
IMDGuard: Securing Implantable Medical Devices

with the External Wearable Guardian

Fengyuan Xu*, Zhengrui Qin*, Chiu C. Tan†, Baosheng Wang‡, and Qun Li*

Abstract—Recent studies have revealed security vulnerabilities
in implantable medical devices (IMDs). Security design for IMDs
is complicated by the requirement that IMDs remain operable
in an emergency when appropriate security credentials may be
unavailable. In this paper, we introduce IMDGuard, a compre-
hensive security scheme for heart-related IMDs to fulfill this
requirement. IMDGuard incorporates two techniques tailored to
provide desirable protections for IMDs. One is an ECG based key
establishment without prior shared secrets, and the other is an
access control mechanism resilient to adversary spoofing attacks.
The security and performance of IMDGuard are evaluated on our
prototype implementation.

I. INTRODUCTION

The rapid advances of bioengineering are introducing a boom

of wireless accessible IMDs. Millions of patients experience

the benefits from IMDs in regulating heart rhythm, controlling

blood pressure, improving hearing, providing visual sight, and

so on. In the near future, IMDs are expected to be Internet

aware, and become a crucial component in pervasive systems

such as smart homes and hospitals, making IMDs’ security

important. Researchers have identified that IMDs are facing

potential security threats which may cause life threatening con-

sequences. Recent investigations on pacemakers [8] revealed

security vulnerabilities on existing commercial offerings that

allow, among other attacks, a malicious entity to reprogram

the IMD. Thus, any vulnerability has to be addressed before

further integration of IMDs into an intelligent environment can

be realized.

Unlike conventional embedded systems, engineering security

into IMDs presents the unique challenge. Security mechanism

enforcing protection all the time may lead to troubles when

safety tops secure operations of IMDs. To illustrate, consider an

ER doctor, who is not recognized as legitimate operator in terms

of security, may have to access the IMD to save the patient’s

life in an emergency situation. Temporary authorization to the

doctor is not a reliable solution since the IMD owner in this

circumstance may be physically incapable of doing this or

remote trusted authority is not available.

Intuitively, we want a security mechanism resembling an

ON/OFF switch to control security protections. The switch can

be triggered OFF in an emergency without assistance from the

∗Department of Computer Science, The College of William and Mary, E-
mail: {fxu, zhengrui, liqun}@cs.wm.edu.

†Department of Computer and Information Sciences, Temple University, E-
mail: cctan@temple.edu. This work was done when the author was with the
College of William and Mary.

‡Computer School, National University of Defense Technology, P.R. China.
E-mail: bswang@nudt.edu.cn. This work was done while the author was
visiting the College of William and Mary.

patient, but in a non-emergency situation, the patient has full

control over who has access to his device. (This does open the

IMD to attack in an emergency, but life-threatening conditions

trump such concerns.) Researchers have advocated pairing the

IMD with an external device to provide security for the IMD,

where in an emergency, the doctors can simply remove the

external device and proceed to interact with the IMD without

further hindrance.

There are two challenges when using an external device to

protect the IMD. First, the external device and the IMD should

have a means of establishing a secret without prior knowledge.

In other words, we should not pre-deploy any secret inside

the IMD. This is to avoid situations where the user is unable to

recall the pre-deployed secret and needs to rekey the IMD. The

conventional solution is to use a manual switch to “reset” the

IMD, but since the IMD is implanted inside the patient’s body,

this solution is unsuitable. The second challenge is to have a

reliable method to prevent an adversary from convincing the

IMD that the external device is absent. Since the IMD is inside

the patient’s body and the external device is placed outside

the body, we have to rely on the wireless communication to

relay information. This opens up a possibility for the adversary

to jam the channel to create the appearance that the external

device is absent. Thus it is crucial to ensure IMDs to correctly

distinguish between real emergency and an attack.

In this paper, we propose IMDGuard, a security scheme for

implantable cardiac devices1, which are implanted to monitor or

treat cardiac medical conditions. Those IMDs are one widely

utilized group of medical devices, and examples include im-

plantable cardioverter-defibrillator, pacemaker, and ECG (elec-

trocardiogram) sensor. IMDGuard leverages the Guardian, an

external wearable device, to coordinate interactions between

the IMD and the doctor in such a way that provides the

security in a regular condition, and safely allows access in

an emergency. The patient’s ECG signals are exploited to

extract keys shared exclusively between the IMD and Guardian.

This key extraction scheme does not need any pre-distributed

secret so that it is easy to rekey the IMD when the Guardian

is lost or malfunctioning. Moreover, it makes the adversary

unable to forge fake Guardians except through physical contacts

with the patient. IMDGuard also can effectively prevent the

adversary capable of jamming from spoofing the IMD that the

Guardian is absent. The adversary’s deception will be revealed

by collaborations between the IMD and Guardian through the

notification mechanism based on the defensive jamming.

1We refer IMDs as implantable cardiac devices in the rest of paper

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

U.S. Government work not protected by U.S. copyright 1862



Our IMD security scheme makes the following contributions:

1) Previous work in ECG based key agreements did not

properly extract the randomness of input data or correctly

evaluate final outputs. In contrast, we are the first to

propose a rigorously information-theoretic secure extrac-

tion scheme, and evaluate its performance on resource

constrained embedded systems.

2) To the best of our knowledge, We are the first to final-

ize and implement a comprehensive secure protocol for

the previously proposed architecture that uses external

devices as an authentication proxy to protect the IMD.

Besides, Our design is tailored for IMDs and requires

no special hardware. For example, the key extraction

scheme of IMDGuard is proposed based on the existing

functionality of the IMD, and the wearable device does

not need powerful transmitter modules to defend against

the adversary’s spoofing attacks.

