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Abstract—Phishing is an increasingly sophisticated method to
steal personal user information using sites that pretend to be
legitimate. In this paper, we take the following steps to identify
phishing URLs. First, we carefully select lexical features of
the URLs that are resistant to obfuscation techniques used by
attackers. Second, we evaluate the classification accuracy when
using only lexical features, both automatically and hand-selected,
vs. when using additional features. We show that lexical features
are sufficient for all practical purposes. Third, we thoroughly
compare several classification algorithms, and we propose to use
an online method (AROW) that is able to overcome noisy training
data. Based on the insights gained from our analysis, we propose
PhishDef, a phishing detection system that uses only URL
names and combines the above three elements. PhishDef is
a highly accurate method (when compared to state-of-the-art
approaches over real datasets), lightweight (thus appropriate for
online and client-side deployment), proactive (based on online
classification rather than blacklists), and resilient to training data
inaccuracies (thus enabling the use of large noisy training data).

I. INTRODUCTION

Phishing is continuously evolving and becoming an increas-
ingly sophisticated criminal tool to steal sensitive information
and commit crimes on the Internet. According to the latest re-
port from the Anti-Phishing Working Group [11], the number
of commercial brands being attacked by phishing just hit a
new record: 356 brands in October 2009. With major industry
targets, such as, financial and payment services, phishing has
caused billions of dollars loss annually [21]. Because of the
severity of the problem, the Internet community has put a
significant amount of effort into defense mechanisms.

Currently, two of the most popular services that protect
the Internet users from visiting phishing sites are the Google
Safe Browsing service [1] and the Microsoft Smart Screen
service [4]. Both services provide client browsers with URL
blacklists. The browsers, in turn, protect users from visiting the
blacklisted URLs. The major problem of this protection model
is that it is reactive: a phishing URL can only be included in
the blacklist if it has already appeared somewhere else, e.g.,
in a spam email, or has been reported by a user. A proactive
model, where brand new phishing URLs could be identified
accurately, is highly desirable to better protect the users.

We argue that in order to provide a proactive protection, the
machine learning classification engine, which is typically used
to maintain the blacklists at the server side, must be pushed to
the client browser. This would allow new URLs to be classified
on-the-fly, at the time the users click on or type in the URLs.
One of the biggest challenges of classifying URLs on-the-
fly, as opposed to off-line at the server side, is the latency
constraint. The longer it takes to obtain the classification result
of a URL, the longer a user has to wait to load that URL, and
the worse the user experience. Furthermore, since page loading

time is a decisive factor when benchmarking web browsers,
classifying URLs should not introduce high latency.

There are two types features that can be used in URL
classification: lexical features, i.e., features which are readily
available from the URL names; and external features, i.e.,
features acquired from queries to remote servers. We refer to
lexical and external features together as full features. Lexical
features are based only on the URL names and are appropriate
for implementation at the client. External features rely on
the availability of remote servers, introduce additional latency
due to the required queries, and consume more resources
of the client, e.g., battery life and bandwidth of mobile
phones. Nonetheless, one would expect that relying on a more
comprehensive set of features, rather than lexical features only,
would lead to higher classification accuracy. In this paper, we
seek to answer the following question:

How well can one detect phishing URLs using only
lexical features compared to using full features?

To the best of our knowledge, this work is the first to
extensively study this question. We show that lexical features
are sufficient (i.e., if properly used, they can achieve accuracy
comparable to full features), and we propose a system called
PhishDef that achieves this goal.

In particular, we first introduce a way to extract lexical
features that are resistant to obfuscation. We then thoroughly
evaluate the classification accuracy achieved when using lexi-
cal features vs. full features with several state-of-the-art learn-
ing algorithms on real datasets. More specifically, we consider
the following algorithms: batch-based Support Vector Machine
(SVM), Online Perceptron (OP), Confidence-Weighted (CW),
and Adaptive Regularization of Weights (AROW). We find
that, using lexical features results in a modest decrease (about
1%) in classification accuracy compared to using full features;
however, the overall accuracy is still high (96–98%). This
suggests that using lexical features is sufficient and provides
a better latency-accuracy trade-off. Moreover, our proposed
obfuscation-resistant lexical features help to boost the overall
classification accuracy across all the datasets. In particular,
the reduction of error rate is up to 27%. We also observe
that state-of-the-art online linear classification algorithms,
namely, AROW and CW, are more accurate while imposing
less memory and computing overhead compared to other
techniques. Moreover, when there is noise in the training
data (noisy labels), AROW outperforms CW. Robustness in
a noisy environment is very important because (i) it allows
for training more comprehensive classification models by
working with larger datasets, which typically include noise,
such as, blacklisted URLs from Google used in [25]; and (ii)
it improves the system’s resilience to poisoning attacks, where
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attackers attempt to maliciously influence the classification
models by injecting mis-labeled data.

Based on the insights gained from our analysis, we propose
PhishDef, a classification engine that operates at the client
side, uses only lexical features, and implements the AROW
algorithm. PhishDef has the following desired properties:
• High accuracy: It has 96–97% classification accuracy,

only 1% less than full features.
• Light-weight: It has low latency and imposes a modest

amount of memory and computation overhead.
• Proactive approach: It can classify new URLs on-the-fly,

i.e., at the time the user clicks on or enters the URL at the
client side, as opposed to reactively relying on blacklists.

• Resilience to noise: It maintains high accuracy even when
trained with mislabeled data: 95%–86% accuracy when
there is 5%–45% noise.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the datasets we
use and the feature extraction process. Section IV describes
the classification algorithms we compare. Section V presents
the evaluation results, i.e., the comparison of all algorithms
over all datasets and feature sets. Section VI discusses and
explains the classification performance. Section VII presents
PhishDef, our proposed solution based on the insights from
the analysis. Section VIII concludes the paper.

