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Abstract—Telecommunications networks, and in particular
optical WDM networks, are vulnerable to large-scale failures
of their physical infrastructure, resulting from physical attacks
(such as an Electromagnetic Pulse attack) or natural disasters
(such as solar flares, earthquakes, and floods). Such events
happen at specific geographical locations and disrupt specific
parts of the network but their effects are not deterministic.
Therefore, we provide a unified framework to model the network
vulnerability when the event has a probabilistic nature, defined
by an arbitrary probability density function. Our framework
captures scenarios with a number of simultaneous attacks, in
which network components consist of several dependent sub-
components, and in which either a 1+1 or a 1:1 protection
plan is in place. We use computational geometric tools to
provide efficient algorithms to identify vulnerable points within
the network under various metrics. Then, we obtain numerical
results for specific backbone networks, thereby demonstrating the
applicability of our algorithms to real-world scenarios. Our novel
approach allows for identifying locations which require additional
protection efforts (e.g., equipment shielding). Overall, the paper
demonstrates that using computational geometric techniques
can significantly contribute to our understanding of network
resilience.

Index Terms—Network survivability, geographic networks,
network protection, computational geometry, optical networks.

I. INTRODUCTION

Telecommunication networks are crucial for the normal
operation of all sectors of our society. During a crisis, telecom-
munication is essential to facilitate the control of physically re-
mote agents, provide connections between emergency response
personnel, and eventually enable reconstitution of societal
functions. However, telecommunication networks rely heavily
on physical infrastructure (such as optical fibers, amplifiers,
routers, and switches), making them vulnerable to physical
attacks, such as Electromagnetic Pulse (EMP) attacks, as
well as natural disasters, such as solar flares, earthquakes,
hurricanes, and floods [8], [13], [14], [36], [37]. Physical
attacks or disasters affect a specific geographical area and will
result in failures of neighboring components. Therefore, it is
crucial to consider the effect of disasters on the physical (fiber)
layer as well as on the (logical) network layer.

*This work was done while David Hay was with Columbia University.

Fig. 1. The fiber backbone operated by a major U.S. network provider
[30] and an example of two attacks with probabilistic effects (the link colors
represent their failure probabilities).

Although there has been a significant amount of work on
network survivability, most previous works consider a small
number of isolated failures or focus on shared risk groups (e.g.,
[6], [22], [27] and references therein). On the other hand, work
on large-scale attacks focused mostly on cyber-attacks (viruses
and worms). In contrast, we consider events that cause a large
number of failures in a specific geographical region.

This emerging field of geographically correlated failures
has started gaining attention only recently [2], [17], [24]-
[26], [31], [32], [37]. However, unlike most of the recent
work in this field, we focus on probabilistic attacks and on a
number of simultaneous attacks. Physical attacks rarely have
a deterministic nature. The probability that a component is
affected by the attacks depends on various factors, such as
the distance from the attack’s epicenter to the component,
the topography of the surrounding area, the component’s
specifications, and even its location within a building or a
system.! We consider arbitrary probability functions (with
constant description complexity) and develop algorithms that
obtain the expected vulnerability of the network. Furthermore,
while [17], [24]-[26], [31], [32], [37] consider only a single
event, our algorithms allow the assessment of the effects of
several simultaneous events.

In particular, we focus on wavelength-routed WDM optical

ICharacterizing the failure probability function of each component is
orthogonal to this research, and we assume it is given as an input.



networks, especially at the backbone [27]. We model the
network as a graph, embedded in the plane, in which each node
corresponds to an optical cross-connect (OXC) and each link
corresponds to an optical fiber (which are usually hundreds
or thousands of kilometers long). Along each link there are
amplifiers, which are spaced-out approximately equally and
are crucial to traffic delivery on the fiber. Data is transmitted
on this graph on lightpaths, which are circuits between nodes.

While lightpaths can be established by the network dynam-
ically, lightpath-provisioning is a resource-intensive process
which is usually slow. If many links fail simultaneously (as in
the case of a physical attack or large-scale disaster), current
technology will not be able to handle very large-scale re-
provisioning (see for example, the CORONET project [10]).
Therefore, we assume that lightpaths are static, implying that
if a lightpath is destroyed, all the data that it carries is lost.
Our goal is to identify the most vulnerable location in the
network, where vulnerability is measured either by expected
number of failed components or by the expected total data
loss. In order to do this, our model allows the consideration
of failure probabilities of compound components by evaluating
the effect of the event on their sub-components (e.g., the
failure probability of a fiber, due to failure of some amplifiers).
Under this model, we develop algorithms that identify the most
vulnerable locations with a tradeoff between accuracy and effi-
ciency. Namely, we can provide arbitrarily small errors, albeit
high running time. Note that although these algorithms have
to be executed offline in preparation for disasters, they have
to consider numerous options and topologies, and therefore,
efficiency is important. Moreover, our algorithms also work for
the deterministic case, with superior performance compared to
previous suggestions [25].

For the case of £ simultaneous attacks, we are interested
in the k-tuple of the most vulnerable locations. In the si-
multaneous attack case, the problem is hard not only due
to its probabilistic nature but also due to the combinatorial
hardness of the deterministic problem. Hence, we develop
approximation algorithms for various cases.