3) We perform extensive experiments on our prototype to

evaluate the validity and performance of the IMDGuard.

The rest of the paper is as follows. We review the related

work in Section II, and the background and problem formu-

lation in Section III. Sections IV and V detail the IMDGuard

scheme including running time protocols and key initialization

between IMD and Guardian, and Section VI describes our pro-

totype implementation. We provide evaluation on our scheme

in Section VII, and conclude in Section VIII.

II. RELATED WORK

The increase use of IMDs has motivated researchers to study

the security issues on such devices [6]–[8]. Their proposed

solution while secure, does not address what happens in an

emergency situation where the doctors are unable to obtain the

necessary keys from the patient.

Later work by [5] explored the concept of safety, and pro-

posed the idea of fail-open, a property to physically circumvent

the IMD’s security protection in an emergency, through the use

of an external device. This introduces a new security threat

whereby an adversary may attempt to induce the fail-open state

to access the IMD. Our proposed protocol also provides the

fail-open property, but differs from [5] in three aspects. First,

our design avoids the periodic message broadcasting which

consumes considerable battery power and exposes patients to

privacy risks. Second, our solution protects the IMD without

any assumption on the adversary’s transmission capability.

Third, our scheme is comprehensive and evaluated on resource

constrained embedded systems.

Our solution includes a spoofing attack resistant mechanism

related to jamming. Jamming in sensor networks have been

studied by [9], [13], [19]. However, such jamming protocols do

not consider the features of the IMD, and cannot be directly

used in our problem. Other anti-jamming strategies like [16]

and Direct-Sequence Spread Spectrum modulation also cannot

be applied because of the hardware limitation and the band

regulation [2].

Our solution also includes a key extraction algorithm from

ECG signals to secure the link between the IMD and the

Guardian. The idea of using physiological signals to secure

inter-sensor communications was first introduced in [4], and

Poon et al. [14] put this scheme into practice for ECG and

PPG (photoplethysmogram) signals. Inter-pulse intervals (IPIs)

of heartbeats are exploited to extract keys in [3]. For 16

consecutive individual IPIs, the ending time in millisecond (ms)

of each IPI is calculated, setting 0 as the start time of the first

IPI. Then the 7th and 8th digits of the binary representations

of the ending times are extracted to form the key. Even though

the extracted binary sequences can pass several NIST [15]

randomness tests, they are actually not random as what they

look. Since the average IPI is about 850 milliseconds, the 7th

and 8th digits of the ending time are not random at all. The

randomness lies in the lower digits, so does the error. Compared

with it, our solution explored a new way to correctly utilize IPIs

for extracting randomness.

A faster scheme was proposed by [17] where the coefficients

of Fast Fourier Transform (FFT) on sampled ECG signals are

used to extract keys, however, the paper also does not give

a rigorous analysis whether input samples contain sufficient

entropy to generate a key with required entropy bits, and it

evaluates the key after hashing, which is not logically correct.

Our key extraction scheme differs from this work in two facets.

First, we give rigorous information theoretical study on the

randomness of the physiological feature from which the key is

extracted. Second, we show that the adversary cannot get any

knowledge about the generated keys except he can measure the

ECG signals simultaneously without being caught.

III. BACKGROUND AND FORMULATION

In this section, we first show the configuration of IMDGuard,

then the adversary model, and finally the approach against the

adversary.

A. IMDGuard Configuration

IMDGuard has three components, the IMD, Guardian, and

programmer. The IMD, once implanted, is expected to remain

inside the body for an extended period of time. The program-

mer, as an outside controller, provides doctors an interface

to interact with IMD through radio frequency transmission

for adjusting running parameters, changing operation modes,

or retrieving stored data. Above two are standard wireless

programmable medical instruments. The Guardian is a wearable

device with more power and computational resources than

the IMD. This Guardian works as a proxy for the IMD and

performs the authentication on its behalf. Both the IMD and

the Guardian are capable of measuring ECG signals. The

interactions of these components are illustrated in Fig. 1. Link α
represents the access control process between the Guardian and

the programmer. Link β represents the initial pairing process

between the IMD and the Guardian. Link γ represents the

secure communication protected by the key assigned by the

Guardian to both the IMD and the programmer.

1863



Fig. 1: Communication interactions in IMDGuard. Partial image is adopted from [11].

B. Adversary Model

We consider an adversary whose goal is trying to program

to or retrieve data from the IMD without being caught. The

adversary succeeds if he is able to access information from

the IMD in the presence of the Guardian. Disruption attacks

like denial-of-service are excluded in our adversary model. We

assume the adversary cannot physically measure the patient’s

real-time ECG signals without being detected. We also assume

that there is no adversary in an emergency situation. This is

reasonable since in such a scenario, the patient with the IMD

is likely to be in a secure facility like an ER room in a hospital

which can limit the presence of adversaries.

We classify the attack strategy of adversary against IMD-

Guard into two aspects. The first is when the adversary tries to

impersonate the Guardian by deriving the key shared between

the IMD and the Guardian from either brute force searching or

historic medical records of the patient. The second is when the

adversary may spoof the absence of the Guardian by selectively

jamming the messages from it, in order to convince the IMD

to disable safety protection and switch to the emergence status.

C. IMDGuard Overview

In IMDGuard, the Guardian performs two essential functions.

First, the Guardian is used to control which mode, regular or

emergency, the IMD should enter. When the patient is wearing

the Guardian, the IMD should function under the regular mode.

In a regular mode, the programmer requiring to interact with the

IMD will first be authenticated by the Guardian, which will then

issue the appropriate keys to both the IMD and programmer.