II. BACKGROUND

PhishTank [6] defines phishing as “a fraudulent attempt to
get you to provide personal information, including but not
limited to, account information.” This definition is somewhat
restricted. In this work, we adopt a broader definition of
phishing from Whittaker et al. [25], which defines a phishing
page as “any web page that, without permission, alleges to
act on behalf of a third party with the intention of confusing
viewers into performing an action with which the viewer
would only trust a true agent of the third party.”1

Garera et al. [17] studied the structure of phishing URLs.
They find four distinct categories of obfuscation techniques
that phishing URLs use. Based on these categories, they
propose eighteen manually selected features that can help to
produce high classification accuracy. Their selected features
include both lexical features and external features, such as
Google PageRank and Google page quality of the page. Part of
our work builds on these identified categories. We also propose
features that address the four common obfuscation techniques,
which, however, are directly extractable from the URL strings.

Whittaker et al. [25] describes the design of the Google’s
phishing classifier used to automatically maintain Google’s
phishing blacklist. This classifier uses a wide variety of fea-
tures: from lexical features, such as whether the URL contains
an IP address, to URL metadata, such as Google PageRank, as
well as features extracted from the page content and hosting
information. While this work describes the classifier used to
maintain blacklists at the server side, our work focuses on the
design of an on-the-fly classifier at the client side.

1This definition covers the typical case of phishing pages – pages that mimic
financial companies’ sites and request login credentials from the viewers –
and also phishing pages that display trusted companies’ logos to trick the
viewers to download and execute malicious binary.

In [19], Ma et al. examine the performance of several batch-
based learning algorithms on classifying malicious URLs,
which include phishing URLs and URLs present in spam
emails. The algorithms are evaluated when working with
various feature sets, for instance, host-based features, such as,
features from WHOIS queries, and lexical features. This work
shows that the combination of host-based and lexical features
results in the highest classification accuracy. This work also
hinted that using lexical features may lead to high accuracy;
however, it did not investigate this direction in sufficient depth.
Our work builds on this initial observation. We extensively
evaluate how both batch-based and online algorithms perform
when using only lexical features compared to full features.

In a follow-up work, Ma et al. [20] compare the perfor-
mance of batch-based algorithms to online algorithms when
using full features. The authors find that online algorithms, es-
pecially Confidence-Weighted (CW), outperform batch-based
algorithms. Our main difference from [20] is that we fo-
cus on lexical features instead of full features. We propose
obfuscation-resistant lexical features, show that online algo-
rithms outperform batch-based algorithms when working with
lexical features, and provide detailed analysis of the datasets
to explain why this is the case. In addition, we introduce the
use of AROW, which performs as well as CW but outperforms
CW when there is noise. To the best of our knowledge, AROW
has not been used before in the phishing context.

Other related work include PhishNet [23], which proposes
heuristics to predict phishing URLs; the comparative analysis
of phishing and non-phishing URLs drawn from PhishTank
[6] and DMOZ [5] by McGrath and Gupta [22]; CANTINA
[26], which uses a weighted sum of 8 features (4 content-
related, 3 lexical, and 1 WHOIS) to classify phishing URLs;
the classification of phishing emails by Fette et al. [16] and
Bergholz et al. [12]; and the comparison of various tools for
detecting fake websites by Abbasi and Chen [10].

Besides Google Safe Browsing [1] and Microsoft Smart
Screen [4], mentioned in the introduction, there are other
commercial products which aim at protecting users from
phishing sites, such as, McAfee SiteAdvisor [3] and WOT
Web of Trust [18]. The former incorporates proprietary feature
analysis, and the latter relies on community feedbacks. These
approaches are based on blacklists, thus reactive.

III. DATASETS AND FEATURE EXTRACTION

A. Malicious and Legitimate URLs

PhishTank. PhishTank [6] is a community site where anyone
can submit, verify, and share phishing URLs. A suspected
phishing URL will be manually checked by at least 2 other
members of the site. Once verified as a phishing URL, the
URL will be included in a downloadable database. We collect
our set of phishing URLs during the one month period of
June 2010. The set consists of 4,082 verified phishing URLs
ordered by their submission time.

MalwarePatrol. MalwarePatrol [2] is a free and user con-
tributed system where anyone can submit suspicious URLs that
may carry malware, viruses, or trojans. If a submitted URL
is verified as malicious by MalwarePatrol, the URL will be
put into a downloadable blacklist. We collect 2,001 malicious
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Fig. 1. External Feature Collection Process and Datasets

URLs during the last two weeks of June 2010. We order these
URLs by their appearance time. We note that the URLs here
have different characteristics from the URLs from PhishTank
because they are crafted to spread malware while the URLs
from PhishTank are crafted to steal sensitive information.

Yahoo Directory. Our first set of benign URLs is collected
from the Yahoo directory. Yahoo provides a generator URL
[9], which randomly generates a URL in its directory whenever
someone visits it. We used this generator URL in mid June
2010 to collect 4143 random URLs.

Open Directory. We collect our second set of benign URLs
from DMOZ [5], which is one of the largest open directory
of the Web maintained by volunteer editors. We collect 4012
random URLs from DMOZ directory in mid June 2010.

For the benign URLs, we order them by the order in
which we obtain them. We also note that our methodology of
collecting URL datasets is similar to recent work [19], [23].

B. External Feature Collection

We refer to features that require queries to remote servers as
external features. For each URL, we acquire external features
by querying two different remote servers:

WHOIS. We query the WHOIS server responsible for the top
level domain of the URL for its registration information, which
includes the primary domain name, the registrar, the registrant,
and the registration date. We implement our query engine by
adopting the pywhois module [8]. Intuitively, the features
that come from the WHOIS answers could play an important
role in classification. For example, a newly registered site is
more likely to be a phishing site as opposed to an old site.