We also consider networks which are protected, by a dedi-
cated path protection plan (either 1+1 or 1:1 plan [27]). Under
such plans, every (primary) lightpath has a predefined backup
lightpath, on which data can be transmitted, if the primary
lightpath fails. These protection plans are pre-computed before
a failure event, and therefore, it is reasonable to assume that
they can be applied even after a large-scale set of failures.
For these networks, we provide approximation algorithms that
identify pairs of vulnerable locations that will have a high
effect on both the primary and the backup paths.

With the current technology, large-scale dynamic restoration
is mostly infeasible. However, this capability will emerge in
future optical networks [10]. For future networks with this
capability, network resilience can be measured as the maxi-
mum post-attack flow. However, we show that computing this
measure is in #P and hence cannot be found in any reasonable
time. We discuss options for mitigating this evaluation barrier.

Finally, we provide numerical results that demonstrate the

applicability of our algorithms to real backbone networks.
Among other things, we show that even when the approxima-
tion algorithms only guarantee low accuracy (thereby, having
low running time), the obtained results are very close to
optimal. This would allow checking various scenarios and
settings relatively fast.

The main contributions of this paper are fourfold. First, this
is the first paper to present a general probabilistic model for
geographically-correlated failures, as well as efficient approx-
imation algorithms for finding the most vulnerable locations
in the network. Second, we provide the first set of algorithms
that deal with simultaneous attacks. Third, we provide algo-
rithms that take into account pre-computed protection plans.
Finally, the paper demonstrates that computational geometric
techniques can significantly contribute to our understanding of
network resilience.

The rest of the paper is organized as follows. In Section
II, we review related work and in Section III, we present the
network model and formulate the problem. In Section IV, we
develop algorithms for failures centered at a single location
and extend them to multiple locations in Section V. We study
the effect of protection and restoration plans in Sections VI and
VII. We present experimental results in VIII and conclude and
discuss future work in Section IX. Due to space constraints,
the proofs are omitted and can be found in [3].

II. RELATED WORK

Network survivability and resilience is a well-established
research area (e.g., [6], [27] and references therein). However,
most of the previous work in this area and, in, particular in
the area of physical topology and fiber networks (e.g., [22])
focused on a small number of fiber failures (e.g., simultaneous
failures of links sharing a common physical resource, such
as a cable, conduit, etc.). Such correlated link failures are
often addressed systematically by the concept of Shared Risk
Link Group (SRLG) [19]. In addition, there exist works which
explore dependent failures but do not specifically make use of
the causes of dependence (e.g., [21], [34]).

In contrast with these works, we focus on failures within
a specific geographical region (e.g., [7], [14], [36]), implying
that the failed components do not necessarily share the same
physical resource. To the best of our knowledge, geograph-
ically correlated failures have been considered only in a
few papers and under very specific assumptions [17], [24]-
[26], [31], [37]. In most cases, the assumption is that the
failures of the components are deterministic and that there
is a single failure. Perhaps the closest to the concepts studied
in this paper are the problems studied in [7], [25], [32]. In
particular, [25] recently obtained results about the resilience
of fiber networks to geographically correlated failures where
disasters are modeled as circular areas in which the links
and nodes are affected. However, [25] considers only a single
disaster scenario where failures are deterministic.

Another closely related theoretical problem is the network
inhibition problem [28], [29], in which the objective is to
minimize the value of a maximum flow in the graph, where



there is a cost associated with destroying each edge, and a fixed
budget is given for an orchestrated attack (namely, removing
a set of edges whose total destruction cost is less than the
budget). However, previous works dealing with this setting
and its variants (e.g., [9], [29]) did not study the removal of
(geographically) neighboring links.

Notice that when the logical (i.e., IP) topology is considered,
wide-spread failures due to attacks by viruses and worms
rather than due to physical attacks have been extensively
studied (e.g., [15]).

III. PROBLEM STATEMENT

Let G = (V,E) be a graph representing the optical
network, where V' is a finite set of nodes in the plane, and
E is a set of links. We assume each link is a straight line
segment, and if it is a curve, it can be approximated by a
piecewise-linear function. Let ¢, > 0 be the capacity of link
e. A lightpath 7 consists of an ordered sequence of links
(where two consecutive links in the path share the same node
at one of their endpoints). Let ¢, be the amount of data
transmitted over 7 per unit of time. Generally, we consider the
nodes and links as simple components, and the lightpaths as
compound components. Let Q = {q1,...,qn} be a given set
of network components. Let w, be the weight associated with
a component ¢, which indicates either the amount of traffic
along ¢ or the capacity of the component. Each attack induces
a spatial probability distribution on the plane, specifying the
damage probability at each location. Taking the perspective of
a (simple) component g, given an attack location p € R?, let
f(g,p) be the probability that ¢ is affected by p. For example,
in a deterministic setting, f(q, p) is either 0 or 1. Alternately,
one could use more sophisticated models, for example, where
f(g,p) depends on the distance from p to g or the length
of the portion of link ¢ within the attack radius. In many
applications f (g, p) is given, or can be computed as a function
of the distance from p to q.