When the IMD does not detect the presence of the Guardian,

the IMD should enter emergency mode. The advantage is that

in an emergency, the doctor will be able to physically remove

the Guardian and have unfettered access to the IMD.

Second, the Guardian will authenticate the programmer on

behalf of the IMD. This will conserve the IMD’s battery by

reducing the number of operations performed by the IMD. This

also simplifies overall IMD design, since the IMD does not have

to maintain cryptographic materials such as asymmetric keys

and access control lists.

We assume that the Guardian will always be worn by the

patient. It is reasonable since the Guardian can take the form

of a watch and the patient can wear it all the time. We

also assume that the adversary cannot physically remove the

Guardian without the patient being aware of it.

We do not assume the IMD must associate exclusively with

one Guardian. Thus before making the Guardian effective, it

needs to be initialized by sharing a secret key between the IMD

and this Guardian, so that they recognize each other. Moreover,

in the extreme case that the Guardian current worn is broken or

lost, a new Guardian can be paired with the IMD easily without

the need of retrieving old key or resetting IMD.

To realize this functionality, one key feature of IMDGuard is

a secure key establishment scheme based on ECG signals. Both

the IMD and the Guardian locally sample the same random

source simultaneously, the patient’s ECG, and then extract

a symmetric key from ECG features after ECG delineation.

Unlike the Diffie-Hellman key exchange or wireless based key

extractions, this scheme is robust against man-in-the-middle

attacks as long as the adversary cannot physically measure real-

time ECG signals of the patient.

The other key feature of IMDGuard is the spoofing attack

resistant mechanism. If the adversary attempts to persuade the

IMD to enter the emergency mode by jamming all messages

transmitted from the Guardian, the Guardian still can announce

its presence to the IMD by jamming the IMD’s transmission

of the challenge message. The intuition is that the Guardian

may hardly block the transmission from the adversary to the

IMD, since it has no knowledge about the adversary’s hardware

and capabilities. Instead, the Guardian can be calibrated to the

parameters of its own IMD, and can always successfully jam

its IMD’s transmissions.

IV. PROTOCOL DESIGN IN IMDGUARD

Here, we present the protocols of IMDGuard. We assume

that the IMD and Guardian have already paired with a shared

secret key after key establishment phase, which is described in

the following section. We assume the Guardian has a list of

legitimate programmers and their corresponding public keys.

This information can securely be installed when in the hospital.

Table I summarizes the notations used.

TABLE I: Table of notations

G the Guardian

P the Programmer

nij the ith nonce generated by j, j ∈ {IMD, G, P}
H(·) standard cryptographic hash function, e.g., SHA-1

SK the shared secret key between the IMD and the Guardian
using ECG based key extraction (Section V)

PK+

j the public key of j, j ∈ {G, P}

PK−
j the private key of j, j ∈ {G, P}

TK the temporary symmetric key used for one session

ID the identification of the IMD

A. Basic IMD Protocol

The IMD will periodically wake up to determine whether

there is any request from the programmer. After the IMD

receives a request from the programmer, the IMD will execute

Algorithm 1. The IMD will send back its ID, and a random

1864



nonce n1IMD, which is used as the session identity to resist

against the replay attack. Then, the IMD starts a timer T1 to

wait for the Guardian, if present, to notify it to run the regular

condition protocol. In the case that there is no message from the

Guardian when T1 times out, the IMD will run the emergency

condition protocol.

Algorithm 1 Basic IMD algorithm

1: Send back to the P , ID and n1IMD

2: Start waiting timer T1

(Guardian, if present, will execute authentication protocol (Fig. 2) during
T1)

3: while T1 time out == FALSE do

4: if receive valid message from G then
5: Regular condition, not an emergency.
6: Execute Regular Condition Algorithm (Section IV-C)
7: Possible emergency condition.

Execute Emergency Condition Algorithm (Section IV-D)

B. Guardian Authenticating Programmer

In Step 2 of Algorithm 1, the Guardian will authenticate

the programmer within the time period T1. The authentication

protocol is shown in Fig. 2.

A random nonce n1G is signed by the programmer, and sent

back to the Guardian along with another random nonce n1P .

The signature of the programmer is verified by the Guardian.

If it is not valid, the Guardian will inform the IMD to deny

the session request through the message {NO,n1IMD}SK (it

will also inform the programmer the authentication is failed and

session is denied). If valid, the Guardian will assign a temporary

session key TK to both the IMD and the programmer for the

secure communication. We let the IMD use symmetric keys

when communicating with the programmer and Guardian to

reduce the computational load on the IMD. The Guardian and

programmer use public keys to authenticate each other for better

key management.

G : Overhears msg in step 1 of Algorithm 1 (1)

G → P : n1G (2)

G ← P : {n1G}
P K

−

P

, n1P (3)

G : Verify the signature withPK
+

P
(4)

If incorrect, then

Deny the request and inform IMD and P

Authentication phase completed

If correct, then

Accept the request, and continue step(5)

G → IMD : {Y ES, TK, n1IMD}SK (5)

G → P : {Y ES, TK, n1P }
P K

+

P

(6)

Fig. 2: Guardian authentication Programmer

C. Regular Condition Protocol

When the IMD enters the regular condition (Step 6 in

Algorithm 1), it will execute the protocol shown in Fig. 3.

