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Abstract

The problem of designing policies for in-network function computation with minimum energy

consumption subject to a latency constraint is considered. The scaling behavior of the energy

consumption under the latency constraint is analyzed for random networks, where the nodes are

uniformly placed in growing regions and the number of nodes goes to infinity. The special case of

sum function computation and its delivery to a designated root node is considered first. A policy

which achieves order-optimal average energy consumption in random networks subject to the

given latency constraint is proposed. The scaling behavior of the optimal energy consumption

depends on the path-loss exponent of wireless transmissions and the dimension of the Euclidean

region where the nodes are placed. The policy is then extended to computation of a general

class of functions which decompose according to maximal cliques of a proximity graph such as

the k-nearest neighbor graph or the geometric random graph. The modified policy achieves

order-optimal energy consumption albeit for a limited range of latency constraints.

Keywords: Function computation, latency-energy tradeoff, Euclidean random graphs, minimum
broadcast problem.

1 Introduction

A host of emerging networks are pushing the boundaries of scale and complexity. Data centers are
being designed to distribute computation over thousands of machines. Sensor networks are being
deployed in larger sizes for a variety of environmental monitoring tasks. These emerging networks
face numerous challenges and the threat of a “data deluge” is an important one. The data collected
by these networks typically scale rapidly as their size grows. Routing all the raw data generated in
these large networks is thus not feasible and has poor scaling of resource requirements.

In this paper, we consider the scenario where only a function of the collected raw data is required
at some specific node in the network. Many network applications fall into this category. For instance,
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in a statistical inference application, where a decision has to be made based on the collected data,
the likelihood function suffices to make the optimal decision [1]. Such functions can have significantly
lower dimensions than the raw data and can thus considerably reduce the resource requirements for
routing.

In this paper, we analyze the scaling behavior of energy and latency for routing and computation
of functions in random networks, where the nodes are placed uniformly in growing regions and the
number of nodes goes to infinity. In particular, we address the following questions: how can we
exploit the structure of the function to reduce energy consumption and latency? What class of
functions can be computed efficiently with favorable scaling of energy and latency requirements?
How do the network properties such as the signal propagation model affect the scaling behavior?
What is the complexity for finding the optimal policy with minimum energy consumption under
a given latency constraint for function computation? Are there simple and efficient policies which
achieve order optimal energy consumption? The answers to these questions provide important
insights towards engineering in-network computation in large networks.

1.1 Summary of Contributions

The contributions of this paper are three-fold. First, we propose policies with efficient energy
consumption which compute any function belonging to a certain structured class subject to a feasible
latency constraint. Second, we prove order-optimality of the proposed policies in random networks.
Third, we derive scaling laws for energy consumption in different regimes of latency constraints for
different network models. To the best of our knowledge, this is the first work to analyze energy-
latency tradeoff for function computation in large networks. These results provide insight into the
nature of functions which are favorable for in-network computation.

We analyze the scaling laws for energy and latency in random networks, where n nodes are placed
uniformly in a region of volume (or area) n in R

d, and we let n → ∞. We consider (single-shot)
function computation and its delivery to a designated root node. We first consider the class of sum
functions, which can be computed via an aggregation tree. We characterize the structural properties
of the minimum latency tree and propose an algorithm to build an energy-efficient minimum latency
tree based on successive bisection of the region of node placement. However, minimum latency comes
at the expense of energy consumption and we relax the minimum latency constraint. Our modified
algorithm achieves order-optimal energy consumption for any given latency constraint. It is based
on the intuition that long-range communication links lower latency but increase energy consumption
and the key is to strike a balance between having long-range and short-range communications to
achieve the optimal tradeoff.

We then consider the more general class of functions that decompose as a sum of functions over
the maximal cliques of a proximity graph, such as the k-nearest neighbor graph or the random
geometric graph. These functions are relevant in the context of statistical inference of correlated
measurements which are drawn from a Markov random field. See [1] for details. We extend the
proposed sum-function policy to this case and prove that it achieves order-optimal energy consump-
tion (up to logarithmic factors) albeit under a limited range of latency constraints. In this range of
feasible latency constraints, the energy consumption is of the same order as sum function computa-
tion. Hence, functions based on locally-defined proximity graphs can be computed efficiently with
optimal scaling of energy and latency requirements.

We analyze the scaling behavior of energy consumption under different regimes of latency con-
straints and for different signal propagation models. We assume that the energy consumed scales
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as Rν where R is the inter-node distance and ν is the path-loss exponent and consider nodes placed
in a region in R

d. We prove that in the regime 1 ≤ ν < d, order-optimal energy consumption and
minimum latency can both be achieved simultaneously. On the other hand, in the regime ν > d,
there is a tradeoff between energy consumption and the resulting latency of computation, and our
policy achieves order-optimal tradeoff.

1.2 Prior and Related Work

There is extensive literature on in-network processing. Some of the earliest arguments for in-network
processing for scalability are presented in [2, 3]. The work of Giridhar and Kumar [4] provides a
theoretical framework for in-network computation of certain functions such as sum function and
analyze scaling of capacity as the network size grows. However, the work in [4] is concerned with
the rate of information flow when the function is computed an infinite number of times, while
we consider latency of single-shot function computation. Single-shot computation is relevant in
applications involving one-time decision making based on a set of measurements. Moreover, we
consider a richer class of functions which decompose according to some proximity graph. These are
relevant in statistical inference applications with correlated measurements.

For the special case of sum-function computation, the minimum latency is the same as that for
the minimum broadcast problem, where the root has information that needs to be disseminated
to all the nodes. Most of the previous work on minimum broadcast problem, e.g., [5, 6], have
focused on obtaining good approximations for minimum latency in arbitrary networks, but do not
address the issue of scaling behavior of latency-energy tradeoff in random networks. These works
also assume that only short-range communication may be feasible for communication. On the
other hand, we allow for a few long-range links but focus on obtaining favorable scaling of overall
energy consumption. Works considering latency-energy tradeoff in multihop networks are fewer.
For instance, the works in [7–9] consider energy-latency tradeoff for data collection but without the
possibility of in-network computation, which can be significantly more expensive. The work in [10]
considers latency-energy tradeoff but during the deployment phase of the network.

With respect to analysis of energy scaling laws in randomly placed networks, the work in [11]
derives scaling laws for multihop routing without in-network computation. In [12], the minimum
energy policy for graph-based function computation is first analyzed in the context of statistical
inference of correlated measurements and is shown to be NP-hard. An efficient policy is derived
based on the Steiner-tree approximation. In [1], scaling laws for energy consumption are derived
for computation of graph-based functions in random networks. When the function decomposes
according to the cliques of a proximity graph, such as the k-nearest neighbor graph or the random
geometric graph, it is shown that the function can be computed with1 Θ(n) energy consumption in
random networks, where n is the number of nodes. A simple two-stage computation policy achieves
this scaling and is shown to have asymptotically a constant approximation ratio, compared to the
minimum energy policy. In this paper, we extend the work to incorporate latency constraints and
design policies which minimize energy consumption under the constraints.