For simple components, we consider only probability func-
tions f(-,-) with constant description complexity. Intuitively,
these are functions that can be expressed as a constant number
of polynomials of constant maximum degree, or simple distri-
butions like the Gaussian distribution. In particular, our results
hold for the following important classes of distributions: (i)
f is a function of the Euclidean distance, i.e., f(q,p) =
max{0,1 — d(q,p)}, where d(q,p) is the Euclidean distance
between p and ¢ (more generally, d could be any norm);
and (ii) Gaussian distribution, i.e., f(g,p) = ﬂe*d(q*p)%‘ for
constants «, 5 > 0, chosen appropriately to normalize the
distribution.

For a compound component (e.g., a lightpath) 7, denote
by V. the set of components that constitute the compound
component, and for each simple component v € V., let f(v, p)
be the probability that v is affected by p. Thus, the probability
that 7 is affected by an attack in p is

fmp)=1—[] A= f(v,p)). (1)
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Fig. 2. Function f(g,-), where ¢ is a lightpath that consist on two fibers
[(—2,0),(2,0)] and [(—2,0), (—2, —2)] and the attack is Gaussian.
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Fig. 3. The function ®(Q,P) where the set of components Q are the links
that belong to the fiber backbone of a major network service provider [30].
Also shown in red on the network is the location with the highest impact.

See Fig. 2 for an illustration when f is Gaussian. Notice
that we can also have a compound hierarchy: for example
in certain types of attacks (e.g., EMP attacks), fiber links
are not damaged directly. In such cases, we can treat each
link as a compound component which consists of several
amplifiers (which are simple components represented as points
in the plane). Destroying an amplifier along the fiber makes
it unusable®. Therefore, in such a setting a lightpath is a
compound of compound components.

Our goal is to find an attack location (or a set of loca-
tions) which has the highest expected impact on the net-
work, where the impact is measured either by the number
of failed components (amplifiers, OXCs, or fibers), by the
total capacity of failed fibers, or by the total traffic carried by
failed lightpaths. For a set of attack locations P, let ®(Q,P)
denote the expected number (or alternatively, weighted sum)
of components of () affected by the attacks in P (for an
example, see Fig. 3). By linearity of expectation, we get

D(Q.P) = Lyeqa (1~ Tep(l ~ f(a,p))) . When Q is
clear from the context, we use ®(P). In case a protection plan
is in place (see Section VI), we assume that data is lost, if and
only if both the primary and backup lightpaths are affected.
The weight w, of each component enables us to define

ZMore generally, we can treat each link as comprised of a finite set of
sample points.



various measures in a unified manner: if () is the set of
amplifiers and w, is set to 1 (for all ¢), then ®(Q,P) is
the expected number of affected amplifiers had the attacks
occurred at P. Similarly, if @ is the set of fibers and for
any fiber ¢, w, = ¢, (¢’s capacity), then ®(Q,P) yields the
expected capacity loss of attacks in P. Finally, if () is the set
of lightpaths and w, = t,, then ®(Q,P) is the expected loss
in traffic, unless there is a protection (or restoration) plan in
place. It is important to notice that, by linearity of expectation,
®(Q,P) corresponds to the expected value of the measure
under consideration, regardless of any dependency between
the various components in Q. Therefore, even in the extreme
situations in which two components share the same physical
resource (e.g., lightpaths that share the same fiber, or fibers
that share the same conduit), one can evaluate ®(Q,P) by
considering each component separately.

IV. THE SINGLE LOCATION SCHEME

In this section, we discuss a setting where there is only a
single attack. We first describe intuitively how our algorithms
find the location with the highest impact on the network.
Then, we provide a detailed description of an algorithm that
deals only with simple components, discuss its complexity, and
prove its correctness. Finally, we will show two extensions:
one is geared towards compound components and the other
improves the running time by sampling.

A. Outline of the Algorithm

We first assume that P is a singleton and will denote the
location of the (single) attack by p. Fix a network element gq.
The super-level-set of a function f(q,-) with respect to a real
value y is the set of points p € R? such that f(q,p) > y. Given
an accuracy parameter ¢ € (0,1), and a set of components
@, our algorithm first determines a monotonically decreasing
vector Y of level values. For each level value in Y, and
each network element ¢, the super-level-sets of f(q,-) are
constructed. Note that a point can be in multiple super-
level-sets. Next, each super-level-set is a geometric region
surrounding ¢. Note that the region corresponding to some
level value y contains all super-level-sets of values 3’ < .
Moreover, if f is monotonic with the distance from g, these
regions are contiguous in the plane. However, our algorithm
does not require this property. Intuitively, the number of level
values determines the accuracy and the running time of our
algorithm: the more level values we have, the more accurate
our results are but our algorithm will require additional time
to complete. Fig. 2 depicts an example of super-level-sets
induced by a Gaussian attack on a lightpath; each contour
defines the edge of a super-level-set.