Team Cymru. We also query Team Cymru server [24] to
obtain the network information and the geolocation of each
URL. In particular, we obtain the network BGP prefix, the
AS number, and the country code. These information are
complementary to the former WHOIS information and could
potentially help with the classification as well. For instance,
multiple phishing URLs are often hosted on the same (badly
administered) subnet; as such, the network BGP prefix will
give us the desired feature to correlate these sites.

Fig. 1 illustrates our external feature collection process. We
note that collecting these external features incur significant
latency. On average, the time it takes to collect all external
features of an URL in the PhishTank dataset is 1.64 second.
The latency depends on a variety of elements, such as, the
load of the WHOIS and Team Cymru servers, as well as the
geolocations of the WHOIS servers.

TABLE I
COMMONLY USED URL OBFUSCATION TECHNIQUES FROM [17]

Type Descriptive Examples

I http://210.80.154.30/˜test3/.signin.ebay.com/ebayisapidllsignin.html
http://0xd3.0xe9.0x27.0x91:3030/.www.paypal.com/uk/login.html

II http://21photo.cn/https://cgi3.ca.ebay.com/eBayISAPI.dllSignIn.php
http://2-mad.com/hsbc.co.uk/index.html

III http://www.volksbank.de.custsupportref1007.dllconf.info/r1/vm
http://sparkasse.de.redirector.webservices.aktuell.lasord.info

IV http://www.wamuweb.com/IdentityManagement/
http://mujweb.cz/Cestovani/iom3/SignIn.html?r=7785

TABLE II
LEXICAL FEATURES OF A PHISHING URL

URL www.naturenilai.com/form2/paypal/webscr.php?cmd= login
Auto-
Selected

name=www, name=naturenilai, tld=com, dir=form2, dir=paypal
file=webscr, ext=php, arg=cmd, arg=login

Obfuscation-
Resistant

URL len=54, n dot=3, blacklist=1
Domain Name len=19, IP=0, port=0, n token=3,

n hyphen=0, max len=11
Directory len=14, n subdir=2, max len=6,

max dot=0, max delim=0
File Name len=10, n dot=1, n delim=0
Argument len=11, n var=1, max len=6,

max delim=1

C. Feature Extraction

We now describe our process of extracting lexical and
external features and how we prepare them for classification.

1) Lexical Features: Recall that lexical features can be
directly extracted from the URL string. We adopt the approach
by Ma et al. [19], [20] to automatically select binary lexical
features. In addition, motivated by the work by Garera et al.
[17], we propose a number of obfuscation-resistant lexical
features. We show through empirical results that these features
complement the former set of features and help to capture
additional obfuscated phishing URLs.

Automatically Selected Features. The URL string is broken
down into multiple tokens. Each token constitutes a binary
feature. The delimiters to obtain the tokens are ‘/’, ‘?’, ‘.’,
‘=’, ‘ ’, ‘&’, and ‘-’. Similar to [19], [20], we distinguish
tokens that appear in the domain name, the top level domain,
the directory, and the file extension. Different from [19], [20],
we also distinguish tokens that appear in the argument part of
the URL. In other words, the same token appearing in different
parts of the URL will constitute different binary features. This
representation of the URL is known as “bag-of-word.”

Hand-Selected (Obfuscation-Resistant) Features. In [17],
Garera et al. describe four different URL obfuscation tech-
niques that are commonly used by the attackers: (I) Obfus-
cating the host with an IP address, (II) Obfuscating the host
with another domain, (III) Obfuscating with large host names,
and (IV) Domain unknown or misspelled. Table I illustrates
these techniques. Here we propose the following hand-selected
lexical features to detect the identified obfuscation techniques;
our proposed features are classified into five categories:

(i) Features related to the full URL. These features include
the length of the URL, the number of dots in the URL,
and whether a blacklisted word appears in the URL. The
blacklist we use is similar to the one in [17], which in-
cludes the words: confirm, account, banking, secure,
ebayisapi, webscr, login, and signin; and we add
the words paypal, free, lucky, and bonus. The first
two features address Type II obfuscation while the blacklisted
words enhance the detection of Type IV obfuscation.

http://210.80.154.30/~test3/.signin.ebay.com/ebayisapidllsignin.html
http://0xd3.0xe9.0x27.0x91:3030/.www.paypal.com/uk/login.html
http://21photo.cn/https://cgi3.ca.ebay.com/eBayISAPI.dllSignIn.php
http://2-mad.com/hsbc.co.uk/index.html
http://www.volksbank.de.custsupportref1007.dllconf.info/r1/vm
http://sparkasse.de.redirector.webservices.aktuell.lasord.info
http://www.wamuweb.com/IdentityManagement/
http://mujweb.cz/Cestovani/iom3/SignIn.html?r=7785
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TABLE III
SUMMARY OF DATASETS

Pairs Yahoo-Phish Yahoo-Malware DMOZ-Phish DMOZ-Malware All Good - All Bad
# Malicious URLs 4,082 2,001 4,082 2,001 6,083
# Legitimate URLs 4,143 4,143 4,012 4,012 8,155
# Lexical Features 13,821 8,791 14,165 9,129 22,100
# External Features 18,786 16,665 9,751 7,548 24,843

(ii) Features related to the domain name. These features
include the length of the domain name, whether an IP address
or a port number is used in the domain name, the number of
tokens of the domain name, the number of hyphens used in
the domain name, and the length of the longest token. These
features address obfuscation Type I, Type III, and a technique
related to Type III, where hyphens are used instead of dots.