1For any two functions f(n), g(n), f(n) = O(g(n)) if there exists a constant c such that f(n) ≤ cg(n) for all n ≥ n0

for a fixed n0 ∈ N. Similarly, f(n) = Ω(g(n)) if there exists a constant c′ such that f(n) ≥ c′g(n) for all n ≥ n0 for a
fixed n0 ∈ N, and f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)).
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2 System Model

2.1 Communication and Propagation Model

In a wireless sensor network, there are communication and energy constraints. We assume that
any node cannot transmit and receive at the same time (half duplex nodes). We assume that
a node cannot receive from more than one transmitter at the same time and similarly, a node
cannot transmit simultaneously to more than one receiver. We assume that no other interference
constraints are present. This is valid if nearby nodes transmit in orthogonal channels or when they
have idealized directional antenna which can focus the transmissions within a narrow region around
the receiver (e.g., [13, 14]). We also assume that nodes are capable of adjusting their transmission
power depending on the location of the receiver leading to better energy efficiency.

We assume unit propagation delays along all the communication links and negligible processing
delays due to in-network computation at nodes. For a transmission along edge (i, j) (from node
i to node j), the energy consumption2 is equal to Rν

i,j, where Ri,j is the Euclidean distance and
typically ν ∈ [2, 6] for wireless transmissions. In this paper, we allow for any ν ≥ 1.

2.2 Stochastic model of sensor locations

Let Qn ⊂ R
d denote the d-dimensional hypercube [0, n1/d]d of volume n, and typically d = 2 or 3

for sensors placed in an Euclidean region. We assume that n sensor nodes (including the root) are
placed uniformly in Qn with sensor i located at Vi ∈ R

d. We denote the set of locations of the n
sensors by Vn:={V1, . . . , Vn}. For our scaling law analysis, we let the number of sensors n → ∞.
Denote the root node by r, where the computed function needs to be delivered, and its location by
Vr.

2.3 Function Computation Model

Each sensor node i collects a measurement Yi ∈ Y, where Y is a finite set, and let Yn = {Y1, . . . , Yn}
be the set of measurements of n nodes. We assume that the goal of data aggregation is to ensure
that a certain deterministic function3 Ψ : (Yn,Vn) 7→ R is computable at the root r at the end of
the aggregation process. The set of valid aggregation policies π is thus given by

F(Vn; Ψ):={π : Ψ(Yn,Vn) computable at r}. (1)

Using the propagation model discussed in Section 2.1, the total energy consumption of the aggre-
gation process under a policy π ∈ F(Vn; Ψ) is

Eπ(Vn) :=
∑

e∈Gπ
n

Rν
e , (2)

where Gπ
n is the set of links used for inter-node communication by the policy. The latency4 of

function computation is

Lπ(Vn; Ψ):= inf[t : Ψ(Yn,Vn) computable at V1 at time t], (3)

2Since nodes only communicate a finite number of bits, we use energy instead of power as the cost measure.
3In general, the function can depend on the locations where the measurements are collected.
4We consider one-shot function computation.
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Root r

Figure 1: Example of a function dependency graph G and the function decomposes in terms of the
maximal cliques of the graph, as represented by dotted lines.

where the aggregation process starts at t = 0. Let L∗(Vn; Ψ) be the minimum latency over the set
of valid policies.

If no further assumptions are made on the function Ψ, then all the measurements Yn need to
be delivered to the root without any in-network computation. This is expensive both in terms of
latency and energy consumption. Typically, the function Ψ decomposes into sub-functions involving
only subset of measurements. In this case, in-network computation can be carried out to enable
efficient tradeoff between energy consumption and latency of computation. We assume that the
function Ψ has the form,

Ψ(Vn,Yn) =
∑

c∈C

ψc((Yi)i∈c), (4)

where C is the set of maximal cliques5 on some graph GΨ. See Fig.1 for an example. Note that this
graph GΨ is related to the function Ψ and not with communication links. We refer to GΨ as the
function dependency graph.

We consider the case when the graph6 G is either a k-nearest neighbor graph (k-NNG) or the
ρ-random geometric graph (ρ-RGG) with threshold radius ρ, where k, ρ are some fixed constants,
independent of the number of nodes n. These graphs are relevant choices since many functions are
based on proximity of the nodes. For instance, in the context of statistical inference, this corresponds
to node measurements being locally dependent according to a Markov random field with the given
graph G(Vn). See [1] for details.

2.4 Energy-Latency Tradeoff

Denote the minimum latency for function computation over the set of valid policies by L∗, i.e.,

L∗(Vn;GΨ) := min
π∈F

Lπ(Vn;GΨ). (5)

The policy achieving minimum latency L∗ can have large energy consumption and similarly, policies
with low energy consumption can result in large latency. Hence, it is desirable to have policies that

5A clique is a complete subgraph and is maximal if it is not contained in a bigger clique.
6In fact, our results hold for a general class of graphs satisfying a certain stabilization property. See [15] for details

and examples.
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Figure 2: The latency for an aggregation tree can be obtained iteratively by considering subtrees.
See Proposition 1.

can tradeoff between energy consumption and the latency of function computation. We consider
finding a policy with minimum energy consumption subject to a latency constraint,

E∗(Vn; δ,GΨ) := min
π∈F
Eπ(Vn;GΨ), s.t. Lπ ≤ L∗ + δ, (6)

where δ (which can be a function of n) is the additional latency suffered in order to reduce energy
consumption. In general, finding (6) is NP-hard for nodes placed at arbitrary locations (since the
special case of this problem of finding minimum energy policy with no latency constraints is NP-
hard [16]). We instead propose a policy which has energy consumption of the same order as the
optimal policy for randomly placed nodes Vn, as n→∞, and for any given latency constraint.

3 Sum Function Computation

A sub-class of functions in (15) is the set of sum functions

Ψ(Vn,Yn) =

n
∑

i=1

ψi(Yi), (7)

which have the maximum extent of decomposition over the set of nodes. Computing sum functions
is required in various network applications, e.g., to find the average value, in distributed statistical
inference with statistically independent measurements [1], and so on.

3.1 Preliminaries

We first discuss the policy to achieve minimum latency L∗(Vn; Ψ) in (5) for sum function compu-
tation without considering the energy consumption. In this case, the minimum latency does not
depend on the position of the nodes Vn but only on the order of scheduling of the various nodes, i.e.,
L∗(Vn; Ψ) = L∗(n). Moreover, the minimum latency L∗(n) can be achieved via data aggregation
along a spanning tree T ∗(n), directed towards root r.

For data aggregation along any directed spanning tree T , each node waits to receive data from
its children (via incoming links), computes the sum of the values (along with its own measurement)
and then forwards the resulting value along the outgoing link. See Fig.3 for an example. Let LT be
the resulting latency along tree T . We now make a simple observation. See also Fig.2.
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Figure 3: The min. latency tree T ∗ with edge level labels. See Alg.1.

Proposition 1 (Latency along a tree) For a spanning tree T with root r, the latency LT is given
by

LT = max
i=1,...,k

{i+ LTi}, (8)

where Ti is the subtree rooted at node i, and 1, . . . , k are the children C(r;T ) of the root node r
ordered such that LT1

≥ LT2
. . . ≥ LTk

.

