (5)

based on the definition of S(t,∆T). Using the assumption that

equipments act independent of each other, we have

Pr(S(t,∆T) = 1) =

n
∏

i=1

Pr(Aa(ta) = 1, t ≤ ta ≤ t+∆T)

(6)

Taking the limit as t → ∞, we have

lim
t→∞

Pr(S(t,∆T) = 1)

= lim
t→∞

n
∏

i=1

Pr(Aa(ta) = 1, t ≤ ta ≤ t+∆T)

=

n
∏

i=1

lim
t→∞

Pr(Aa(ta) = 1, t ≤ ta ≤ t+∆T)

(7)

limt→∞ Pr(Aa(ta) = 1, t ≤ ta ≤ t + ∆T) is known as

the limiting interval reliability and the derivation is given in

[33]. Starting with the equivalent result stated in [34] and re-

arranging the derivation gives the desired result.

REFERENCES

[1] C.-C. Chen, L. Yuan, A. Greenberg, C.-N. Chuah, and P. Mohapatra,
“Routing-as-a-service (raas): A framework for tenant-directed route
control in data center,” in INFOCOM, 2011 Proceedings IEEE, april
2011, pp. 1386 –1394.

[2] Amazon, “Elastic Compute Cloud.” [Online]. Available:
http://aws.amazon.com/ec2/

[3] Y. Wang, I. Avramopoulos, and J. Rexford, “Morpheus: making routing
programmable,” in INM ’07: Proceedings of the 2007 SIGCOMM

workshop on Internet network management. New York, NY, USA:
ACM, 2007, pp. 285–286.

[4] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and Implementation of a Routing Control
Platform,” in Proc. USENIX Symposium on Networked Systems Design

and Implementation (NSDI), May 2005.
[5] V. Valancius, N. Feamster, J. Rexford, and A. Nakao, “Wide-Area

Route Control for Distributed Services,” in USENIX Annual Technical

Conference, 2010.
[6] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4)

– RFC 4271,” 2006.
[7] G. Malkin, “RIP Version 2 – RFC 2453,” 1998.
[8] J. Moy, “OSPF Version 2 – RFC 2328,” 1998.
[9] R. Callon, “Use of OSI IS-IS for Routing in TCP/IP and Dual Environ-

ments – RFC 1195,” 1990.

14

[10] D. Oran, “OSI IS-IS Intra-domain Routing Protocol – RFC 1142,” 1990.
[11] Cisco, “Data Center Design IP Network Infrastructure,” 2009.
[12] A. Fabrikant, U. Syed, and J. Rexford, “There’s something about

mrai: Timing diversity can exponentially worsen bgp convergence,” in
INFOCOM, 2011 Proceedings IEEE, april 2011, pp. 2975 –2983.

[13] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
internet routing convergence,” in Proceedings of the conference
on Applications, Technologies, Architectures, and Protocols for

Computer Communication, ser. SIGCOMM ’00. New York,
NY, USA: ACM, 2000, pp. 175–187. [Online]. Available:
http://doi.acm.org/10.1145/347059.347428

[14] V. Valancius and N. Feamster, “Multiplexing bgp sessions with bgp-
mux,” in CoNEXT ’07: Proceedings of the 2007 ACM CoNEXT confer-

ence. New York, NY, USA: ACM, 2007, pp. 1–2.
[15] Microsoft, “Windows Communication Foundation,” 2006.
[16] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems (Chapman

& HallCRC Texts in Statistical Science), 1996.
[17] Microsoft, “Windows Communication Foundation, Data Contracts,”

2006.
[18] R Development Core Team, R: A Language and Environment for

Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2010, ISBN 3-900051-07-0.

[19] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC 1122 (Standard), Internet Engineering Task Force, Oct. 1989,
updated by RFCs 1349, 4379, 5884.