(iii) Features related to the directory. These features include
the length of the directory, the number of sub-directory to-
kens, the length of the longest sub-directory token, and the
maximum number of dots and other delimiters used in a
sub-directory token. These features mainly address Type II
obfuscation, where the obfuscated host name is put in the
directory. We also observe cases where instead of using ‘.’,
the attacker use another character, such as, the underscore,
‘ ’, or dash, ‘-’, as the delimiter of the obfuscated host name.
The features in this category address these instances as well.

(iv) Features related to the file name (page name). These
features include the length of the file name, and the number of
dots and other delimiters (‘ ’ and ‘-’) used in the file name.
These features also address Type II obfuscation, but in this
case, the obfuscated host name is put in the file name.

(v) Features related to the argument part. URLs that serve
pages written in server side scripting languages, such as,
php and asp, often have arguments. The features in this
category include the length of the argument part, the number
of variables, the length of the longest variable value, and the
maximum number of delimiters (‘.’, ‘ ’, and ‘-’) used in a
value. We observe that phishing URLs often include a long
list of arguments, as well as auto-generated argument values,
which are often unusually long. Also, there are instances where
the host name is obfuscated in the values assigned to variables.
The features here are designed to address these instances.

Table II illustrates how we obtain all lexical features.
2) External Features: We extract a number of binary fea-

tures and one real value feature from the responses we receive
from the WHOIS and Team Cymru servers. The registration
date gives the real value feature indicating the number of days
the site has been up. The other pieces of information that we
described in Section III-B give the binary features.

Finally, for all the real value features, we shift and scale
them so that their values lie between 0 and 1. The reason is
that we do not want to give a prior preference to any particular
feature. We want the weights of the features to be adjusted by
the learning algorithms themselves.

D. Summary of Datasets

We prepare the data for the classification algorithms by
combining the legitimate with the malicious URL datasets.
In total, we have 5 pairs: Yahoo and PhishTank (Yahoo-
Phish); Yahoo and MalwarePatrol (Yahoo-Malware); Open
Directory and PhishTank (DMOZ-Phish); Open Directory and

MalwarePatrol (DMOZ-Malware); and all good and all bad
URLs (All Good - All Bad), where we combine Yahoo with
Open Directory and PhishTank with MalwarePatrol. When
combining a legitimate dataset with a malicious dataset, we
interleave the URLs of the two sets so that the classification
algorithms would get a balanced number of instances of both
classes when training their models. Table III provides the
statistics of these five pairs.

IV. CLASSIFICATION ALGORITHMS

In this section, we describe four state-of-the-art classifica-
tion algorithms that we investigate in this work. These include
both batch-learning (Support Vector Machine (SVM)) and on-
line learning algorithms (Online Perceptron (OP), Confidence-
Weighted (CW), and Adaptive Regularization of Weights
(AROW)). All these algorithms come from the machine learn-
ing community; to the best of our knowledge, AROW, which
turns out to outperform the rest and become our choice, has
not been used in the phishing context before. We start by
introducing the notation and describing the general difference
between batch-based and online classification.

Notation. Denote the features of an URL as a vector x and its
label as y ∈ {1,−1}, where 1 indicates the URL is malicious
and -1 indicates otherwise. A classification algorithm receives
a number of data vectors, xi, together with their labels, yi,
and trains its model based on these labeled data. Then, given
a new data vector, x, the goal of the algorithm is to predict
the label, y, of this new data based on its trained model. For
SVM and OP, the models are a weight vector, w. For CW
and AROW, in addition to w, the model also includes the
covariance matrix of w, Σ. For all algorithms, the prediction,
h(x), is the sign of the inner product between w and x:

h(x) = sign(w · x) (1)

Batched-based vs. Online. A batch-based algorithm initially
trains its model based on a batch of labeled data. It then uses
the trained model to predict a number of new data. After
some time, it retrains its model based on a new batch of
labeled data. Meanwhile, an online classification algorithm
continuously retrains its model upon receiving each labeled
data and makes prediction of a new data using the latest
updated model. Because training a model of a batch-based
algorithm requires a batch of data, batch-based algorithms
require significantly more memory than online algorithms.

A. Batch Learning
1) Support Vector Machine (SVM): The SVMs are

widely known for achieving accurate classification of high-
dimensional data. They are also shown recently to perform
well in the arena of classifying malicious URLs [19], [20]. An
SVM constructs a hyperplane that gives the largest distance to
the nearest training data points of any class. Finding this hyper-
plane involves solving an instance of quadratic programming.
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The label of a new data point is predicted by determining on
which side of the hyperplane this point lies. For a tutorial on
SVMs, we refer the reader to [7]. In this work, we investigate
the performance of batch-based SVMs.

B. Online Learning

The online algorithms discussed below operate in rounds.
In round t, an online algorithm receives xt and predicts xt’s
label as ŷt using the current model; it then receives the true
label, yt, and updates its model based on (xt, yt).

1) Online Perceptron (OP): OP updates w continuously
on error. In particular, w is updated if the predicted label,
ŷt = sign(wt · xt), disagrees with the true label, yt, of xt.
The update is as follows:

wt+1 ← wt + yt xt . (2)

OP suffers from a significant drawback: the update rate is
fixed and does not take into account the magnitude of classifi-
cation error. As a result, when making error on prediction, the
model may not adapt fast enough to the change of the data,
or it may make a drastic change even when the error is small.
Both cases lead to poor classification accuracy.

2) Confidence Weighted (CW): CW is a linear binary
classification algorithm recently introduced by Dredze et al.
[13]. CW captures the notion of confidence in the weight of a
feature. Intuitively, if the weight of a feature does not change
very much over time, then one should be more confident that
this weight is what it should be. With this confidence notion,
CW addresses the drawback of OP through two mechanisms:

First, CW updates the weights of the more confident features
less aggressively. For instance, using an IP address in the
domain name is a strong indicator of maliciousness; as a result,
it does not get updated abruptly over a period of time, thereby
having a high confidence value. Then, CW makes sure that this
weight will not change much even when it sees an instance of
legitimate URL using an IP address in its domain name.