Proof: Indeed, after time LTi , information from 1, . . . , i has still not been sent to the root, and
this will take at least time i, so LT ≥ i+LTi for all i = 1, . . . , k. Conversely, there is a simple policy
with latency in (8) which aggregates along the subtrees Ti with latency LTi and then node i sends
its data to the root r at time slot LT − i. ✷

Using (8) we can thus effectively compute the latency of any given rooted tree T . We now
provide the result on the minimum latency L∗(n) and the construction of the tree T ∗(n) achieving
it. This has been previously analyzed in the context of minimum broadcast problem [5], where the
root has information that needs to be disseminated to all the nodes.

Lemma 1 (Minimum Latency Tree) The minimum latency for sum function computation over
n nodes is L∗(n) = ⌈log2 n⌉. Equivalently, the maximum number of vertices in a tree with latency
at most L is 2L.

Proof: See Appendix A. ✷

There is a unique minimum latency tree7 T ∗(n) up to a permutation on the nodes. The minimum
latency tree can be constructed recursively as explained in Algorithm 1. The algorithm runs for
L∗(n) steps and in each step, a child is added to each node already in the tree. An example of the
minimum latency tree is shown in Fig.3.

3.2 Policies for Energy Latency Tradeoff

We now propose a policy for sum function computation with order-optimal energy consumption
subject to a given latency constraint in (6). Note that the minimum latency tree T ∗(n) does not
depend on the node locations and any permutation of the nodes on the tree (with the root fixed)
results in the same latency. On the other hand, the energy consumption depends on the node
locations. We propose an energy-efficient minimum-latency tree T ∗(Vn) in Algorithm 2, depending
on the node locations. This will be later proven to achieve order-optimal energy consumption for
uniformly placed nodes. We first note some definitions used in the sequel.

7Note that the balanced binary tree on n nodes has latency 2⌈log
2
(n+ 1)⌉ − 2, which is about twice L∗(n).

7



Algorithm 1 Min. latency tree T ∗(n).

Input: nodes N = {1, . . . , n}, root node r. C(i;T ) denotes children of node i. S(k;T ) denotes level

k edges in T . For any set A, let A
∪← {r} denote A← A ∪ {r}.

Output: T ∗(n).
1: Initialize set A = {r} and T ∗ = {r}.
2: for k = 1, . . . , ⌈log2 n⌉ do
3: B ← A.
4: for each i ∈ B do
5: if N \ A 6= ∅ then

6: For some j ∈ N \A, C(i;T ∗)
∪← j (j is now a child of i), S(k;T ∗)

∪← (i, j) (level k edges)

and A
∪← j.
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Figure 4: The min. latency tree T ∗(Vn) over 15 nodes with edge level labels placed in square region.
See Alg.2.

Definitions: For a rooted tree T and a node i, let C(i;T ) denote the children of i. The level l(e;T ) of
a link e in an aggregation tree T is given by LT−te, where te is the time at which data is transmitted
along link e (time 0 is the start of the aggregation process). Note that the level depends on both
the tree structure and the transmission schedule on the tree. Let

S(k;T ) := {e : l(e;T ) = k, e ∈ T}. (9)

be the set of level k edges in tree T . See Fig.3. Let SPl(i, j;Vn) denote the least-energy path8

between i and j with at most l ≥ 0 intermediate nodes when the node locations are Vn. For a
rectangular region Q ⊂ R

d containing a subset of nodes and a reference node i such that Vi ∈ Q,
let B1(Q; i),B2(Q; i) be the two halves when bisected along the coordinate with the largest extent
such that B1(Q; i) and B2(Q; i) have equal number of nodes with Vi ∈ B1(Q; i).

We propose an energy-efficient minimum-latency tree T ∗(Vn) in Algorithm 2, and, prove in
Section 3.3 that T ∗(Vn) achieves order-optimal energy consumption for uniformly placed nodes
subject to the minimum latency constraint. In Algorithm 2, every added node in the tree picks
a new child, as in Algorithm 1, but now the children are chosen based on the node locations.
Specifically, in the first iteration, the region of node placement is bisected (with equal number of

8Note that the least-energy path depends on the path-loss exponent ν and for larger ν, multi-hop routing is more
energy efficient than direct transmissions.
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Algorithm 2 Min. lat. tree T ∗(Vn) with order opt. energy

Input: Locations of nodes: Vn = {V1, . . . , Vn}, root node r, Qn ⊂ R
d: region where the nodes

are placed. C(i;T ) denotes children of node i. S(k;T ) denotes level k edges in T . For a
rectangular region Q and a node i with Vi ∈ Q, let B1(Q; i) and B2(Q; i) be the two halves with

Vi ∈ B1(Q; v). For any set A, let A
∪← {r} denote A← A ∪ {r}.

Output: T ∗(Vn).
1: Initialize A← {r}. Rr ← Qn.
2: for k = 1, . . . , ⌈log2 n⌉ do
3: B ← A.
4: for each i ∈ B do
5: if Vn ∩ B2(Ri; i) 6= ∅ then

6: For some node j s.t. Vj ∈ B2(Ri; i), C(i;T ∗)
∪← j, S(k;T ∗)

∪← (i, j), A
∪← {j}, Rj ←

B2(Ri; i) and Ri ← B1(Ri; i).

nodes in each half), and the root chooses a child in the other half. The region assigned to the root
is now the half-region (where it is located), while the added child node is assigned the other half-
region. The subsequent iterations proceed in a similar manner and each node bisects its assigned
region into two halves and picks a child in the other half, and updates the assigned regions.

The algorithm 2 considered energy-efficient policy under the minimum latency constraint. We
now present the policy πAGG for any given latency constraint in Algorithm 3. The difference between
the two cases is that in the latter case, a lower energy consumption is achieved by exploiting
the relaxed latency constraint. Intuitively, long-range (direct) communication entails more energy
consumption than multi-hop routing, especially when the path-loss exponent ν is large. On the
other hand, latency is increased due to multihop routing. The key is to carefully convert some of
the long-range links in T ∗(Vn) into multi-hop routes to lower the energy consumption and take
advantage of the additional allowed latency.

In Algorithm 3, the regions are bisected and new nodes are chosen as children, as in Algorithm 2.
But instead of directly linking the nodes in the two hops, the least-energy route is chosen with at
most wk intermediate routes, where wk is a fixed weight. The nodes that are already added in
this manner are not considered for addition as children in the subsequent iterations. In general,
the resulting set of communication links is not a tree, since the least-energy paths constructed in
different iterations may share the same set of nodes. But the sum function computation can be
carried out on similar lines, as on an aggregation tree. We now relate the weights (wk) with the
latency of the resulting policy πAGG in Algorithm 3.

Proposition 2 (Latency under Algorithm 3) The aggregation policy πAGG in Algorithm 3 for
a given set of weights w achieves a latency of

LπAGG

(n) ≤ L∗(n) +

⌈log
2
n⌉−1

∑

k=0

wk.

Proof: There are at most ⌈log2 n⌉ iterations and the total delay is

⌈log2 n⌉−1
∑

k=0

(1 + wk) = L∗(n) +

⌈log2 n⌉−1
∑

k=0

wk.

9



Algorithm 3 Latency-energy tradeoff policy πAGG(Vn;w).

Input: Locations of nodes: Vn = {V1, . . . , Vn}, root node r, and set of weights wk for k =
0, . . . , ⌈log2 n⌉ − 1. For a rectangular region Q and node v ∈ Q, let B1(Q; v) and B2(Q; v)
be the two halves with v ∈ B1(Q; v). Let SPl(i, j;Vn) be l-hop least-energy path. Qn ⊂ R

d:

region where the nodes are placed. For any set A, let A
∪← {r} denote A← A ∪ {r}.

