
SocialFilter: Introducing Social Trust to Collaborative Spam Mitigation

Michael Sirivianos Kyungbaek Kim Xiaowei Yang
Telefonica Research UC Irvine Duke University

msirivi@tid.es kyungbak@uci.edu xwy@cs.duke.edu

1 Introduction

Centralized email reputation services that rely on a small
number of trusted nodes to detect and report spammers,
e.g., [1, 5, 6], are being challenged by the increasing scale
and sophistication of botnets. Moreover, several of these
services require paid subscription (e.g., CloudMark [1]
and TrustedSource [5].)

Motivated by the shortcomings in terms of effective-
ness and cost of email reputation services, researchers
have proposed open and collaborative peer-to-peer spam
filtering platforms, e.g., [29, 30]. These collaborative
systems assume compliant behavior from all participat-
ing spam reporting nodes, i.e., that nodes submit truth-
ful reports regarding spammers. However, this is often
an unrealistic assumption given the fact that these nodes
may belong to distinct trust domains.

To address the above challenges, we propose Social-
Filter: a collaborative spam filtering system that uses so-
cial trust embedded in Online Social Networks (OSN) to
assess the trustworthiness of spam reporters. SocialFilter
aims at aggregating the experiences of multiple spam de-
tectors, thus democratizing spam mitigation. It is a trust
layer that exports a measure of the system’s belief that a
host is spamming. Thus, it enables nodes with no spam
detection capability to collect the experiences of nodes
with such capability and use them to classify email con-
nection requests from unknown email senders.

Each SocialFilter node submitsspammer reports
(§2.2) to a centralized repository. These reports concern
spamming Internet hosts identified by their IP addresses.
The goal of the system is to ensure that the reports reach
other nodes prior to spamming hosts contacting those
nodes, and that the spammer reports are sufficiently cred-
ible to warrant action by their receivers.

SocialFilter nodes are administered by human admin-
istrators (admins). Our insight is that nodes maintained
by trusted admins are likely to generate trustworthy
spammer reports. The repository utilizes a trust infer-
ence method that leverages trust transitivity to assign to
each node areporter trust(§3.1) value. This value re-
flects the system’s belief that the spammer reports of a
node are reliable.

However, transitive trust schemes are known to be vul-
nerable to the Sybil attack [9, 10]. To mitigate this attack,
we use the social network to assess the belief that a node
is a Sybil attacker, which we refer to asidentity unique-
ness(§3.2). Each node is associated with its administra-
tor’s identity. The identity uniqueness of a node is de-
termined via the social network of administrators using a
SybilLimit-based technique [27].

The originator of a spammer report assigns a confi-
dence level to its report. The reporter trust of a node,
its identity uniqueness and its confidence level determine

how much weight the repository should place on its re-
port. Subsequently, the repository combines the reports
to compute aspammer beliefvalue for each reported host
IP. This value is exported by the repository to online sys-
tems that are tasked with blocking spam.

A recent unwanted traffic mitigation system,
0stra [18], combats unwanted traffic by forcing it
to traverse social links annotated by credit balances. The
per-link credit balances rate-limit unwanted communi-
cation. Unlike Ostra, SocialFilter does not use social
links to rate-limit unwanted traffic. Instead it utilizes
social links to bootstrap trust between reporters, and to
suppress Sybil attacks. Our secondary contribution lies
in the comparison between Ostra’s and SocialFilter’s
approach in leveraging social trust. Ostra uses the
social network as a rate-limiting conduit for communi-
cation. SocialFilter on the other hand uses the social
network as a trust layer from which information on the
trustworthiness of spam detectors can be extracted.

We demonstrate through simulation that collaborating
SocialFilter nodes are able to suppress spam email traf-
fic in a reliable and responsive manner. Our compari-
son with Ostra shows that our approach is less effective
in suppressing spam when the portion of spammers in
the network exceeds1% and when spammers employ
more than100 Sybils each. However, Ostra can result
in a non-negligible percentage of legitimate emails being
blocked (false positives,) which is highly undesirable. In
contrast, in this case SocialFilter yields substantially less
false positives. Given the severity of false positives, these
results suggest that our system can be a better alternative.