Second, CW does not change the weights too much but just
enough to correct for the mistake. In other words, CW updates
its model just enough to adapt to the change of the data, while
trying to avoid changing too much. The rationale is that the
previous model carries a lot of valuable information about the
data and should not be changed too abruptly.

Formally, CW maintains a Gaussian distribution over the
weights with mean µ and covariance matrix Σ. The value µi
represents what is known about the weight wi, and the value
Σi,i captures the confidence in the weight of feature i. To
classify a new data x, the weight w is drawn from N (µ,Σ).
In practice, one can pick w = µ, the average weight vector.
The prediction is then as usual: h(x) = sign(w · x).

Unlike OP, CW updates its model, i.e., µ and Σ, contin-
uously on every labeled data instead of only when making
mistake. This is because making correct prediction also sug-
gests that one should increase his or her confidence of the
current weights. The update rule is as follows:

(µt+1,Σt+1) = arg min
µ,Σ

DKL(N (µ,Σ)||N (µt,Σt)) , (3)

s.t. Prw∼N (µ,Σ)[yt(w · xt)] ≥ η . (4)

Eq. (3) expresses that the new distribution given by the new
µ and Σ should be as close to the old distribution as possible.
The distance between the two distributions is measured by
the KL divergence (DKL). Eq. (4) expresses that the update
should be enough such that the probability of making correct
prediction when seeing the same data in the next round must
be bigger than η, where η is a configurable parameter and
must be larger than 50%.

We refer the reader to [13] for more details. The compu-
tational complexity of the update is linear in the number of
non-zero features in xt. The memory required is constant in
the input data, i.e., the memory for the current x.

3) Adaptive Regularization of Weights (AROW): The final
algorithm in this category that we examine is the AROW
algorithm by Crammer et al. [14]. AROW can be considered as
a modification of CW so that the classifier is more robust in the
presence of label noise. For example, if ‘whitehouse.gov’
is wrongly labeled as malicious (by an adversary) and fed to
CW, then CW will make changes to all features that this URL
has so that in the next time slot, if it sees this URL again, it will
be likely to flag this URL as malicious. CW, therefore, may
drastically increase the weight of the feature “top level domain
is .gov”. AROW avoids this drastic behavior by softening the
formulation of CW.

Formally, Crammer et al. [14] recast the constraint (4) of
CW as regularizers. The update rule is now as follows:

(µt+1,Σt+1) = arg min
µ,Σ

DKL(N (µ,Σ) || N (µt,Σt))

+ λ1lh2(yt,µ · xt) + λ2x
T
t Σxt , (5)

where lh2(yt,µ·xt) = (max{0, 1−yy(µ·xt)})2 is the squared-
hinge loss suffered using µ to predict the label for xt when
its true label is yt, and λ1 and λ2 are configurable parameters.

Compared to CW, the optimization problem becomes un-
constrained. Consider the right hand side of (5): its first term
expresses that the new distribution should be as close to the old
distribution as possible. Intuitively, AROW tries to preserve the
valuable information of the old model as much as possible.
The second term expresses that the new parameters should
be able to predict the current example with low loss. Through
this term, AROW adapts to the change of the data. Finally, the
last term expresses that the confidence in the weights should
generally grow.

Similarly to CW, the running time of the update is linear
in the number of non-zero features in xt. The memory
requirement is constant in terms of the input data. We refer the
reader to [14] for more details. To the best of our knowledge,
this is the first time that AROW is used in the phishing context.

V. EVALUATION RESULTS

We conduct four sets of experiments on various datasets
in order to (i) compare batch-based to online algorithms
when using just lexical features, (ii) compare using lexical
features to using full features, (iii) evaluate the effectiveness
of obfuscation-resistant lexical features, and (iv) evaluate the
resilience of AROW when working with noisy data. Table IV
summarizes the experiment scenarios.
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TABLE IV
SUMMARY OF THE EXPERIMENTS

# Description Algorithms Features Datasets
1 Compare batch-based algo-

rithms to online algorithms
when using lexical features

SVM and
AROW

Lexical Yahoo-Phish

2 Compare using lexical fea-
tures to using full features

OP, CW,
AROW

Lexical
and Full

All pairs

3 Evaluate the effectiveness of
obfuscation-resistant lexical
features

AROW Lexical All pairs

4 Evaluate the resilience of
AROW to noisy data

CW and
AROW

Lexical Yahoo-Phish
with noise

Fig. 2. Performance of the SVM and the CW Algorithms when using Lexical
Features on Yahoo-Phish

A. Batch-Based vs. Online Algorithms
Here we compare the performance of the batch-based SVM

algorithms with the online AROW algorithm when using only
lexical features. We present the results of SVMs when using
the linear kernel. We use the implementation of linear SVMs
by LIBLINEAR [15]. We implement the AROW algorithm
using Matlab based on the closed form update rules in [14]. We
configure the box constraint C of SVM and the λ’s of AROW
using cross validation on the initialization data. For this set of
experiments, C is set to 25, and λ1=λ2=0.5. For the interest of
space, we only present the results of the classification on the
Yahoo-Phish dataset (the other datasets give similar results.)

We divide the set of URLs into batches of size 400. For
SVM, we examine the performance of the following variants:
SVM-Once, SVM-Single, SVM-MultiOnce, and SVM-Multi.
For SVM-Once, the model is trained only once on the first
batch of URLs. For SVM-Single, the model is retrained after
every batch of URLs; however, only one batch is used for
every retraining. SVM-MultiOnce is similar to SVM-Once and
SVM-Multi is similar to SVM-Single, however, with the size
of the batch for training and retraining 10 instead of 1.