Output: GπAGG

: communication links used by policy πAGG.
1: Initialize A1, A2 ← {r}. Rr ← Qn.
2: for k = 0, . . . , ⌈log2 n⌉ − 1 do
3: B ← A1

4: for each i ∈ B do
5: if (Vn ∩ B2(Ri; i)) \ A2 6= ∅ then

6: Pick j s.t. Vj ∈ B2(Ri; i) \A2, A1
∪← {j},

GπAGG ∪← SPwk
(i, j;Vn), A2

∪← SPwk
(i, j;Vn),

Rj ← B2(Ri; i) and Ri ← B1(Ri; i).

✷

Thus, the weights (wk) can be chosen to satisfy any given latency constraint and we have a
policy πAGG for sum function computation given any feasible latency constraint. The analysis of
energy consumption under πAGG for a given set of weights is not straightforward to analyze and
forms the main result of this paper. This is discussed in the next section.

3.3 Order-Optimality Guarantees

To achieve optimal energy-latency tradeoff according to (6), we choose weights wk in Algorithm 3,
for k = 0, . . . , ⌈log2 n⌉ − 1, as

wk =

{

⌊ζδ2k(1/ν−1/d)⌋ if ν > d,

0 o.w. (10)

where δ is the additional latency allowed in (6), ν is the path-loss factor for energy consumption in
(2) and d is the dimension of Euclidean space where the nodes are placed. The normalizing constant
ζ is chosen as

ζ =

{

1− 21/ν−1/d, if ν ≥ d,
⌈log2 n⌉−1, ν = d , (11)

so that
∑⌈log2 n⌉−1

k=0 wk ≤ δ. Hence, from Lemma 2, the weights in (10) result in a policy πAGG with
latency L∗(n) + δ. We now provide the scaling behavior of optimal energy consumption as well the
order-optimality result for πAGG.

Theorem 1 (Energy-Latency Tradeoff) For a given additional latency constraint δ = δ(n) ≥ 0
and fixed path-loss factor ν > 1 and dimension d ≥ 1, as the number of nodes n→∞, the minimum
energy consumption for sum function computation satisfies

E(E∗(Vn; δ))=











Θ(n) ν < d,

O
(

max{n, n(log n)(1 + δ
logn)

1−ν}
)

ν = d,

Θ
(

max{n, nν/d(1 + δ)1−ν}
)

ν > d,

10
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Figure 5: Scaling of minimum total energy E∗ in different regimes of path loss ν and dimension d.
See Theorem 1.

where the expectation is over the locations Vn of n nodes chosen uniformly at random in [0, n1/d]d

and is achieved by the policy πAGG in Algorithm 3 for weights given by (10).

Remarks:
(i)The policy πAGG in Algorithm 3 thus achieves order-optimal energy consumption under any
feasible latency constraint when ν 6= d. For the case ν = d, we show that E[E∗n(Vn; δ)] = Ω(n) while
the energy consumption under πAGG is the upper bound in Theorem 1, given by O(n log n), i.e., the
energy consumption is at most only logarithmically worse than the lower bound.
(ii)The result of Theorem 1 holds even if the latency constraint is relaxed to an average constraint,
i.e.,

E[Lπ(Vn)] ≤ L∗(n) + δ.

From Theorem 1, the energy consumption has different behaviors in the regimes ν < d and
ν > d, as represented in Fig.5, and we discuss this below.
Case ν < d: In this regime, the path-loss factor is low, and hence, long-range transmission does
not suffer a high penalty over multihop routing. This is also favorable for latency performance and
hence, in this regime minimum latency of ⌈log2 n⌉ can be achieved with Θ(n) energy consumption.
Note that the aggregation tree with the minimum energy consumption is the minimum spanning tree
(MST) and the expected energy consumption for MST under uniform node placement is also Θ(n).
Hence, our policy πAGG achieves both order-optimal energy and minimum latency simultaneously
in the regime ν < d.
Case ν > d: In this regime, multihop routing is much more favorable over direct transmissions with
respect to energy consumption while direct transmissions are favorable for low latency. Hence, both
low energy and low latency cannot be achieved simultaneously in this regime. Our policy πAGG

achieves order-optimal energy consumption subject to a given latency constraint in this regime.
Note that typically, for sensor networks placed in two-dimensional area (d = 2) with wireless
transmissions (ν ∈ [2, 6]), this regime is of interest.
Comparison with MST: If the minimum spanning tree (MST) is used for aggregation, it results in
minimum energy consumption which is Θ(n) under random node placement. However, the expected
latency of aggregation along the MST is at least the depth of the MST and hence, the latency and
energy satisfy,

E[LπMST

(Vn)] = Ω(n1/d), E[EπMST

(Vn)] = Θ(n). (12)
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In contrast, under our policy πAGG, we can obtain, when ν < d,

E[LπAGG

(Vn)] = ⌈log2 n⌉, E[EπAGG

(Vn)] = Θ(n). (13)

For the case when ν > d, our policy achieves

E[LπAGG

(Vn)] = Θ(n
ν/d−1

ν−1 ), E[EπAGG

(Vn)] = Θ(n), (14)

by setting δ = n
ν/d−1

ν−1 in Theorem 1 Thus, our policy πAGG is especially advantageous over using
the MST when the path loss ν is small. Moreover, the policy πAGG can be designed based on the
latency requirements while the MST cannot be easily modified to satisfy them.

4 General Function Computation

We now extend the latency-energy tradeoff policy to undertake general function computation. Recall
that we consider the class of functions of the form

Ψ(Vn,Yn) =
∑

c∈C(Vn)

ψc((Yi)i∈c), (15)

where C(Vn) is the set of maximal cliques on a graph G(Vn), known as the function dependency
graph and the functions ψc are clique functions. We consider the case when the graph9 is either a
k-nearest neighbor graph (k-NNG) or the ρ-random geometric graph (ρ-RGG) with threshold radius
ρ, where k, ρ are some fixed constants, independent of the number of nodes n.

Note that the function Ψ in (15) now depends on the location of the nodes Vn which is not
the case with the sum function. Hence, the latency-energy analysis has to take this into account.
We propose modifications to the latency-energy tradeoff policy πAGG to enable general function
computation and then prove its order-optimality for latency-energy tradeoff.

4.1 Preliminaries

The extent of decomposition of function Ψ depends on the sparsity (number of edges) of the function
dependency graph G. We first make a simple observation that the energy consumption and latency
increase with more edges in G.

Proposition 3 (Energy consumption and sparsity of G) The minimum energy in (6) required
to compute functions of the form in (15) under a fixed additional latency constraint δ ≥ 0 with de-
pendency graphs G and G′ satisfies

E∗(Vn; δ,G) ≥ E∗(Vn; δ,G
′), when G ⊃ G′. (16)

Proof: Let C (resp. C′ be the set of maximal cliques in G (resp. G′). Since G′ ⊂ G, each new clique
c ∈ C \ C′ replaces a smaller set of cliques c′ ⊂ c, c′ ∈ C′. The latency and energy consumption
for any valid policy in computing the clique function ψc((Yi)i∈c) is at least that of computing

∑

c′⊂c,c′∈C′

ψc′(Yc′), since this is a further decomposition of ψc. Hence, the result. ✷

9In fact, our results hold for a general class of graphs satisfying a certain stabilization property. See [15] for details
and examples.
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Algorithm 4 Policy πCLQ(Vn;w,C) for general functions.