After decrypting the message R, the IMD will deny access if

it receives a NO message. Otherwise, a YES message indicates

G → IMD : {R}SK (1)

IMD : Decrypt to derive R (2)

IfR == {NO, n1IMD}, then

Deny the request from P, and go to sleep

IfR == {Y ES, TK, n1IMD}, then

Accept req from P, and continue step(3)

P → IMD : {command}T K (3)

P ← IMD : {response}T K (4)

Fig. 3: IMD regular condition protocol

P ← IMD : n2IMD (1)

IMD : Wait for time T2 (2)

P ← IMD : n3IMD (3)

P → IMD : ans (4)

IMD : Check ans (5)

if ans! = H(n2IMD ⊕ n3IMD), then

Deny the request from P, and go to sleep

if ans == H(n2IMD ⊕ n3IMD), then

Accept req from P, and continue step(6)

P → IMD : command (6)

P ← IMD : response (7)

Fig. 4: IMD emergency condition protocol

that the programmer has been authenticated, and the session

key for Steps 3 and 4 is TK.

D. Emergency Condition Protocol

When the IMD enters the emergency mode, it will execute

the protocol in Fig. 4, and send the first portion of the

challenge, a random nonce n2IMD. After waiting T2 time,

the IMD sends the second portion of the challenge, n3IMD.

Assuming that the Guardian has been physically removed,

the programmer will transmit back the correct answer to the

challenge, H(n2IMD ⊕ n3IMD). If the Guardian is present,

the programmer will be unable to return the correct answer. We

explain how the Guardian disrupts this in the next subsection.

E. Spoofing Attack Resistant Protocol

Here, we show how our protocol is resilient to adversary’s

spoofing attack based on jamming. The adversary can attempt

to jam the communications between the IMD and Guardian

to induce the IMD to enter the emergency mode in Step 7

of Algorithm 1. In other words, the adversary will jam the

channel for length of time period T1. Since the IMD does

not receive any response from the Guardian, the IMD will

proceed to execute the emergency condition algorithm. For

G : Overhear the msg in Step 1 of Fig. 4 (1)

G : Jam the msg in Step 3 of Fig 4 (2)

G : Raise a warning alarm if Step 1 occurs frequently (3)

Fig. 5: The notification mechanism of the Guardian

this scenario, the Guardian function, the defensive jamming

1865



described in Fig. 5, is triggered to block this session. When the

Guardian hears the first portion of the challenge message (Fig. 4

Step 1) sent by the IMD to the programmer, the Guardian will

realize that the communication link between the IMD and itself

is blocked by an adversary with high probability. Then the

Guardian will jam the second portion of challenge message

from the IMD (Fig. 4 Step 3). This operation is feasible in

practice based on the Guardian’s loose synchronization through

the message in Step 1 of Fig. 4. In other words, the Guardian

will be aware that there is another message, which is the

jamming target, going to send in T2 time later. This information

can help the Guardian to jam the target message with less effort.

There are two advantages in letting the Guardian to jam

the IMD’s message instead of the adversary’s message. First,

the adversary’s hardware may be much more powerful than

the Guardian, making it difficult to calibrate the Guardian’s

broadcast strength needed to successfully jam the adversary’s

signal. Second, the the Guardian can time exactly when to be

jamming since it is aware when the IMD will begin broadcast.

This conserves the Guardian’s power by reducing jamming

period.

V. KEY ESTABLISHMENT IN IMDGUARD

In the previous section, we assume there is a secret key

already shared between the IMD and Guardian to secure their

communication. However, this key establishment is challenging

if the IMD and Guardian do not share any secret beforehand.

In this section, we introduce a secure key extraction scheme

based on the ECG delineation to establish a symmetric secret

key bonding the IMD and Guardian together, making adversary

impossible to forge the Guardian.

A. ECG Delineation

We conduct the ECG delineation with the wavelet-based

algorithms mentioned in [10], [12]. Fig. 6 shows an example

result of our wavelet transform based delineation. Using the

information of local maxima, minima and zero crossings at

different scales in the wavelet transform, the algorithm is able

to detect all the significant points of ECG in a heart beat cycle,

first the R peak, then Q peak and S peak, followed by T wave

and P wave.

Fig. 6: Wavelet transform of ECG waves at the first five scales. The first panel is the ECG

signal, the other five, from top to the bottom, are the corresponding wavelet transforms

from scale 21 to scale 25.

As shown in Fig. 6, in each heart beat cycle, the three blue

lines in the middle denote the onset, R peak and offset of QRS

complex respectively. The three cyan lines on the left denote

the onset, P peak and offset of P wave respectively. The three

red lines on the right denote the onset, T peak and offset of T

wave respectively.

We implement the algorithms with TinyOS 2.1, with about

1200 lines of code. The high accuracy is achieved to reduce

the mismatch rate of IPIs, making the following key extraction

efficient.

B. An ECG Feature for Key Extraction

Given the two ECG measurements that are taken at different

parts of the human body, we want to extract a symmetric key

from them after the delineation. As a fundamental requirement,

the key much be random. Thus, the key must be extracted

from an ECG feature such that: (1) the feature itself is random;

and (2) the feature has common places for both the IMD and

Guardian.

After the ECG delineating, we have the timing information of

all the ECG significant features, namely P wave, QRS complex

and T wave, for every heart beat cycle. Since the ECG signals

are periodic, to ensure the randomness, we cannot directly use

all the delineation points at the same time. Once a feature is

chosen, other features in the same heart beat cycle are not

totally random any more. For instance, if we know the position

of the R peak, we can easily guess into what ranges the Q

peak, S peak, T peak and P peak in the same cycle fall. Even

for features in different cycles, the positions of features are not

totally random. For example, given the position of R peak in

one heart beat cycle, that of the following R peak will fall into

a small range because the common inter-pulse interval (IPI) is

known. (For adults, the common IPI is about 850 ms)

We will use the information of R peaks, which is most

salient, to extract keys. Given a consecutive sequence of R

peaks, IPIs are obtained by calculating the difference in time

of the two consecutive R peaks. Suppose Ri denoting the time

of the ith R peak, then IPIi = Ri+1 − Ri. Since the average

value of IPI is quite known, we have to exclude the average

value when extracting the key. First we empirically estimate

how many random bits can be extracted from each IPI value.