The next step is to find a point which maximizes ® (up
to some error). In the uniform case (all weights correspond
to 1), this is the point that belongs to the largest number of
super-level-sets, each might correspond to a different network
element (depending on the vector Y, we might count the
number of super-level-sets as a weighted sum). In the non-
uniform case, each region of component ¢ can conceptually

Algorithm 1 MAXIMPACTLOCATION : Approximation algo-
rithm for computing the optimum location of a single attack.
1: point p procedure MAXIMPACTLOCATION(Q,W ,f,€)

2: WM $— MaAX e, peR? wqf(q,p)
: for each g € Q) do
wy 4 we/wm

3
4:
5: i+ 0, Y0, A0
6.
7
8

while (1 —¢)’ > 1/2|Q| do
Y« YU{(1-¢)}

: 4+
9: for each ¢ € Q do
10: Ay« 0
11: for each y €Y do
12: Ay < {p €R?| f(p,q) >y}
13: Ag — AgU{Ngy}
14: A AUA,
15: VY <+ Compute_Vertices(\)
16: return arg max,.,, ®(Q,p)

17: end procedure

be viewed as w, coinciding regions. Thus, having essentially
the same problem. Finding a point which belongs to the largest
number of regions (usually, referred to as a point of maximum
depth) is a well-studied problem in computational geometry.

B. Detailed description of the simple component case

We first present an algorithm for simple components, and
then describe the modifications required to handle the case
of compound components. Our algorithm (see pseudo-code in
Algorithm 1) is similar to a recent algorithm by Vigneron [35]
and returns a point p such that ®(p) > (1 — €)®(p*), where
p* = argmax,cr2 ®(p) (namely, the optimal attack location),
and 0 <e<1?

The vector Y, which determines how the plane is divided,
is defined in an exponentially decreasing manner, such that its
i-th element (i > 0) is (1 —¢)®. The number of elements of Y
is the smallest integer s satisfying (1 —¢)® < 1/(2m), where

m is the number of components. Note that s = O ( 1°8™

Using the functions f(g,p), we find for each component
g, the value max,cg2 f(q,p). We then scale (linearly) the
weights associated with the network components, so that
maxXgeq per2 Wqf(q,p) is 1. We call this weight the normal-
ized weight of the component ¢ and denote it by w;. The rest
of our calculations (e.g., Line 16 of Algorithm 1) are done
under this normalized weight function.

The next definitions capture formally the essence of levels
and how they divide the plane:

Definition 1. (i) For a value y and a component q, the super-
level-set Ay, = {p € R? | f(q,p) > y} is the set of all points
with f(q,-)-value of at least y;

(ii) For each component q, Aq = {\qy | y € Y} is the set of
all component ¢’s super-level-sets;

(iii) A = p A, is the set of all super-level-sets;

3The algorithm of [35] returns a point p’ such that ®(p*) < (1+¢)®(p’).
In addition, our analysis is slightly simpler, and, in certain cases, we show
how to achieve a better running time.



Fig. 4. The arrangement which corresponds to probabilistic attacks of 3 links
€i1,j1+ €in,jo» aNd €444, such that each has 3 super-level-sets. The shaded
region is an example of one of the faces of the arrangement. All vertices of
the arrangement are marked with "x’.

(iv) A(p) = {Agy € A | p € N\yy} be the set of all super-level-
sets that contain p.

Using the set A, whose size is O(ms), we define the
arrangement A = A(A) of super-level-sets is the subdivi-
sion of the plane into vertices, arcs and faces. Under this
division: (i) vertices are the set of all intersection points of
the boundaries of the super-level-sets along with the set of
points where a vertical line is a tangent to the boundary
of a super-level-set; (ii) arcs are the maximally connected
portions of the boundaries between the vertices; and (iii) faces
are maximally connected regions bounded by arcs (for an
example, see Fig. 4). Notice that in Algorithm 1 the subroutine
Compute_Vertices(A) returns all the vertices of A(A).

Our algorithm computes the arrangement A(A) of these
O(ms) super-level-sets. The algorithm then evaluates the
function ®(-) for each vertex of the arrangement, and chooses
the best one. The arrangement can be computed in time
O(mlog (m) + x) [4], [33], where x is the total number
of vertices, arcs, and faces in A(A). For simple network
components, one can evaluate the function ® at each vertex
naively, implying a total complexity of O(my log(m)).

One can improve the running time by refining the faces
of the arrangement A(A) into cells of constant description
complexity (i.e., cells that can described by constant number
of polynomial inequalities each of constant maximum degree).
This ensures that, in order to compute the function ® on each
cell, there are only a constant number of updates to perform
when moving from one cell to another. Thus, by traversing the
cells systematically, one can compute the value at each vertex
in a constant time, implying a total complexity of O (m log m+
X) (see [35] for details). Notice that x = O (”;—;IOg2 m),
when the super-level-sets themselves have constant description
complexity (i.e., as determined by the function f).

Next, we prove the correctness of our algorithm. First, the
optimal point is contained within one of the faces of the
arrangement A(A), because its ®-value is at least 1 (that is,
the maximum normalized weight). On the other hand, one can
verify that ®’s value outside the arrangement is at most 1/2,
since the probability to hit any component is less than 1/(2m).
We prove our approximation ratio by fixing a specific network
element and looking at a specific face.