Input: Locations of nodes: Vn = {V1, . . . , Vn}, root node r, C: set of maximal cliques of function
dependency graph G(Vn). For each c ∈ C, P(c) is the processor (node computing clique function

ψc). For any set A, let A
∪← {r} denote A← A ∪ {r}.

Output: πCLQ policy with data forwarding links F πCLQ

and aggregation links GπAGG

.
1: for each clique c ∈ C do
2: For node i ∈ c with smallest label, P(c)← i.

3: For all nodes j ∈ c, j 6= i, F πCLQ ∪← (j, i).

4: Let le be the color for edge e ∈ F πCLQ
under proper edge coloring with colors l = 1, 2, . . .∆+1.

5: for t = 0 to ∆ do
6: Send measurements using links in F πCLQ

of color t+ 1.
7: Find sum of clique functions using πAGG from Algorithm 3.

Hence, the ability to obtain efficient scaling of latency and energy consumption for function
computation depends on the sparsity of the function dependency graph G. The extreme case of a
trivial graph (G = ∅) is the sum function, analyzed in the previous section, while the other extreme
is the complete graph (G = Kn), where there is no decomposition of the function. In the latter case,
no in-network computation is possible and all the measurements Yn need to be routed to the root
via least-energy paths. We have the following scaling in this scenario.

Proposition 4 (Scaling Under No Computation) The minimum latency and minimum en-
ergy (with no latency constraint) for computation of a function with dependency graph Kn satisfies

E[E∗(Vn;∞,Kn)] = Θ(n1+1/d), E[L∗(Vn;Kn)] = Ω(n).

The result on minimum energy follows from the scaling behavior of energy for least-energy path
routing to the root under uniform node placement [17]. The latency of function computation is at
least n since the root can receive at most one measurement value at each timestep and there is no
aggregation of the measurements. Hence, we can expect efficient scaling of energy and latency only
in case of computation of functions with sparse dependency graphs G.

Moreover, the energy consumption also depends on the edge lengths of the function dependency
graph G. Intuitively, when the graph G has local edges, the clique functions ψc can be computed
locally resulting in low energy consumption. This holds for the proximity graphs such as the k-NNG
and the ρ-RGG ensure under consideration. We propose policies for latency-energy tradeoff which
are efficient for such locally-defined dependency graphs.

4.2 Policy for Latency-Energy Tradeoff

We now extend the policy πAGG in Algorithm 3 for general function computation as a two-
stage policy πCLQ. In the first stage known as the data forwarding stage, the clique functions
ψc are computed locally within each maximal clique c ∈ C of the graph G as follows: a clique
processor is chosen as a clique member with the smallest label (under arbitrary labeling of nodes) and
other clique members communicate their measurements to the processor via direct transmissions.
The transmissions are scheduled as follows: the set of forwarding links F πCLQ

are assigned colors
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l = 1, 2, . . . ,∆ + 1 under a proper edge coloring. At times t = 0, 1, . . . ,∆, transmissions along
links of color t+ 1 are scheduled simultaneously. In the second stage, the aggregation policy πAGG

in Algorithm 3 is used for computing the sum of the clique function values at the processors (and
nodes other than processors do not have their own values for aggregation but participate in the
process). This is summarized in Algorithm 4.

We obtain the following result for energy-latency tradeoff10 for general function computation.
Let ∆(G) denote the maximum degree of the function dependency graph G in (15), which is either
the k-NNG or the ρ-RGG, where k and ρ are fixed constants.

Theorem 2 (Energy-Latency Tradeoff) For a given additional latency constraint δ ≥ ∆(G)+1
in (6), the energy consumption for function computation of the form (15) with dependency graph G

under the two-stage policy πCLQ satisfies

E(EπCLQ

(Vn; δ,G)) = Θ(E(E∗(Vn; δ − (∆ + 1), ∅))),

where the expectation is over the locations Vn of n nodes chosen uniformly at random in [0, n1/d]d

and the right-hand side is the minimum energy consumption for sum function computation under
latency constraint of δ − (∆ + 1) which is given by Theorem 1.

Remarks:
(i) The policy πCLQ achieves order-optimal energy consumption for cases ν < d, δ ≥ ∆ + 1 and
ν > d, δ ≫ ∆. This is because the minimum energy consumption E∗(Vn; δ,G) is lower bounded by
the minimum energy for sum function computation from Proposition 3. Theorem 1 provides the
scaling for minimum energy for sum function computation. Comparing it with the energy under
πCLQ policy in Theorem 2, we note that they are both Θ(n) when ν < d. For the case ν > d, they
are still of the same order if the maximum degree ∆(G) is small compared to additional latency
constraint δ.
(ii) The maximum degrees of k-NNG and ρ-RGG satisfy

∆(k-NNG) = (cd + 1)k, ∆(ρ-RGG) = Θ(
log n

log log n
), (17)

where cd is a constant (depending only on d). See [18, Cor. 3.2.3] and [19, Thm. 6.10]. Hence,
for these graphs, πCLQ policy is order-optimal (up to logarithmic factors) for any path-loss factor
ν 6= d and under any additional latency constraint δ ≥ ∆(G) + 1. The above discussion also implies
that the minimum energy for sum function computation and general function computation are of
the same order for k-NNG and ρ-RGG dependency graphs. Hence, these functions are amenable to
efficient latency-energy tradeoff.
(iii)The policy πCLQ can achieve a latency of ⌈log2 n⌉+∆(G)+1. Finding the policy with minimum
latency L∗ in (5) for general function computation is NP-hard. However, we have L∗ ≥ ⌈log2 n⌉,
since the minimum latency cannot be smaller than that required for sum function computation.
We ensure that an additional latency constraint of δ is satisfied in (6) by relaxing the constraint as
L ≤ ⌈log2 n⌉ + δ. Since πCLQ can only achieve latencies greater than ⌈log2 n⌉ + ∆(G) + 1, we can
only ensure that constraints δ ≥ ∆(G) + 1 are met.

10The latency constraint Lπ ≤ L∗ + δ is required a.s. over the realization of points Vn.
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5 Conclusion

In this paper, we considered energy-latency tradeoff for function computation in random networks.
While designing optimal tradeoff policies in arbitrary networks is intractable, we proposed simple
and easily implementable policies which have order-optimal performance and are relevant in large
networks. We analyzed the scaling behavior of energy consumption under a latency constraint for
computation and showed that it depends crucially on the path-loss exponent of signal propagation,
the dimension of the Euclidean region where the nodes are placed and the extent to which the
function is decomposable. For functions which decompose according to cliques of a proximity graph
such as the k nearest-neighbor graph or the random geometric graph, efficient tradeoff can be
achieved and the energy and latency having optimal scaling behaviors.