We convert IPI values to binary representations, then examine

the randomness of each digit of the binary representations. It

is clear that the random bits lie in the low digits. For the ith
digit, we count the number of samples for the following cases:

(1) n00: if the ith digit of sample j is 0, and so is that of

sample j + 1, then increment n00 by 1;

(2) n01: if the ith digit of sample j is 0, and that of sample

j + 1 is 1, then increment n01 by 1;

(3) n10: if the ith digit of sample j is 1, and that of sample

j + 1 is 0, then increment n10 by 1;

(4) n11: if the ith digit of sample j is 1, and so is that of

sample j + 1, then increment n11 by 1;

where 1 ≤ j < n, n is the total number of consecutive IPI

samples.

We then calculate the four possibilities Plk = nlk/(n − 1),
where lk ∈ {00, 01, 10, 11}. If the ith digit is random and

independent, all the four possibilities should be around 25%.

1866



TABLE II: The quality of randomness of each digit.

i P00(%) P01 P10 P11

1 29.2 24.4 24.4 21.9

2 28.9 24.3 24.4 22.4

3 25.2 24.6 24.7 25.5

4 27.9 25.6 25.6 20.9

5 57.5 18.8 18.8 4.9

6 2.5 13.2 13.2 71.1

7 99.1 0.4 0.4 0.0

8 99.7 0.1 0.1 0.0

100 200 300 400 500 600
275

280

285

290

295

300

305

310

315

IP
I 
(i
n
 u

n
it
 o

f 
4
 m

ill
is

e
c
o
n
d
s
)

IPI index

 

 

Average of IPIs

Fig. 7: The fluctuation of IPIs against the average,

which is 294 in unit of 4 ms (250Hz sampling

rate).

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

C
o
u
n
ts

IPI fluctuations against average

Fig. 8: The normal distribution fitting to the fluctu-

ation of IPIs against the average, with µ = 0 and

σ2 = 61.

We list the possibilities for the lower 8 digits of IPI samples

in Table II. We set a threshold of 5%. As shown in the table,

the last 4 digits are random, while the 5th digit is not. For the

5th digit, P00 is more than 50% while P11 is less than 5%. We

also calculate the entropy of the fluctuations directly from the

original data, which is around 5. Therefore, we can confidently

extract 4 bits from each IPI.

C. Quantization

This subsection will show how to extract 4 random bits from

each IPI sample. We cannot use the last 4 digits of IPI’s binary

representations directly, because the slight difference between

the data at both sides may cause big differences in the last

4 digits of the binary representations, leading the mismatch

rate to as high as 20%. Actually, the lower 4 digits are the

fluctuations of IPIs. Fig. 7 shows the IPI fluctuations against the

average value. In terms of entropy, the fluctuations don’t lose

any entropy of IPI samples. Though the average IPI is quite

stable, the difference between individual IPI and the average

value is unpredictable. It can be positive, negative or zero. And

the value of the fluctuation is quite random in a certain range.

So the fluctuations can be chosen as the basis to extract the

key.

In the perspective of statistics, the fluctuations shape into a

normal distribution. Fig. 8 shows the histogram of the samples

in Fig. 7, with a normal distribution fitting. The fitted normal

distribution also results in an entropy 1
2 log(2πeδ2) ∼= 5, which

is within the range of that resulted from the original data. And

we have proved that the last 4 digits are random, which implies

that the real entropy is at least 4. In this sense, the distribution

of the fluctuations is indeed a normal distribution, or at least

close to.

IMDGuard provides the following algorithm to do the quan-

tization. This algorithm is based on the assumption that the fluc-

tuations form a normal distribution. For a normal distribution

N(µ, σ), given µ and σ, we can divide the probability density

function into 16 consecutive sections such that, in each section,

the cumulative possibility density is 1/16. The domain of each

section can be denoted by a function of σ and µ, as shown in

Table III. If µ or any starting/ending point of any domain is

an integer, we split samples with that value into two portions,

with each going into one of the nearby domain. The splitting

TABLE III: Normal distribution divided into 16 equal sections.

Domain Domain

1 (−∞, µ − 1.534σ) 9 (µ, µ + 0.157σ)

2 (µ − 1.534σ, µ − 1.151σ) 10 (µ + 0.157σ, µ + 0.319σ)

3 (µ − 1.151σ, µ − 0.887σ) 11 (µ + 0.319σ, µ + 0.489σ)

4 (µ − 0.887σ, µ − 0.675σ) 12 (µ + 0.489σ, µ + 0.675σ)

5 (µ − 0.675σ, µ − 0.489σ) 13 (µ + 0.675σ, µ + 0.887σ)

6 (µ − 0.489σ, µ − 0.319σ) 14 (µ + 0.887σ, µ + 1.151σ)

7 (µ − 0.319σ, µ − 0.157σ) 15 (µ + 1.151σ, µ + 1.534σ)

8 (µ − 0.157σ, µ) 16 (µ + 1.534σ, +∞)

depends on the sample index. The samples with odd index form

one portion, and those with even index form the other. Note that

σ is big enough such that every domain contains at least one

integer, since the entropy indicates that σ is not small. The

purpose of the division is to roughly but not precisely equalize

the number of samples in each domain, making the quantization

unpredictable. The 16 domains are one-to-one mapping to the

4-bit gray codes.