Lemma 1. If two points p1 and ps, such that f(q,p1) >

flg,p2), are in the same face of A(A), then, for every
component q, wy f(q,p2) > (1 — €)w, f(q,p1), where wy is
the normalized weight of q.

Applying Lemma 1 over all the network elements g, we
get > wof(g.p2) > (1 —¢)>, wyf(g.p1). Since, this
approximation is valid for any two points in any face of
A(A), it also holds for a vertex of the face of A(A) and
the optimal point. When the function f(g,p) is given by
f(g,p) = max{0,1—d?(q,p)}, where q is either an amplifier
or a link, we can compute the point p* that maximizes
exactly. The key observation is that after partitioning the plane
into faces, the gradient inside each face is linear function (see
the technical report [3] for details).

C. Extensions to the compound component case

For compound components, one can apply the algorithm
MAXIMPACTLOCATION using the function f(g,-) for each
compound component ¢, as defined in (1). Function f takes
into account that a single component failure within the
compound component is enough to break down the entire
component. However, the description complexity of f may
not be a constant, thus computing the super-level-sets might
be difficult.

To circumvent this problem, we present an algorithm that
finds the (1 — ¢)-approximated optimal location in two con-
ceptual steps:

1) Compute an arrangement A(A) on the f(v,-) for the

simple components v € V;, as defined in Section IV-B.
This arrangement deals with the simple component
within each compound component directly, both the
arrangement size and its computation complexity is the
same as in Section IV-B.

2) For every vertex p of a face of A(A), we compute
the value of f(g,p) using (1). Each such computation
requires up to x = > |V;| updates to previously
obtained value, where s is the sum of the sizes of all
compound components. Thus the total complexity of our
algorithm is O(mlog (m) + xk).

We now prove the correctness of the above algorithm. Let

p be a vertex in the face of the arrangement which contains an
optimal point p*. From Lemma 1, for every simple component
v, we have f(v,p) > (1 —¢)f(v,p*), ie., 1 — f(v,p) <
1—(1—¢)f(v,p*) implying that, for a compound component
g, with V, as components,

1— H/(l_f(vap)) >1- H/(l_(l_g)f(v7p*)) (2)

We also have the following arithmetic lemma:

Lemma 2. For every point p' € R2? and a compound
component q comprised of simple components V,,

1= JJa-0-fp) =0 -e)f(ap).
veEVy

Using (2) and applying Lemma 2 for p*, we get that
f(g,p) = (1 — €)f(q,p*). The correctness of the algorithm



follows by multiplying by wy, and summing over all compound
components.

D. Improving running time by sampling

Our algorithm MAXIMPACTLOCATION computes all the
vertices of the arrangement of super-level-sets, which can be
quite large. We present a sampling based algorithm which
is significantly faster when the number of vertices that ap-
pear on the boundary of the union of super-level-sets A is
O(|A]) = O(m), a condition that is true in most practical
applications.

Up until now, the errors introduced by our algorithms are
a result of a discretization of function f, as captured by the
different super-level-sets and the corresponding arrangement.
Once this discretization is done, we find an optimal solution
with respect to the discrete arrangement. In this section, we
relax the requirement of optimal solution within the arrange-
ment, and require only (1—¢§)-approximation. Specifically, we
show that by carefully choosing the values of Y and §, we can
obtain a (1 —e¢) overall approximation with significantly faster
algorithm. Our (1 — ¢)—approximation of the second stage is
conceptually equivalent to finding a point with approximately
maximum depth within the specific arrangement. This problem
was solved by Aronov and Har-Peled [5] through sampling,
and therefore, we will build on their technique.

Specifically, fix a level value vector Y, such that the
approximation obtained by running the algorithm MAXIM-
PACTLOCATION is 1—¢'. Let y; denote the i-th value in Y, for
1 <4 < 5. We associate weights oy, to each super-level-set
Agy; as follows. We associate to oy, the weight wy(1—¢")¥:,
and for i < s we set agy, = wq(1—¢)" —ayy,,, Furthermore,
for each p € R?, let A,(p) = Z)\W eA(p) Yay,- We call this
value the weighted depth of p with respect to weights a. By
the choice of ag,,, we get Ay(p) > (1 — ¢’)®(p). Thus, the
problem of finding a point that approximately maximizes ®(-)
reduces to finding a point of maximum weighted depth in

A(A).

Let amax = MaxXgeQ,uey Qqy,- We scale the weights
of the super-level-sets so that the new weights are, (4, =
Aqy,; m

o5 This ensures that A¢(p*) > [A|/€’, where p* is a
point that maximizes ®(-). We round the weights by setting
Bqy; = |Cqy, |- Therefore, for any point p, whose depth with
respect to weights ¢ is at least |A|/e’, we have Ag(p) >
Aclp) — €A/ > Ac(p) — £'Ac(p) = (1 — )Ac(p).
Thus, we can assume that the weights of the super-level-sets
are integers between 0 and ||A|/’]. Let A° be the multiset
of super-level-sets obtained by making 3,,, copies for each
super-level-set \gy,. The (unweighted) depth of a point p in
A(A°), which we call A(p), is the number of copies that
contain p. We can now use the algorithm of Aronov and Har-
Peled [5], which works with unweighted depth, to compute
a point p such that A(p) > (1 — 0)A(p*). This implies,
Acp) = Alp) = (1— DA = (1—0)(1 — )Ac(p"),
and after rescaling we get A, (p) > (1—0)(1—¢)AL(p*) >
(1 —6)(1 — &')2®(p*). We choose § = & = /8, to get
the desired (1 — ¢)-approximation. Note that if the copies are

stored explicitly, we would need (|A?|/¢) copies in the worst
case. Therefore, we show that the copies can be maintained
implicitly to achieve a faster expected running time. Namely,
near-linear in |A|.