The initialization set includes 10 batches, equal to the size of
a training batch of SVM-Multi. SVM-Multi, SVM-MultiOnce,
and AROW initialize their models using all the URLs in this
initialization set. SVM-Once and SVM-Single initialize their
models using the last batch of URLs of the initialization set.

Fig. 2 shows the cumulative error of the SVM variants
and of AROW over time, i.e., the ratio of the number of
misclassification over the number of classified URLs so far.
Table V gives the cumulative error of these algorithms after
the last URL. Based on the plot and the table, we make
the following observations. First, updating the classification
models over time is essential as shown by SVM-Single and
SVM-Multi outperforming SVM-Once and SVM-MultiOnce,
respectively. Second, training on more data improves the per-

TABLE V
CUMULATIVE ERROR RATE OF SVM AND CW ALGORITHMS ON

YAHOO-PHISH AFTER THE LAST URL
Cumulative Error Rate (%)

SVM-Once SVM-Daily SVM-MultiOnce SVM-Multi AROW
10.00 8.68 4.60 4.08 3.45

Fig. 3. Performance of OP, CW, and AROW when using Lexical Features
versus when using Full Features on Yahoo-Phish

formance, as illustrated by SVM-Multi outperforming SVM-
Single. However, we note that there is a fundamental limit on
how much data an SVM could train on because of the memory
requirement. Moreover, we observe that increasing the training
size over 10 batches does not further improve the performance.
Third, AROW outperforms all the SVM variants. We believe
that this is because AROW is able to adapt to the changes
of the URLs quickly as well as retain information of all the
features with high confidence values.

Summary. This set of experiments illustrates that (i) updating
the models continuously is essential, and (ii) AROW out-
performs SVMs when using lexical features. This superior
performance and the light-weight properties (light memory
requirement and light computation overhead) make AROW, in
particular, and online algorithms, in general, better candidates
for the URL classification task. Therefore, in the rest of this
section, we focus on the performance of the online algorithms.

B. Lexical Features vs. Full Features

We conduct the second set of experiments to evaluate
how well online classification algorithms do when using only
lexical features as opposed to using full features. We examine
the performance of the OP, CW, and AROW algorithms on all
pairs of datasets. Similar to AROW, we implement OP and CW
using Matlab. For the pairs Yahoo-Phish, DMOZ-Phish, and
All Good-All Bad, the initialization set includes the first 4000
URLs. For the pairs Yahoo-Malware and DMOZ-Malware, the
initialization set is smaller: first 2000 URLs. This is because
the total number of URLs in either of these two pairs is smaller
than those of the other pairs: 6000 as opposed to over 8000.

Fig. 3 plots the cumulative error rates of the algorithms
over time for the Yahoo-Phish pair. We omit the plots for
the other pairs due to lack of space. Instead, in Table VI,
we report the cumulative error rates after the last URL for
all pairs. Table VI also reports the configured parameter η
of each experiment involving CW and λ (=λ1=λ2) for each
experiment involving AROW. We note that similar to λ, η is
configured using cross validation. Based on the plot and the
table, we make the following observations.
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TABLE VI
CUMULATIVE ERROR RATE OF THE OP, CW, AND AROW ALGORITHMS ON ALL DATASETS AFTER THE LAST URL

Cumulative Error Rate of OP (%) Cumulative Error Rate of CW (%) Cumulative Error Rate of AROW (%)
Dataset Lexical Ftrs Full Ftrs Gain Lexical Ftrs Full Ftrs Gain Lexical Ftrs Full Ftrs Gain
Yahoo-Phish 5.72 4.73 0.99 3.75 (η = 73%) 2.60 (η = 84%) 1.15 3.45 (λ = 0.5) 2.75 (λ = 0.5) 0.70
Yahoo-Malware 3.27 2.40 0.87 2.17 (η = 66%) 1.62 (η = 66%) 0.55 3.05 (λ = 5.0) 1.98 (λ = 5.0) 1.07
DMOZ-Phish 6.90 4.73 2.17 3.52 (η = 86%) 2.52 (η = 79%) 1.00 3.60 (λ = 50) 2.77 (λ = 50) 0.83
DMOZ-Malware 3.75 3.20 0.55 3.23 (η = 58%) 2.35 (η = 62%) 0.87 3.75 (λ = 0.5) 2.75 (λ = 5.0) 1.00
All Good - All Bad 5.43 4.31 1.12 4.07 (η = 58%) 3.14 (η = 58%) 0.87 5.48 (λ = 5.0) 4.00 (λ = 5.0) 1.48

Consider CW and AROW, the cumulative error rates for
the pair All Good - All Bad are always larger than all other
pairs regardless of using lexical or full features. This suggests
that one should build two separate classifiers for PhishTank
and MalwarePatrol instead of building a single classifier for
both. This agrees with the discussion in Section III: these are
datasets with different characteristics due to their different
purposes; therefore, we subsequently focus our discussion
on the other four pairs. For these pairs, CW and AROW
outperform OP regardless of using lexical or full features;
moreover, CW and AROW have comparable performance
when using lexical features: AROW slightly edges CW on
Yahoo-Phish while CW slightly edges AROW on the other.
Finally, the gain of using full features over lexical features is
only about 1% for both CW and AROW across all the pairs
of interest. Using lexical features alone, AROW achieves 96–
97% of accuracy while CW achieves 96–98% of accuracy.

Summary. This set of experiments shows that using lexical
features alone leads to comparable classification accuracy to
full features (only 1% difference). The high accuracy and the
lightweight properties of lexical features make a strong case
for using lexical feature alone for the URL classification task.