[20] I. Park and R. Buch, “Improve Debugging And Performance
Tuning With ETW.” [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc163437.aspx

[21] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings

of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.
[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[23] X. Yang, “NIRA: a new internet routing architecture,” in FDNA ’03:

Proceedings of the ACM SIGCOMM workshop on Future directions in

network architecture. ACM, 2003.
[24] H. Yan, D. Maltz, T. Ng, H. Gogineni, H. Zhang, and Z. Cai, “Tesseract:

A 4D Network Control Plane,” NSDI ’07: 4th USENIX Symposium on

Networked Systems Design & Implementation, 2007.
[25] K. K. Lakshminarayanan, I. Stoica, S. Shenker, and J. Rexford, “Routing

as a service,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-19, Feb 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-19.html

[26] E. Keller and J. Rexford, “The ”platform as a service” model for
networking,” in Proceedings of the 2010 internet network management

conference on Research on enterprise networking, ser. INM/WREN’10.
Berkeley, CA, USA: USENIX Association, 2010.

[27] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
2009.

[28] O. vSwitch. [Online]. Available: http://www.openvswitch.org
[29] Amazon, “Amazon Route 53.” [Online]. Available:

http://aws.amazon.com/route53/
[30] Internap, “Network-Based Service: Performance IP.”
[31] Avaya, “http://www.avaya.com.”
[32] G. Goddard and R. Vaughn, “Review: RouteScience’s PathControl,”

2002.
[33] R. E. Barlow and F. Proschan, Mathematical Theory of Reliability.

Society for Industrial Mathematics, 1987.
[34] L. A. Baxter, “Availability measures for a two-state system,” Journal of

Applied Probability, vol. 18, no. 1, pp. 227–235, 1981.

Chao-Chih Chen is currently a fifth-year
Ph.D student in the department of Com-
puter Science at the University of Cal-
ifornia, Davis. Chen’s research interests
include distributed systems, data center
network, network management, and dis-
tributed algorithms/protocols.

Lihua Yuan received his PhD in Electri-
cal and Computer Engineering from the
University of California, Davis in 2008.
His research interests are in the area of
computer network and distributed systems,
with a focus on network management,
measurement, and security. Currently, Dr
Yuan is with Microsoft Corp where he is
working on Next-Generation Data Center
network.

Albert Greenberg is at Microsoft, where
he works on data center networks, cloud
service infrastructure, enterprise network
management, and monitoring. He joined
Microsoft in 2007, after many years at
Bell Labs and AT&T Labs Research,
where he was an Executive Director and
AT&T Fellow, and where he helped build
the systems and tools for engineering and
managing AT&Ts networks. Albert is an
ACM Fellow.

Chen-Nee Chuah is a Professor in Electri-
cal and Computer Engineering at the Uni-
versity of California, Davis. She received
her B.S. from Rutgers University, and her
M. S. and Ph.D. in Electrical Engineering
and Computer Sciences from the Univer-
sity of California, Berkeley. Her research
interests include Internet measurements,
network management, anomaly detection,
online social networks, and vehicular ad
hoc networks. She received the NSF CA-

REER Award in 2003, and the Outstanding Junior Faculty Award
from the UC Davis College of Engineering in 2004. In 2008, she
was named a Chancellors Fellow of UC Davis. She has served on
the executive/technical program committee of several ACM and IEEE
conferences and is currently an Associate Editor for IEEE/ACM
Transactions on Networking.

Prasant Mohapatra is currently a Profes-
sor in the Department of Computer Sci-
ence at the University of California, Davis.
Dr. Mohapatra received his Ph.D. in Com-
puter Engineering from the Pennsylvania
State University in 1993. He was/is on
the editorial board of several IEEE- and
ACM-sponsored journals, including pro-
gram Vice-Chair of INFOCOM 2004, and
the Program Co-Chair of the First IEEE In-
ternational Conference on Sensor and Ad

Hoc Communications and Networks (SECON 2004). Dr. Mohapatra’s
research interests include wireless networks, sensor networks, Internet
protocols and QoS. His research has been funded though grants
from the National Science Foundation, Intel Corporation, Siemens,
Panasonic Technologies, Hewlett Packard, and EMC Corporation.