Conceptually, the algorithm of Aronov and Har-Peled works
by first generating a random sample R° C A€, i.e., by choosing
each copy of a super-level-set in A€ with probability p. A
decision procedure is then invoked to check if the maximum
(unweighted) depth in the arrangement of A(R°) is at least
a threshold 7 = O(e~2log %) If the depth is less than the
threshold, p is doubled and we repeat this process until either
the depth is more than 7 or the entire arrangement A(A°)
is computed, in which case, a point of maximum depth is
returned. Thus, the number of iterations is O(log @) and the
total running time is O(Tp log %), where Tp is the expected
time to choose the random sample and execute the decision
procedure to see if the maximum depth is at least 7. We
now show that one can maintain the copies implicitly, and
execute the decision procedure so that, Tp = O(g log? VE\—‘)
We use the fact that the number of copies of any super-level-
set Agy, chosen in the random sample R¢ follows a binomial
distribution, B(Bqy,, p), with parameters [, and p. So, for
each super-level-set Ay, we generate a binomial random
variate Vg, ~ B(Bqy.,p) in O(log Byy,) expected time [12],
and associate vg,,, as the weight of the super-level-set Agy,.
Repeating this for each super-level-set, we can generate a set
R = {Aqy, | vgy, > 0}, of distinct super-level-sets in expected
time O(|A|log @) We then use a randomized divide-and-
conquer algorithm to check if the maximum weighted depth
(with respect to weights v) in the arrangement A(R) is at most
7. For example, the algorithm of Agarwal et al. [1] can be
adopted for this purpose. Since the number of distinct super-
level-sets in R is at most |A|, the expected running time of
this procedure is O(% log @) Thus, the overall running
time to determine a point p, such that ®(p) > (1 — &)®(p*),
is O(LA—Q‘ log* @)

V. SIMULTANEOUS ATTACKS

We now consider scenarios in which k attacks may happen
simultaneously. Our goal is therefore to identify the set P of
k locations, for which ®(Q, P) is maximized over all possible
choices of k locations. In general, finding this set P is NP-
hard, since maximizing the value of @ is a generalization of the
well-known maximum set cover problem [18]. Nevertheless,
we show that the function @ satisfies certain interesting
properties (namely, monotonicity and submodularity). We then
present a fast approximation algorithm with a constant approx-
imation ratio, relying on these properties.

A. Algorithm definition

In this section, we formally define the e-greedy algorithm
that selects the locations one by one, so as to maximize the
gain in ® (given all past selections).

Specifically, the algorithm works iteratively. Let Py, =
{p1,...,pr} be the set of locations that were chosen in the
first & iterations. Let p* ¢ Py be the location that maximizes



o(p,Pr) = D(Q,Pr U {p}) — ®(Q, Py ) over all points
p € R2. Namely, the location that maximized the revenue in
terms of ®. The e-greedy algorithm chooses at iteration k' +1,
a location p such that p(p, Pir) > (1 —€)p(p*, Pr).

Notice that ¢(p, Pr) = >_.cqH(q,Pr)f(q,p), where
w(a, Pr) = wqllep, (I — fg,p')). This implies that
finding the location that maximizes ¢(p, Py/) within factor
(1 —¢€) can be done by applying the algorithms of Section IV
after modifying the weights of the components to p(q, Py/)
(instead of wyg).

B. Performance evaluation

As mentioned previously, computing ® exactly is NP-
hard. However, the function ®((, ) has two key properties,
monotonicity and submodularity, which are used to develop
an approximation algorithm. Intuitively, the expected number
of failures only increases with the number of attacks. Hence,
®(Q,-) is monotonically non-decreasing, i.e., ®(Q,P:) <
D(Q, Ps), for any set Py O Py (formally, this property stems
from the fact that u(q, P2) < u(q,P1), for any ¢ € Q). The
function ®(Q, -) also exhibits the “law of diminishing returns”
property or submodularity: for a given attack p and two sets
of attacks P; and P5 such that P, O Py, the incremental gain
of p is lower if it happens after Ps than if it happens after P;.
The following lemma captures this property.

Lemma 3. ®(Q, ") is a submodular function. Namely, for any
two set of points Py and Po, such that Py O Py, and any
point p € R?, ®(Q,P1U{p}) —(Q, P1) > ®(Q, P2U{p}) -
®(Q,P2), ie, o(p,P1) = ¢(p, P2).

These two properties immediately imply that a perfect
greedy algorithm (that is, e-greedy algorithm with ¢ = 0)
achieves a (1 — 1/e)-approximation [23]. Since our selection
at each step is approximate, the overall approximation ratio of
e-greedy is (1 — =) [16], for any 0 < & < 1. Note that our
proof holds for both types of components.