C. Obfuscation-Resistant (OR) Lexical Features
Here we evaluate the effectiveness of the obfuscation-

resistant (OR) lexical features when using AROW. Table VII
reports the performance of AROW when the OR features are
not used (only auto-selected features are used) and when the
OR features are used. From the results, we can see that the
OR features boost the classification accuracy across all pairs
of datasets. The reduction of the cumulative error rate ranges
from 9% (on Yahoo-Phish) up to 27% (on DMOZ-Malware.)

To better understand what is improved, we look at the
changes of both the number of mis-classified malicious URLs,
i.e., false negatives (FNs), and the number of mis-classified
benign URLs, i.e., false positives (FPs). From Table VII, we
can see that the improvement mainly comes from the reduction
of the number of mis-classified malicious URLs. In particular,
we reduce the number of FNs (ranging from 15 to 74) for
a modest increase in the number of FPs (ranging from 3 to
19.) In the context of protecting users from phishing URLs,
having a few false alarms is arguably better than missing many
malicious sites. We note that this is not necessarily the case
in other contexts, e.g., spam.

Summary. These experiments show that the obfuscation-
resistant lexical features effectively improve the overall clas-
sification accuracy by catching more phishing URLs.

D. The Resilience of AROW to Noisy Data
In this last set of experiments, we examine how resilient

AROW is to noisy data. Here we report the results on Yahoo-
Phish (the other pairs give similar results.) To create noise,

Fig. 4. Performance of AROW and CW on Yahoo-Phish with Various
Amount of Noise

we randomly select a number of URLs and change their
labels from malicious to benign or vice versa. Fig. 4 shows
the cumulative error after the last URL of both AROW and
CW on Yahoo-Phish with various amount of noise. We make
the following observations: First, AROW consistently achieves
better classification accuracy than CW; moreover, the noisier
the dataset, the larger the difference between the performance
of AROW and CW. Second, AROW is able to maintain very
high accuracy (about 95%) when there is a modest amount of
noise (from 5 to 10%) and high accuracy (above 90%) even
when there is a moderate amount of noise (from 10 to 30%.)

Summary. AROW can achieve high classification accuracy,
higher than CW, when working with noisy data.

VI. UNDERSTANDING THE PERFORMANCE

In this section, we pose two questions: (i) Why do online
algorithms outperform batch-based algorithms in classifying
phishing URLs? And, (ii) why do the advanced online algo-
rithms, namely, AROW and CW, outperform the classical OP
algorithm in this context? Note that we have already described
the theoretical differences among these algorithms in Section
IV, which may partially answer the questions posed. However,
in this section, we seek to better understand how characteristics
of phishing URLs affect the performance of these learning
algorithms. In particular, we examine the importance of long
term memory and the importance of fast model update. The
dataset we will use in this section is PhishTank.

Notation. First, we introduce the notion of similarity between
two URLs. We consider two URLs u and v similar, denoted
by u ∼ v, if their number of common binary lexical features
exceeds a threshold τ . For example, for τ = 3, the following
two URLs are considered similar:
• 67.23.226.61/∼sarsefil/Absa/index.html
• 67.23.226.61/∼sarsefil/index.html

This is because they share at least 4 binary features: an IP is
used in the domain name, one directory token is ∼sarsefil,
the file name is index, and the file extension is html. We
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TABLE VII
PERFORMANCE OF AROW WHEN NOT USING AND WHEN USING OBFUSCATION-RESISTANT (OR) LEXICAL FEATURES AFTER THE LAST URL

Cumulative Error Rate (%) # Mis-Classified Benign URLs (FP) # Mis-Classified Malicious URLs (FN)
Dataset w/o OR Ftrs with OR Ftrs Gain (Gain Pctg) w/o OR Ftrs with OR Ftrs Gain w/o OR Ftrs with OR Ftrs Gain
Yahoo-Phish 3.92 (λ = 0.5) 3.45 (λ = 0.5) 0.37 (9%) 47 55 -8 110 83 27
Yahoo-Malware 3.70 (λ = 5.0) 3.05 (λ = 5.0) 0.65 (18%) 88 77 11 60 45 15
DMOZ-Phish 4.05 (λ = 5.0) 3.60 (λ = 50) 0.45 (11%) 50 53 -3 112 91 21
DMOZ-Malware 5.12 (λ = 0.5) 3.75 (λ = 0.5) 1.37 (27%) 22 41 -19 183 109 74

Fig. 5. The Tail of the Complementary Cumulative Distribution Function
(CCDF) of the Minimum Distance of Similarity of All PhishTank URLs

focus on binary features because of their interpretability and
their dominance in the feature set.

Subsequently, for each URL ui, where i is the order of u,
we find all URLs that come before it and are similar to it. We
call the number of URLs between the latest URL that is similar
to ui and ui the minimum distance of similarity, denoted by
δmin(ui). Similarly, we call the number of URLs between the
earliest URL that is similar to ui and ui the maximum distance
of similarity, denoted by δmax(u). Formally,

δmin(ui) = min
j

(i− j), s.t. ui ∼ uj , j < i (6)

δmax(ui) = max
j

(i− j), s.t. ui ∼ uj , j < i (7)

If there is no URL similar to ui, its default values for δmin(ui)
and δmax(ui) are 0 and n + 1, respectively, where n is the
number of URLs in the dataset.