This work opens up an array of important and challenging questions which warrant further
investigation. While, we considered exact computation of a deterministic function, we expect that
relaxing these assumptions will lead to a significant improvement of energy and latency scaling.
We assumed single-shot data aggregation. Extensions to the setting of continuous monitoring and
collection, where block coding is possible is of interest. We considered a single root node as the
destination for the computed function, while in reality different nodes may require different functions
to be computed. An extreme case of this scenario is the belief propagation (BP) algorithm which
requires computation of maximum a posteriori (MAP) estimate at each node based on all the
measurements, which are drawn from a Markov random field. Considering scenarios between these
extremes and designing efficient schemes for energy-latency tradeoff is extremely relevant to many
network applications.

A Proof of Lemma 1

We prove by induction on L that the maximum number of vertices in a tree of latency at most L
is exactly 2L. This is clear for L = 0 as such a tree must consist of just the root. Now assume
L > 0 and suppose T is a tree with latency L. Consider the edges that transmit information at
the last time step L. Clearly these must transmit to the root r. But the root can only receive
information from one child at a time. Thus there is precisely one edge (r, i) along which information
is transmitted at time L. Removing the edge (r, i) splits the tree T into two trees Tr and Ti rooted
at r and i respectively. For all the data to be received at r in time L, all the data must be received
at either r or i by time L− 1. Thus both Tr and Ti are trees of latency at most L− 1. By induction
Tr and Ti have at most 2L−1 vertices. Thus T has at most 2L−1 + 2L−1 = 2L vertices. Conversely,
given two copies of a rooted tree on 2L−1 vertices with latency L− 1, one can construct a tree with
latency L on 2L vertices by joining the roots r, i of these two trees with an edge (r, i), and declaring
one of the two roots, say r, to be the root of the resulting tree. The transmission protocol to achieve
latency L is simply to follow the protocols on each tree for the first L− 1 steps, and then transmit
all data at i from i to r at time step L.

As any rooted subtree of a tree T has latency at most LT , it is clear that the minimum latency
of any tree on n vertices is L = ⌈log2 n⌉, and this can be achieved by taking any rooted subtree of
the tree on 2L vertices constructed above.
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B Proof of Lower Bound in Theorem 1

Note that for ν < d, since the MST has energy Θ(n), the result follows. For the case ν > d, consider
an arbitrary spanning tree with root r. Consider the path Pu from r to u in the tree. Let R(Pu) be
the length of Pu, i.e., the sum of the lengths of the edges of Pu. Then with high probability

∑

u

R(Pu) ≥
∑

u

‖u− r‖ ≥ cnn1/d. (18)

for some constant c > 0. Indeed, with high probability, at least one half of the nodes lie at distance
at least 1

4n
1/d from r. Let ne be the number of paths Pu that go through e, so ne is the number of

vertices below e in the tree. Then

∑

R(Pu) =
∑

e

Rene.

Indeed,
∑

R(Pu) counts the length of e exactly ne times. Now ET =
∑

Rν
e , so by Hölder’s inequality

(

∑

Rν
e

)1/ν(∑

nν/(ν−1)
e

)(ν−1)/ν
≥

∑

e

Rene ≥ cnn1/d. (19)

Thus it is enough to find an upper bound on
∑

n
ν/(ν−1)
e . If e is at distance i from r then the latency

of the tree from e onwards is at most L∗ + δ− i. But this means it has at most 2L
∗+δ−i ≤ (2n)2δ−i

vertices. Hence ne ≤ n21+δ−i. Also, for each i we have

∑

e:dist(e,r)=i

ne ≤ n

as each vertex can be counted in at most one ne with d(e, r) = i. Thus

∑

dist(e,r)=i

nν/(ν−1)
e =

∑

dist(e,r)=i

nen
1/(ν−1)
e ≤ n(n21+δ−i)1/(ν−1)

for i > δ, and
∑

dist(e,r)=i

nν/(ν−1)
e ≤ nn1/(ν−1)

for i ≤ δ as we always have ne ≤ n. The first sum is decreasing geometrically in i, so

∑

e

nν/(ν−1)
e = (δ +O(1))nn1/(ν−1) = O(1 + δ)nν/(ν−1).

Thus by (19),

E1/νT (1 + δ)(ν−1)/νn ≥ c′nn1/d.
Hence

ET = Ω(nν/d(1 + δ)1−ν)

as required.
The proof that πAGG in Algorithm 3 provides the correct upper bound is given in Appendix D.
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C Proof of Theorem 2

For policy πCLQ, the two stages of data forwarding and aggregation do not overlap. Hence, the
latency and energy consumption under πCLQ are sum of the respective quantities in the two stages.
The aggregation stage uses the πAGG policy and we have results from Theorem 1. We now derive
latency and energy scaling laws for the data-forwarding stage under πCLQ policy. Note that these
depend on the function dependency graph G.

We claim that the latency in the data forwarding stage of πCLQ is at most ∆(G) + 1. This is

because the forwarding graph is a subgraph of the dependency graph (F πCLQ ⊂ G) (with directions
ignored) since each edge in G is traversed at most once, under the clique processor selection procedure
described in Algorithm 4. Note that any graph with maximum degree ∆ has a proper edge coloring
using at most ∆ + 1 colors (Vizing’s theorem) [20]. By scheduling transmissions of a single color
in each timestep, we can ensure that each node is either transmitting/receiving from at most one
node. The energy consumption is at most the sum of the power-weighted edges of G and hence,

E(πCLQ; δ,G) ≤
∑

e∈G

Rν
e + E(πAGG; δ, ∅).

From [21], for stabilizing graphs G (which include k-NNG and RGG), we have for uniform node sets
Vn,

lim
n→∞

1

n

∑

e∈G(Vn)

Rν
e

L2

= ζ <∞.

Hence, E[
∑

e∈GR
ν
e ] = Θ(n) and we have the result.

D Upper bound construction for Theorem 1

We shall need the following technical lemmas.

Lemma 2 Let C > 1, d ≥ 1 and ν ≥ 0 be constants. Let x be a point of the rectangular paral-
lelepiped Q =

∏d
i=1[0, ai] ⊂ R

d of volume n =
∏

ai, and bounded aspect ratio, ai/aj ≤ C for all
i, j. Then as n→∞,

E( min
w∈Vn

‖w − x‖ν) = Θ(1),

where the expectation is over all sets Vn of n points in Q chosen independently and uniformly at
random.

The implied constants may depend on C, d and ν, but not on n.

Proof: Let r > 0 and set Vr to be the volume of the set of points in Q that are within distance
r of x. Clearly Vr is at most the volume of a d-dimensional sphere of radius r, i.e., Vr ≤ crd for
some constant c = c(d). For a lower bound we note that Vr ≥ 2−dcrd if r is sufficiently small, the
worst case being when x is at a corner of Q. However, for a general bound valid for larger r we use
the following observation. If r = diamQ, the diameter of Q, then Vr is the volume of Q, which is
just n. If r ≤ diamQ then, by shrinking Q by a linear factor r/diamQ about x and noting that
the resulting set Q′ lies inside Q ∩ Vr, we see that Vr ≥ |Q′| = (r/diamQ)dn. As ai/aj ≤ C for all
i, j, we have diamQ = Θ(n1/d) and hence Vr ≥ c′rd for some constant c′ = c′(d,C) > 0.
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Using integration by parts we can write

E( min
w∈Vn

‖w − x‖ν) =
∫ diamQ

0
rν(− d

drP( min
w∈Vn

‖w − x‖ ≥ r) dr,

=
[

− rνP( min
w∈Vn

‖w − x‖ ≥ r)
]diamQ

0

+

∫ diamQ

0

(

d
drr

ν
)

P( min
w∈Vn

‖w − x‖ ≥ r) dr

=

∫ diamQ

0
νrν−1

P( min
w∈Vn

‖w − x‖ ≥ r) dr

as ν > 0 and (for n > 0) there is always a point within distance diamQ of x. However, minw∈Vn ‖w−
x‖ ≥ r if and only if there is no point of Vn in Vr. Thus

1− Vr ≤ P( min
w∈Vn

‖w − x‖ ≥ r) = (1− Vr/n)
n ≤ exp(−Vr).