VI. NETWORKS WITH A PROTECTION PLAN

When building a resilient network, a common paradigm
is to provide a protection plan for significant lightpaths to
ensure their continuous service in the face of network failures.
Common approaches include 1+1 dedicated protection where,
conceptually, the data is sent twice along primary and backup
lightpaths, implying that data is lost only when both lightpaths
fail simultaneously. A 1:1 dedicated protection, on the other
hand, allows using a backup lightpath for low-priority traffic.
Once the primary lightpath fails, traffic is shifted to the backup
lightpath, and the low-priority traffic is disregarded.

When designing a protection plan, geographical correlation
is often taken into account. The primary and backup lightpaths
tend to be fiber-disjoint or even to be part of different Shared
Risk Link Groups (SRLGs). For example, the fibers should
not be close physically. Thus, it is likely that a reasonable
protection plan will cope with a single attack. In this section,
we are evaluating the resilience of a protection plan to two
simultaneous attacks.

Formally, we are given pairs of lightpaths (m;, 7}), where
7; is the primary path and 7 is the backup path. Let T; and
t; be, respectively, the high-priority and low-priority traffic on
these lightpaths (for 1+1 protection, ¢; is always 0). Thus, one
loses t; when either 7; or 7} fails, and T; + ¢, if both fail at
once. Hence, given two locations p; and ps, the expected loss
on the i-th pair (obtained by case analysis) is

ti[l — g(mi, p1)g(mi, p2)g (7}, p1)g(}, p2)]
+Ti[f (miy p1) f (3, p1) + f (i, p2) £ (707, p2)
—f(mi, p1) (0, p1) f (i, p2) f (707, p2)
+9(mi, p1) f (75, p1) f (i, p2) g (705, p2)
+f (i, p1)g (7}, 1) g (i, p2) f (7, p2)]
3)

where g(w,p) denotes 1 — f(m, p). For the entire network, we
get ®(p1,p2) = >, Pi(p1,p2). We next show how to compute
the pair of attacks py,ps that maximizes ®(p;,ps). Notice
that one can also measure the worst-case vulnerability of the
protection plan by the value of ®(p1,p2) and use this value
to compare the resilience of alternative plans.

The algorithm is a generalization of MAXIMPACTLOCA-
TION with the following modification: Instead of computing
the value of ® for each vertex of a face of the arrangement,
we consider all possible pairs of vertices and compute the
value of ® as though the attacks happened in these locations.
This implies that the running time is quadratic in the size
of the arrangement. Moreover, the approximation ratio can
degrade up to a factor of (1 —¢)?, as we multiply four terms
in (3). This can be solved by a refined arrangement defined
with ¢/ = 1 — /1 —¢ = O(e), with no extra complexity
penalty.

®;(p1,p2) =

VII. NETWORKS WITH RESTORATION ALGORITHMS

An alternative approach to network survivability is to devise
a dynamic restoration scheme, which, upon a network failure,
is able to re-route the traffic so as to avoid data loss. In gen-
eral, devising efficient restoration algorithms, especially when
required to handle large-scale failures, is a challenging task.
Dynamic restoration schemes are more efficient in utilizing
network capacity, but have slower recovery time and often
cannot guarantee quality of restoration.

Clearly, the optimal quality of restoration (in terms of post-
attack traffic carried by the network between predetermined
source nodes and target nodes) is the maximum flow of the
residual network and, therefore, finding the most vulnerable
location in such setting is equivalent to finding the location
whose corresponding attack minimizes the expected maximum
flow. However, under a probabilistic setting, finding the ex-
pected maximum flow of a graph is #P-complete. This is
true even if all edges have unit weight (that is, a connectivity
problem), and even if the graphs are planar. It is important to
notice that although one is not directly required to compute
the exact value of the expected maximum flow in order to
find the most vulnerable location, and, in some cases, one can
compare the effects of two locations without such computation



(e.g., when the failure probability of one location dominates
the other), in the general case, such computation is necessary
(e.g., two locations affecting disjoint sets of links and there is
no third location that can be used for comparison). Thus, we
obtain the following result.

Theorem 1. Computing the most vulnerable location in term
of expected maximum flow is #P-complete.

Essentially, this hardness result implies that finding the most
vulnerable location requires an exponential-time algorithm in
the number of affected links. Such algorithms might be feasible
to implement when the number of these links is bounded by a
small constant s. The most intuitive approach is by a complete
state enumeration. Such an algorithm considers one candidate
location at a time (obtained by the corresponding arrangement,
as in Section IV); each location defines a probabilistic graph
G = (V, E) where every edge e € F has a failure probability
Pr.. Let F; denote the edges with zero failure probability, and
E the rest of the edges. The algorithm will enumerate all sub-
sets of F and for each such subset S, compute the probability
for such a failure pattern Prg = [].c g Pre [[.cp,\ s(1—Pre).
Then, it computes the maximum flow F in Gg = (V, E;US).
The expected maximum flow is > ¢ g, Prs-Fs, and its com-
putation requires 2/72! < 25 maximum-flow computations.*

Alternative techniques, such as graph simplification, graph
factoring, and inclusion-exclusion based approaches were also
studied in the past [11]. However, all the suggested algorithms
still require exponential running time.