A. The Importance of Long Term Memory
Fig. 5 shows the tail of the complementary cumulative distri-

bution function (CCDF) of the minimum distance of similarity
of all PhishTank URLs, i.e., the CCDF of δmin(ui),∀i, when
τ = 3. We observe that there is a significant number of URLs
(about 10%) whose minimum distance of similarity are larger
than 200. This means that if the batch size is limited to 400
(200 benign and 200 phishing URLs) then these 10% of URLs
will not have any similar URLs in the batch. This reduces the
classification accuracy because the classification model, in this
case, has not yet learned about any URL that is similar to these
URLs by the time it needs to classify them. Fig. 5 also shows
that there is a small number of URLs (under 1%) whose δmin
are above 2000. This explains why increasing the batch size
of SVM-Multi above 4000 (2000 benign and 2000 malicious
URLs) does not produce any significant improvement.

In general, Fig. 5 demonstrates that phishing URLs require
long term memory. This explains why extending the batch size
results in higher classification accuracy. When using batch-
based algorithms, the size of the batch is, however, limited by
the amount of memory available. Online algorithms, on the
other hand, do not have this limitation. In fact, they retain

Fig. 6. The Head of the Cumulative Distribution Function (CDF) of the
Maximum Distance of Similarity of All PhishTank URLs

information about all of the URLs that they have seen. In
this sense, online algorithms effectively have infinite batch
size. This explains why they have an edge over batch-based
algorithms in this context.

B. The Importance of Fast Model Update
Fig. 6 shows the head of the cumulative distribution function

(CDF) of the maximum distance of similarity of all PhishTank
URLs, i.e., the CDF of δmax(ui),∀i, when τ = 3. We observe
that there is a significant number of phishing URLs (about
10%) whose maximum distance of similarity are smaller than
100. This means that for these 10% of URLs, their only similar
URLs are within 100 recent URLs. When using batch-based
algorithms with batch size of 400, the model only updates
every 200 malicious URLs. This means that the URLs similar
to those 10% of URLs are more than 50% not likely to be
learned by the model by the time it needs to classify those 10%
of URLs. This negatively affect the classification performance.
Therefore, it is essential to update the model more often.

Fig. 6 also shows that about 2% of URLs having maximum
distance of similarity of 1. This indicates two points. First,
unless the model is updated after every malicious URL, which
is prohibitive expensive for batch-based algorithms, the model
will not learn about any URL that is similar to these 2% of
URLs by the time it needs to classify them. This shows why
even with infinite amount of memory, SVM algorithms may
still fall behind AROW and CW. Second, unless the model
is updated rapidly to reflect the recent features present in the
last malicious URL, the model will not be able to effectively
classify about 2% of URLs. This demonstrates the edge that
AROW and CW have over OP. In fact, the OP algorithm may
not reflect the necessary changes within a number of URLs
due to its simple update rule.

Summary. In this section, we discussed why the AROW and
CW algorithms outperform the SVM and OP algorithms on
phishing datasets. The two main reasons are that AROW and
CW can retain the long-term history of all the URLs they have
seen, and at the same time, can update their models rapidly
to catch new trends of phishing URLs.
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Fig. 7. PhishDef Deployment Models

VII. PHISHDEF DEPLOYMENT

PhishDef. Based on the results of the evaluation, we pro-
pose PhishDef, a system which implements the AROW
algorithm and uses only lexical features to classify URLs.
By implementing the AROW algorithm, PhishDef is able
to achieve high classification accuracy even when working
with noisy data, and at the same time, being lightweight in
terms of both computation and memory requirement. By using
only lexical features, PhishDef reduces the page loading
latency and avoids reliance on remote servers. PhishDef is
able to perform on-the-fly classification of URLs and protect
Internet users from malicious URLs. The high accuracy of
PhishDef has already been demonstrated in the thorough
comparisons of classification algorithms and features in Sec-
tions V and VI. In the rest of this section, we give guidelines
for potential deployment.

Deployment Options. PhishDef can be divided into two
main components: the core component, which maintains and
updates the classification model, and the detection compo-
nent, which uses the classification model to classify newly
input URL. There are two possible deployment models for
PhishDef, depicted in Fig. 7, based on where these two
components are maintained.

Stand-Alone. One option is that both components are main-
tained at the client side. The core component runs as a
background service, maintaining and updating its model by
querying labeled benign and malicious URLs from, e.g.,
Yahoo Directory and PhishTank, respectively. The detection
component runs as a browser add-on, classifying URL on-
the-fly using the latest model from the core component.

Split. Another option is that the core component runs on a
separate server, maintaining and updating the classification
model as usual. The detection component runs as a browser
add-on; however, in this case, before the user browses the
Internet, the detection component needs to download the
model (the weight vector) and the dictionary of features (to
extract features from new URLs) from the server.

The first model has the advantage of being independent,
not relying on a separate server. However, it suffers from
several drawbacks: (i) the amount of traffic required to update
the models, e.g., traffic to and from Yahoo Directory and
PhishTank, scales linearly with the number of users; and
(ii) it is not appropriate for mobile devices, such as smart
phones, since it is wasteful of bandwidth and battery life to

keep a service running in the background; moreover, mobile
devices may not have persistent Internet connection to keep
the classification models up-to-date. We believe that the second
option is more practical because it saves bandwidth (the size
of the weight vector and the dictionary is much smaller than
the size of the labeled URLs) and it is appropriate for mobile
devices as no background process is needed. While the focus
of this paper was on the evaluation of various candidate
techniques and feature sets for URL classification, in future
work, we will develop and make publicly available add-ons for
Firefox and Chrome that implement PhishDef functionality.

VIII. CONCLUSION

In this work, we proposed PhishDef – a proactive defense
scheme which provides the Internet users with protection
against phishing attacks. PhishDef works by detecting
phishing URLs on-the-fly at the client side using only lexical
features. PhishDef is highly accurate (97%), avoids the
overhead of querying remote servers, is lightweight in terms
of both computation and memory requirement, and is resilient
to noisy training data.
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