Hence
∫ 1/c1/d

0
νrν−1(1− crd) dr ≤ E( min

w∈Vn

‖w − x‖ν) ≤
∫ ∞

0
νrν−1 exp(−c′rd) dr,

where we have restricted the range of integration to a constant for the lower bound (which is less
than diamQ = Θ(n1/d) for sufficiently large n), and extended the range on the upper bound.
However, both bounds are now positive constants independent of n, although they do depend on d,
ν, and C. Thus E(minw ‖w − x‖ν) = Θ(1) as required. ✷

Given a set Vn ⊆ R
d and two points u, v ∈ R

d, a Vn-path of length k from u to v is a sequence
ux1x2 . . . xk−1v with u1, . . . , uk−1 ∈ Vn. As before, the energy of a path P = u0u1 . . . uk is

EP =

k
∑

i=1

‖ui − ui−1‖ν .

Lemma 3 Let u and w be points in Q = [0, n1/d]d at distance Ruw = ‖u − w‖ from each other
and let Vn be a set of n points in Q chosen uniformly and independently. Let Ek(u, v;Vn) be the
minimal energy of a Vn-path of length at most k from u to v. Then

E
(

Ek(u, v;Vn)
)

= O
(

max{k(Ruw/k)
ν , Ruw + 1}

)

.

Proof: Let x1, . . . , xk−1 be k−1 subdivision points on the line segment from u to v, equally spaced
so that this line segment is divided into k equal segments. Pick ui to be the point of Vn closest to
xi, and also write u0 = x0 = u and uk = xk = v. Then, after possibly removing loops and repeated
vertices, u0u1 . . . uk gives a suitable path from u to v of energy at most

∑k
i=1 ‖ui − ui−1‖ν . Now

‖ui − ui−1‖ν ≤ 3ν(13(‖ui − xi‖+ ‖ui−1 − xi−1‖+ ‖xi − xi−1‖))ν
≤ 3ν max{‖ui − xi‖ν , ‖ui−1 − xi−1‖ν , ‖xi − xi−1‖ν}.

Hence the energy of the path is at most O(k(Ruw/k)
ν)+O(

∑ ‖ui−P‖ν). By Lemma 2, E(
∑ ‖ui−

xi‖ν) = kΘ(1). If k ≤ Ruw then the expected energy of the path is at most O(k(Ruw/k)
ν), as
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required. If k > ℓuw, then we perform the same construction replacing k with ⌈Ruw⌉ to obtain a
path of expected weight O(Ruw + 1). ✷

Given ν, d, δ, our aim is construct a spanning tree T with latency at most L∗(n) + δ and
small energy ET =

∑

Rν
e . The tree will be formed from a minimal latency tree TL with latency

L = L∗(n) = ⌈log2 n⌉. Some edges will be subdivided and not all vertices will be present. Some
other minor changes to the tree may also be made. The edges of TL of level i will be subdivided at
most

si := ⌊c1δ2i(1/ν−1/d)⌋ (20)

times when ν ≥ d, where c1 = 1 − 21/ν−1/d (or c1 = 1/⌈log2 n⌉ if ν = d) is a normalizing factor
chosen so that

∑

i si ≤ δ. For ν < d we shall take si = 0 as subdividing is not necessary. We will of
course need to prune some leaves later so that the tree has n vertices. It is clear that the latency of
TL with level i edges subdivided at most si times is at most L∗ +

∑

si ≤ L∗(n)+ δ. Indeed we just
replace the single time step L− i with 1+ si time steps, during which data is transmitted along the
(at most) 1 + si edges of each subdivided level i edge of TL.

Our strategy is as follows. Given a rectangular d dimensional region Q, containing n points, one
of which is chosen as a root vertex v, we pick a coordinate, say x1, in which Q has largest extent
and subdivide Q = Q0 ∪Q1 so that half of the points are on each side.

The root vertex v will be in one half, say Q0. Choose a minimal weight path P from v with at
most s0 subdivisions joining v to a vertex v1 in Q1. Now inductively repeat the construction within
Q0 and Q1 using v0 = v and v1 as the corresponding root vertices. At the next stage, each of Q0

and Q1 is subdivided as above, say Q0 = Q00 ∪ Q01 and Q1 = Q10 ∪ Q11. Assume w.l.o.g. that
v0 ∈ Q00, v1 ∈ Q10. Pick a vertex v01 ∈ Q01 that has not already been used and join with a path
with at most s1 subdivisions to v00 = v0 inside Q0. Similarly join some v11 ∈ Q11 to v10 = v1 inside
Q1. Repeat this process. At each stage, choose the v...1 to be any vertex in the other half of the
appropriate region that has not already been used on any path so far. If no such vertex exists then
the construction within this half terminates as we have exhausted all the vertices.

There are two main problems with this approach, both concerning the applicability of induction
to the process. The n points in Q were chosen to be uniform and independent. If care is not taken
with the division of Q into Q0 and Q1 then the points in Q0 and Q1 will not be uniform. For
example, it is not sufficient to order the points by the x1-coordinate and just take some subdivision
between the (n/2)th and (n/2 + 1)st points. Neither will the volumes of Q0 and Q1 be exactly
n/2, although this is a relatively minor problem as we shall see later. The second, and more serious
problem is that after constructing the path from v0 to v1, some vertices in Q0 and Q1 have now
been used. the remaining points are now not independent. This second point will be dealt with
by allowing the subdividing vertices to be reused in subsequent steps, i.e., by allowing subdividing
paths to intersect. The resulting graph will then not be a tree, but we shall show that it will still
have the same latency and can be modified to form a tree with no increase in latency. To solve the
first problem mentioned above we shall use the following lemma.

Lemma 4 Take n random points independently and uniformly in [0, 1] and order them by value

as 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. Then xr+1 has mean r+1
n+1 and variance (r+1)(n−r)

(n+1)2(n+2)
. Moreover,

conditioned on the value of xr+1, the set of values {x1, . . . , xr} can be obtained by taking r random
points independently and uniformly distributed in [0, xr+1].