VIII. NUMERICAL RESULTS

We have run the algorithms of Section IV on three different
networks within the continental USA: Level 3’s network of
230 links [20], Qwest’s fiber-optic network of 181 links [30],
and XO Communications’ long-haul network of 71 links
[38]. We obtained lightpath information for the last two. In
addition, for Qwest’s network, we have the transmission rates
of individual lightpaths, which were used to determine the
values of t,.

We conducted simulations with five different accuracy val-
ues ¢ for simple components: 0.1,0.2,...,0.5. For compound
components, we used three values of &' (recall Section TV-C):
0.1, 0.2 and 0.3; roughly 0.8-, 0.65-, and 0.5—approximations.
In addition, we considered five different attack radii, ranging
between 60 and 300 miles. Finally, two f functions were used:
a function that decreases linearly with the distance, and a
function that follows a Gaussian distribution (see Section III).

We first compared the values of ® for different accuracy
values ¢ of our algorithms. Table I shows the results for
simple and compound components when the attack radius
(resp., standard deviation of radius) is 180 miles for the linear
(resp., gaussian) f-function. Here, ®; and ®¢ respectively
denote ® under linear and Gaussian probability functions. Our
results show no perceptible change in ® when ¢ is changed,

4Note that the arrangement of Section IV induces only an approximate
solution. In this case, we need to scale the error parameter ¢ inversely with
s to avoid accumulating errors in the computation.

TABLE I
VALUES OF ® FOR SIMPLE AND COMPOUND COMPONENTS UNDER LINEAR
f-FUNCTION (®,) AND GAUSSIAN f-FUNCTION (@ ).

Level3 Qwest X0
QL | P¢ or Le] ®r | ®¢
Simple comp. 20.5 | 69.4 14.1 37.2 6.1 15.6
Compound comp. - - 475.7 | 615.1 11.1 | 158

[¢Level 3: Links
|- -Qwest: Links

80 | |#-X0: Links
|-m-Qwest: Lightpaths
70 |-+ -X0: Lightpaths

of Failed C
8

60 120 180
Radius (miles)

Fig. 5. Variation of ®, normalized by the sum over the entire network, with
the attack radius for a linear failure probability function.

neither for links nor for lightpaths. This conclusion holds
for all three networks, for both f-functions and for various
attack radii. This may be explained by the fact that, in these
networks, the location found by MAXIMPACTLOCATION lies
on, or extremely close to a fiber link, thus avoiding the worst-
case (in terms of approximation ratio). While cases where ®
varies significantly with € do exist, our results show that, in
practice, the dependence on € is very limited. This implies
that for realistic fiber-optic networks, the much faster 0.5-
approximation algorithms obtain very close to optimal results.

To validate our algorithm, we also computed ® for all three
networks when attack locations are restricted to a fine grid of
cell size 0.6 x 0.6 miles. Fig. 3 shows the effects on Qwest’s
network, of attacks of radius 180 miles centered at locations on
this grid. The point corresponding to the maximum value of ®
lies less than 0.5 miles from MAXIMPACTLOCATION’s output
(shown in red in Fig. 3) and the values of ® are also almost
the same. These results further reinforce the conclusion that
MAXIMPACTLOCATION is, in practice, very close to optimal.

Finally, Fig. 5 shows the change in & with the attack
radius for a linear f-function for both simple and compound
components. We normalized the value of ®, so that 100%
implies the sum of the weights of all network components. As
can be seen, the marginal gain in increasing the attack radius
is limited, and even small attacks with radius of 60 miles can
cause large damage if they are placed in vulnerable locations.

IX. CONCLUSIONS

In this paper, we provided a unified framework to identify
vulnerable point(s), given a WDM network embedded in the
Euclidean plane. A unique feature of our framework is its
ability to cope with a wide range of probabilistic attack and
Jfailure models.

The basic building block of our framework is the algo-
rithm MAXIMPACTLOCATION, which locates efficiently a
point in the plane that causes arbitrarily close to maximum



impact on a network comprised of simple components. By
its tolerance factor ¢, MAXIMPACTLOCATION trades accu-
racy with running time. We further extended and improved
MAXIMPACTLOCATION in various ways that allow it to deal
with compound components, simultaneous attacks, networks
equipped with a protection plan and to deal faster with simpler
networks or probabilities. We also evaluated its performance
by simulation on three real WDM networks. Our numerical
results show, quite surprisingly, that MAXIMPACTLOCATION
finds a location very close to optimal, even when taking
a high tolerance factor ¢ (e.g., when it runs very fast but
with a loose guarantee on the quality of its output). This
makes MAXIMPACTLOCATION an even more attractive tool
for assessing network resilience.

Future research directions include developing efficient plan-
ning methods for geographically-resilient networks and in-
vestigating the effect of adding minimal infrastructure (e.g.,
lighting-up dark fibers) on network resilience. Finally, we
plan to determine how to use low-cost shielding for existing
components to mitigate large-scale physical attacks.
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