Since the IMD is measuring the ECG signals all the time,

it is able to calculate σ and µ for a long period, say 15

minutes, and store it. During key generation, the IMD can send

these parameters to the Guardian. This process doesn’t leak

any information about the key, since the adversary still doesn’t

know which sample is in which domain and how many samples

are in each domain. The quantization is shown in Algorithm 2.

Algorithm 2 Quantization Algorithm

Input: n consecutive IPIs from ECG, IPI1, IPI2, ..., IPIn.
Output: 4n bit binary string.
1 Obtain parameters µ and σ
2 Calculate 16 domains based on Table III: D1, D2, ..., D16

3 Number the 4-bit gray codes: G1, G2, ..., G16

4 Output = φ
5 for i ← 1 to n
6 for j ← 1 to 16
7 if IPIi falls into Dj

8 Output = Concatenate(Output,Gj )

D. Reconciliation

Due to the high accuracy of the ECG delineation, the two

binary strings quantized respectively by the IMD and Guardian

1867



have a low mismatch rate. For two 4-bit blocks corresponding

to the same heart beat cycle on both sides, one bit is different

in most cases if there is a mismatch. In a very few cases, there

are two bits different. There is no case that 3 or 4 bits are

different. Based on these observations, we design a 2-round

reconciliation algorithm. It carries out Round 2 only if Round

1 fails.

Round 1: For each IPI, both the IMD and Guardian get a

4-bit block. Both sides calculate the parity of its own block

and exchange this information. If the parities are different, the

block is discarded. Otherwise, each side extracts the first 3 bits

of the block; the 4th bit is discarded because the parity leaks

one bit information. This process continues until both sides get

129 bits. The IMD then hashes it with SHA-1 hash function and

sends the hash value to the Guardian. The Guardian compares

this hash value with its own, and notifies the IMD. If the two

hash values match, the algorithm terminates. Otherwise, Round

2 will be carried out.

Round 2: For the 43 IPIs chosen in Round 1, both the

IMD and Guardian calculate the parity of the last 2 bits of

each 4 bit block, and exchange this information. Again those

blocks whose parities don’t match are discarded. For the blocks

left, both sides extract the 2nd and 3rd bits; the first bit is

discarded since the second parity also leaks one bit information.

Obviously, the length of the key is less than 128. Then both

sides continue to analyze the following IPIs. At this time, they

check two parities at the same time and extract 2 bits from each

block which passes the parity check. The process continues

until both sides get 128 bits.

VI. PROTOTYPE IMPLEMENTATION

A challenge involving IMD experiments is the difficulty in

obtaining source codes and open platforms from commercial

vendors. In our prototype system, we choose the TelosB with

TinyOS 2.1, an open research platform of the resource con-

strained embedded system as a replacement of the IMD. The

related details are described below.

Transmitter Comparison: The TelosB utilizes the CC2420

transmitter for wireless communication. The CC2420 is com-

parable to the typical Medical Implant Communication Service

(MICS) radio like ZL70101 [1] used in IMDs. They both

are low power radio devices with similar amount of power

consumption during transmission. The ZL70101 expends 5

mA, while 8.5 mA is achievable for the CC2420. Besides, both

of them share other common features such as multiple channel

and duty-cycle support. The difference between CC2420 and

ZL70101 is that MICS radio operates lower frequency band

between 402-405 MHz because of the reasonable signal prop-

agation characteristics in the human body. This has no impact

on our evaluation since our implementation does not rely on

the frequency or number of available channels.

Code size: The code size of each component after compila-

tion is shown in Table IV. ECC [18] is the Elliptic Curve Cryp-

tography we develop to provide public key scheme between the

programmer and the Guardian. For reference, a typical IMD

produced in 2002 is able to contain 2MB memory [5].

TABLE IV: Code size of our prototype implementation

Module ROM(bytes) RAM (bytes)

IMD 20656 1056

Programmer 20754 1060

Guardian 20614 1050

ECC 42190 1931

Key Extraction 10078 887

ECG Delineation 18720 9652

VII. EVALUATION OF IMDGUARD

The performance evaluation of IMDGuard is divided into

three portions. First, we comprehensively assess the quality of

the key extracted from ECG signals. Then we conduct a series

of experiments on the effectiveness of defensing adversary’s

spoofing attacks. Finally, we present the efficiency of each

critical components in our implementation.

A. Key Establishment

In this section, we will evaluate the key generated according

to the algorithms in Section V. The ECG signals are from

PhysioBank database (http://www.physionet.org/physiobank).

We will address three important characteristics of the key: (1)

temporal variance; (2) efficiency; (3) randomness.

1) Temporal Variance: Given a 128-bit key generated by the

IMD and Guardian, we want to know whether the adversary

can get any help if he can access historic/future records of

ECG signals of the patient. Metric used is the hamming

distance between the key and any other 128 bit random

string before or after it. The hamming distance between two

binary strings of equal length is the number of positions at

which the corresponding symbols are different. Given two

random strings, if they are independent, the possibility of

having hamming distance k follows a binomial distribution,

which is: P (k) =
(

n
k

)

pk(1 − p)n−k, where n = 128 and

p = 1/2. And the mean value of k, a.k.a expected value, is

E(k) = np = 1/2 × 128 = 64.