Proof: The probability that xr+1 lies in a small interval [x, x + dx] is given as the probability
that some point is in the interval times the probability that there are exactly r of the remaining
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n− 1 points in [0, x]. Thus the pdf of xr+1 is n
(n−1

r

)

xr(1−x)n−r−1. This is just the pdf of the beta
distribution with parameters r + 1 and n − r. The mean and variance can be obtained by using
standard results on the beta distribution, or by a straightforward calculation. For the conditioning
result, imagine the points are located in small bins of size dx, chosen so that it is very unlikely that
two points appear in the same bin. Conditioning on xr+1 lying in the bin [x, x+dx] is equivalent to
conditioning on one point lying in this interval, r points lying in earlier bins, and n− r − 1 points
lying in later bins. However and valid assignment of points to bins is equally likely, so the conditional
distribution of the first r points is equivalent to choosing r points uniformly and independently in
[0, x]. ✷

Corollary 1 If r = n/2 +O(1) in Lemma 4 and c = 1
2 +O(1/n), then for ν > 0

E(max{xr+1/c, 1}ν) = 1 +O(1/
√
n).

Proof: Note that xr+1/c is bounded between 0 and 2 + ε for large n, so max{xr+1/c, 1}ν ≤
1 +K|xr+1 − c| for some constant K = K(ν) > 0. Now

E(|xr+1 − c|)2 ≤ E(|xr+1 − c|2) = Var(xr+1) + (E(xr+1)− c)2.

However, by Lemma 4, E(xr+1)− c = O(1/n) and Var(xr+1) = O(1/n). The result follows. ✷

Proof of the upper bound for Theorem 1: We follow the strategy outlined above. At step i have
ni vertices, ⌊n/2i⌋ ≤ ni ≤ ⌈n/2i⌉, chosen uniformly at random from a rectangular parallelepiped
Q =

∏

[0, aj ] of volume ni and aspect ratio aj/ak ≤ 3 for all j, k. We wish to construct a spanning
tree of latency at most Li = L∗(n)− i+∑

j≥i sj of expected energy at most Mi; the value of Mi to
be determined.

If ni = 1 then there is nothing to do, so assume ni > 1. Pick a coordinate xj with maximum
value of aj. W.l.o.g. j = 1. Order the ni points by their x1-coordinates, which are uniform and
independent in [0, a1]. Let x1(r) be the value of the rth x1-coordinate. Define Q0 to be the subset of
points of Q with x1-coordinate less than x1(ni+1 + 1), where ni+1 = ⌊ni/2⌋ ∈ [⌊n/2i+1⌋, ⌈n/2i+1⌉].
Let Q1 to be the subset of points of Q with x1-coordinate more than x1(ni+1). Note that Q0 and
Q1 overlap, however their intersection contains no points of Vn. Also note that (with probability
1), there are ni+1 points in Q0 and ni − ni+1 = ⌈ni/2⌉ ∈ [⌊n/2i+1⌋, ⌈n/2i+1⌉] points in Q1. By
Lemma 4, conditioned on the shape of Q0, say, the points in Q0 are uniformly distributed inside
Q0. (There is however a dependency of these points on the shape of Q1.) If the root lies in Q0

then we use this as the root of Q0, otherwise we pick any point in Vn ∩Q0 as the root. Shrink Q0

in the x1-direction by a factor X0 = (x1(ni+1 + 1)/a1)/(ni+1/ni) to obtain a set Q′
0 with volume

exactly ni+1. Now construct a spanning tree of latency at most Li+1 on the points in Q′
0. Let E0

be the energy of this tree. Now scaling by a factor of X0 we obtain a tree T0 in Q0 of expected
energy at most max{1,X0}νE0, all lengths having increased by a factor of at most max{1,X0}.
Note that X0 and E0 are independent, so the expected value of the energy of this tree is at most
E(max{1,X0}ν)E(E0) which is at most (1 + C/

√
ni)E(E0) by Corollary 1. Since a1 was maximal

and the x1-extent of Q′
0 is a1ni+1/ni ≥ a1/3, the aspect ratios of Q′

0 are again at most 3. The
points in Q0 are distributed uniformly at random and the volume of Q′

0 is ni+1. Thus by reverse
induction on i, E(E0) ≤Mi+1. A similar argument also applies to Q1, so we obtain two trees with
expected total energy of at most (1 +C/

√
ni)Mi+1. By Lemma 3 we can find a path from the root
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v0 of Q0 to the root v1 of Q1 of length at most 1 + si and expected energy at most

C ′max{nν/di (1 + si)
1−ν , n

1/d
i + 1

}

Note that this path will reuse vertices of the trees T0 and T1, so that we may obtain a graph G with
cycles. However, the latency of G is still at most Li. Indeed, in the first Li+1 = L∗(n)− (i + 1) +
∑

j≥i+1 sj steps we transmit the data to v0 and v1 in T0 and T1 separately. Then in the last 1 + si
steps we transmit the data along the v0 − v1 path P to whichever of these vertices was the root
of Q. If one insists on having a tree then one can modify G slightly as follows. Any vertex of T0
or T1 that lies in P holds the data rather than transmitting it on during the first Li+1 steps. Tree
edges from these vertices towards the roots v0 and v1 are deleted from T0 and T1 as these edges
are no longer used. The trees T0 and T1 now become a forest of possibly many trees. All the data
after the first Li+1 steps is located at vertices that are roots of all the individual trees in this forest.
These vertices all lie on P . The path P then joins all the roots of these small trees to form one tree
and data can be swept up along P in the last 1 + si time steps.

It now remains to bound the expected energy of this tree. We have an upper bound given by
the energies of T0, T1, and P of

Mi := 2(1 + C/
√

ñi)Mi+1 + C ′max{nν/di (1 + si)
1−ν , n

1/d
i + 1} (21)

where in order to maximize the expression we take ñi = ⌊n/2i⌋ and ni = ⌈n/2i⌉. Note Mi = 0 for
i ≥ log2 n as then ni ≤ 1. Inductively substituting the bound in (21) for Mi+1 gives

Mi ≤
(

∏

j>i

(1 +C/
√

ñj)
)

∑

j≥i

C ′2j−imax{nν/dj (1 + sj)
1−ν , n

1/d
j + 1}

Now the ñj increase exponentially as i decreases from log2 n, thus the product
∏

j>i(1 + C/
√

ñj)
can be bounded independently of n and i. Hence

M0 ≤ C ′′

log2 n
∑

i=0

2imax{(n/2i)ν/d(1 + si)
1−ν , (n/2i)1/d + 1}

≤ C ′′

log2 n
∑

i=0

2i(n/2i)ν/d(1 + si)
1−ν + C ′′

log2 n
∑

i=0

2i((n/2i)1/d + 1) (22)

where C ′′ absorbs this product and also any factors that arise from the difference between nj and
n/2j . The second sum in (22) is geometrically increasing for d > 1 so has sum O(n). Assume ν > d.
Then si = Θ(δ2i(1/ν−1/d)) and 1 + (1/ν − 1/d)(1− ν)− ν/d = (1/ν − 1/d) < 0. Thus the first sum
in (22) is decreasing geometrically when si > 0, and also decreasing geometrically at an even faster
rate when si = 0. Hence this sum gives O(nν/d(1 + s0)

1−ν). Thus

M0 = O(max{n, nν/d(1 + δ)1−ν}).
for ν > d. For ν = d > 1, si = s0 = Θ(δ/ log n) is constant. Thus the terms in the first sum are
equal and add up to (log n)O(n(1 + s0)

1−ν). Thus

M0 = O(max{n, n(log n)(1 + δ/ log n)1−ν}).
for ν = d > 1. Finally, for ν < d, si = 0 and the first sum is increasing geometrically. This sum is
then O(n) and so

M0 = O(n)

for 1 < ν < d.
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