We examine these hamming distances. There is no signal

value equal to 0 or 128, and all the points lie between 45 and

85. The closer to the mean hamming distance, which is 64,

the denser the points. We plot the possibility of the hamming

distances, as shown in Fig. 9. As we can see, the measured data

matches very well with the theoretical binomial distribution

with n = 128 and p = 1/2. From the statistical prospective,

the 128 bit key generated by our scheme does not relate to the

historic ECG or future ECG signals. Thus, even the adversary

gets historic or future ECG data of the patient, he cannot get

any help from it. This also indicates the randomness of the 128

bit key.

We also conduct the same evaluation between keys generated

from ECG signals from different persons, and we get the same

result as expected. The historic/future record of the same person

does not help the adversary, neither does that of other people.

[17] did similar evaluation about their scheme. However, they

did so after hashing an identical string between two parties with

a one-way hash function. Though they got similar results, their

1868



results could not prove what they claimed. Hashing will make

a string random, no matter the original string is random or not.

2) Efficiency: In the reconciliation phase, there are two

rounds. In the first round, 3 random bits are extracted from each

IPI. So it needs 43 IPI to get a 128 bit key. If the first round

fails, the algorithm will carry out the second round, extracting 2

bits from each IPI. In this case, it needs 21 more IPIs besides the

43 IPIs in the first round. In 88% cases, the first round succeeds.

The second round succeeds all the time, at least we did not

find a single failure in all our traces. Thus, on average, it needs

45.5 IPIs, without counting the IPI discarded. During Round 1,

about 25% samples are discarded, and during Round 2, only

0.3% samples are discarded. Taking into account the samples

discarded, it needs 61 IPIs, corresponding to 45 seconds or so,

to generate a key successfully.

3) Randomness: To evaluate randomness of the generated

bit stream employed as secret keys, we run the randomness

tests in the NIST test suite [15]. There are totally 15 different

statistical tests, and we run 9 of them. The other 6 require a

very long bit stream that we cannot generate from PhysioBank

database. Our bit stream passes all the 9 tests, showing a good

quality of randomness.

Evaluations show that even the patient’s ECG records cannot

help the adversary to predict the key shared between the IMD

and Guardian, unless he physically measure patient’s ECG

signals simultaneously during the key establishment. However

it is impossible for the adversary to physically measure patient’s

ECG without the patient being aware of it. This key estab-

lishment is robust to man-in-the-middle attack. If a symmetric

key is successfully established, then the Guardian must be

legitimate.

16 32 48 64 80 96 112

0.02

0.04

0.06

0.08

P
o

s
s
ib

ili
ty

Hamming distance

 

 

Binomial distritution with p=0.5 and n=128

Measured data

Fig. 9: The hamming distances between the

128 bit stream from current ECG signal

and those from historic records fit into a

binomial distribution with n = 128 and

p = 1/2.

0.5 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L (feet)

s
u
c
c
e
s
s
 r

a
ti
o
 o

f 
d
e
liv

e
ry

Fig. 10: Results for the effectiveness of

Guardian’s jamming when targeting at ma-

licious programmer. X-axis represents the

distance between the IMD and Guardian,

and Y-axis is the success ratio of delivered

messages. For each distance, ten trials were

conducted.

B. Jamming Related Experiments

There are two jamming related experiments. First, we experi-

mentally validate our decision to jam the IMD’s communication

instead of the adversary’s messages. Second, we examines our

defensive jamming method using different settings in terms of

the power level and the distance.

We let three TelosB motes to act as the IMD, the Guardian

and the malicious programmer (adversary). To concentrate on

the jamming performance of the Guardian, these motes are

installed with the simplified IMDGuard which will be described

in each experiment below, as well as the carrier sensing and

random backoff on motes are disabled. All the experiments are

taken on a large office table in an indoor environment.

Experiment 1: We vary the distance between the IMD

and Guardian from 0.5 feet to 2 feet, and set the malicious

programmer 11 feet away from the center point of these two

devices. The transmission power of the Guardian is configured

to be -15 dBm. This is 10 dB higher than the power of the IMD

but is 10 dB lower than the malicious programmer’s power.

The transmission interval, i.e. the inter arrival time between

any two messages, is 20 ms. We then let the adversary send

messages to the IMD, while the Guardian is jamming. After

the transmission is over, we determine the ratio of messages

successfully received by the IMD. The results are shown in

Fig. 10. As we can see, messages toward the IMD are able to

escape from being jammed with an uncertain probability, low

in some cases but high in others. This observation indicates that

jamming the adversary’s transmission does not work in practice

since our malicious programmer settings, such as the relative

power strength (10 dB) and location (11 feet), or even more

rigorous conditions, can be achieved by an adversary.

We then repeat the experiment again, this time letting the

Guardian jam the IMD’s transmission. The Guardian is able

to successfully jam all the messages. This approach is more

reliable and effective than jamming the adversary. We omit

the figure for the results. The success of defensive jamming is

due to the fact that the Guardian is aware of all of the IMD’s

settings, and that the Guardian is more powerful than the IMD

by design.

Experiment 2: In this experiment, the Guardian jams the

message the IMD sends to the malicious programmer in the

same way as above experiment but under various settings. The

distance between the IMD and the malicious programmer is

fixed at 1 foot, which is considered as the closest position the

malicious could have without being detected by the patient.

The Guardian is placed away , from 1 foot to 7 feet, from the

center point of IMD and programmer at each different power

level. The successful delivery ratios of all transmitted messages

in every condition are recorded in Fig. 11. It is evident that,

as long as the Guardian is close enough, e.g. within 2 feet to

the IMD, the transmission from the IMD toward the malicious

programmer is totally blocked even in the extreme testing case

that Guardian’s jamming power is 20 dB less than the IMD’s.

This observation is important because the IMD usually is fallen

into this distance range if the Guardian is worn by the patient.

C. Overhead Evaluation

Cryptographic overhead: We write a testing program on

TelosB to record the average timing of ECC-based encryp-

tion/decryption, SHA-1 hash, Advanced Encryption Standard

(AES) for a 20 byte message, and data is shown in Table V.

Communication and Operation Overhead: The timing in-

formation for the critical operations under different scenarios is

provided in the Table VI. In an authentication case, on average

1869



1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
jammer power level 0dBm

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
jammer power level −10dBm

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
jammer power level −15dBm

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
jammer power level −25dBm

Fig. 11: Results of the effectiveness of Guardian’s defensive jamming(acted as jammer)

when targeting at the IMD. X-axis means the distance between the Guardian and center

point of the IMD and malicious programmer in feet, and Y-axis is the success ratio of

delivery. The transmission power of the IMD is set to be -5 dBm during the whole

experiment. For each distance, two trials were conducted.

TABLE V: Security Timing Information

Encryption Decryption SHA-1 Hash AES

3.3 s 1.7 s 4 ms 1 ms

the Guardian takes 3821 ms to authentication a programmer

in total. It is broken down to (1) 1550 ms for programmer

to generate a signature of the given challenge (20 byte random

data), (2) 2221 ms for Guardian to verify this signature, and (3)

50 ms for other communication overhead. When the Guardian

is not present, the process of emergency condition (Fig 4)

costs roughly 512+14=526 ms before the IMD accepts the

programmer. If the defensive jamming occurs, the session will

be denied by the IMD in about 1501 ms since receiving the

request.

TABLE VI: Prototype Timing Information

Overhead in Time (ms)

Situation Operation Overhead

Authentication
Signing(20bytes) 1550
Verification(20bytes) 2221
Others 50

Guardian Removed
Challenge Transfer 512
Others 14

Guardian Jamming Session Deny 1501

VIII. CONCLUSION

In this paper, we propose IMDGuard, a comprehensive

security scheme for protecting implantable cardiac devices in

terms of both security and reliability. Prototype of IMDGuard is

implemented to demonstrate its functionality of securing IMDs

in practice.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by

US National Science Foundation grants CNS-0831904, and

CAREER Award CNS-0747108.

REFERENCES

[1] Ultra Low-Power RF Communications for Implanted Medical Applica-

tions and Low Duty-Cycle Systems. http://www.zarlink.com/zarlink/
lowpower-rf dutycycle wp nov06.pdf.

[2] FCC rules and regulations, MICS Band Plan. 2003.
[3] S. Bao, C. Poon, Y. Zhang, and L. Shen. Using the timing

information of heartbeats as an entity identifier to secure body
sensor network. IEEE Trans Inf Technol Biomed, 12(6):772–9,
2008.

[4] S. Cherukuri, K. Venkatasubramanian, and S. Gupta. BioSec: A
biometric based approach for securing communication in wireless
networks of biosensors implanted in the human body. Interna-
tional Conference on Parallel Processing Workshops, 2003.

[5] T. Denning, K. Fu, and T. Kohno. Absence makes the heart grow
fonder: new directions for implantable medical device security.
In HotSec 2008.

[6] T. Denning, Y. Matsuoka, and T. Kohno. Neurosecurity: security
and privacy for neural devices. Neurosurgical Focus, 2009.

[7] D. Halperin, T. Heydt-Benjamin, K. Fu, T. Kohno, and W. Maisel.
Security and privacy for implantable medical devices. IEEE
Pervasive Computing 2008.

[8] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. De-
fend, W. Morgan, K. Fu, T. Kohno, and W. Maisel. Pacemakers
and implantable cardiac defibrillators: Software radio attacks
and zero-power defenses. In IEEE Symposium on Security and
Privacy, 2008.

[9] L. Sang and A. Arora. Capabilities of low-power wireless
jammers. Technical Report OSU-CISRC-5/08-TR24, Ohio State
Univ., 2008.

[10] C. Li, C. Zheng, and C. Tai. Detection of ECG characteristic
points using wavelet transforms. IEEE Trans. on Biomedical
Engineering, 42(1), 1995.

[11] G. Marcus. IMD image. http://knol.google.com/k/-/-/hCjLTV2A/
bdmV3w/ICD.CXR.jpg.

[12] J. Martinez, R. Almeida, S. Olmos, A. Rocha, and P. Laguna. A
wavelet-based ECG delineator: evaluation on standard databases.
IEEE Trans. on Biomedical Engineering, 51(4), 2004.

[13] I. Martinovic, P. Pichota, and J. Schmitt. Jamming for good: a
fresh approach to authentic communication in WSNs. In Wisec
2009.

[14] C. Poon, Y. Zhang, and S. Bao. A novel biometrics method to
secure wireless body area sensor networks for telemedicine and
m-health. IEEE Communications Magazine, 44(4):73–81, 2006.

[15] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker.
A statistical test suite for random and pseudorandom number
generators for cryptographic applications. NIST, 2001.

[16] M. Strasser, C. Pöpper, S. Capkun, and M. Cagalj. Jamming-
resistant key establishment using uncoordinated frequency hop-
ping. In IEEE Symposium on Security and Privacy, 2008.

[17] K. Venkatasubramanian, A. Banerjee, and S. Gupta. Ekg-
based key agreement in body sensor networks. In Computer
Communications Workshops, 2008.

[18] H. Wang, B. Sheng, and Q. Li. Elliptic curve cryptography-
based access control in sensor networks. International Journal
of Security and Networks, 1(3):127–137, 2006.

[19] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of
launching and detecting jamming attacks in wireless networks.
In MobiHoc 2005.

1870