To the best of our knowledge, SocialFilter is the first
OSN-based collaborative spam filtering system to use
Sybil-resilient trust inference to assess the overall trust-
worthiness of a node’s spammer reports. Our work
demonstrates the plausibility of using social trust to im-
prove the reliability and attack-resilience of collaborative
spam mitigation systems.

2 System Overview

2.1 SocialFilter Components
Figure 1 depicts SocialFilter’s architecture. The
SocialFilter system comprises the following compo-
nents: 1) human users that administer networked de-
vices/networks (admins), join a social network and main-
tain a unique account; 2)SocialFilter nodes(or re-
porters) that are administered by specific admins and par-
ticipate in monitoring and reporting the behavior of email
senders; 3)spammer reportssubmitted by SocialFilter
nodes concerning email senders they observe; and 4) a
centralized repository that receives and stores spammer
reports, and computes trust values.

The same admin that administers a SocialFilter node

0.8

1.0
0.5

Figure 1: SocialFilter architecture.

also administers a group of online systems that interface
with the node to report spamming behavior. Interfacing
systems can be SMTP servers or IDS systems [19] that
register with the SocialFilter repository. The interfac-
ing system can also be one driven by a human user who
reports an email (and consequently its originating email
server) as spam.

2.2 Spammer Reports

An email characterization application uses the
ReportSpammer(h, confidence) call of the So-
cialFilter node RPC API to feedback the observed
behavior of an email senderh to the node. The first
argument identifies the email sender, i.e., an IP address.
The second argument is the confidence with which
the application is reporting that the specified host is
a spammer. The confidence takes values from0% to
100% and reflects the fact that in many occasions traffic
classification has a level of uncertainty. For example,
an email server that sends both spam and legitimate
email may or may not be a spammer. For instance,
the confidence may be equal to the portion of emails
received by hosth that are spam [21].

Subsequently, the node submits a corresponding
spammer report to the repository to share its experience.
For example, if a nodei’s spam analysis indicates that
half of the emails received from host with IPh are spam,
i reports:

[spammer report] h, 50%
To prevent forgery of reports and maintain account-

ability, nodes authenticate with both the repository and
the OSN provider using standard single-sign-on authen-
tication techniques, e.g., Facebook Connect [4].

2.3 Determining whether a Host is Spamming

Our system relies on the fact that nodes comprising Inter-
net systems such as email servers, honeypots, IDS, etc,
are administered by human admins. These users main-
tain accounts in online social networks (OSN.) The So-
cialFilter centralized repository utilizes two dimensions
of trust embedded in OSNs to determine the trustworthi-
ness of the reports submitted by SocialFilter nodes:
Reporter trust. The SocialFilter repository computes
reporter trustvalues for all nodes by employing a tran-
sitive trust inference mechanism. This mechanism com-
pares the reports of SocialFilter nodes that are socially
acquainted to derive pairwisedirect trustvalues (§3.1).
If two friend nodesi andj have submitted reports con-
cerning the same hosts, the repository can compare their

reports to determine the direct trust valuedij . The repos-
itory initializes the direct trustdij to a trust value ex-
plicitly submitted by the admin ofi. This value isi’s
assessment on his friend’sj ability to correctly maintain
its SocialFilter node.
Identity uniqueness. The repository defends against
Sybil attacks [10] by exploiting the fact that OSNs can be
used for resource testing [18, 24, 27]. The test in question
is a Sybil attacker’s ability to create and sustain acquain-
tances. Using a SybilLimit-based [27] technique (§3.2,)
the OSN provider assigns anidentity uniquenessvalue to
each node. This value quantifies the system’s belief in
that node not being a Sybil.

An application can use theIsSpammer(h) call of the
SocialFilter node RPC API to obtain aspammer belief
value, which quantifies how certain the system is that
host h is spamming. The node obtains this value by
querying the repository. The repository derives this value
by aggregating spammer reports concerningh, and these
reports are weighted by the reporter trust and identity
uniqueness of the nodes that submitted them.

2.4 Assumptions
In designing SocialFilter, we make the following as-
sumptions. We assume that competent and trustwor-
thy SocialFilter admins have correctly configured their
spam detection systems, so that their SocialFilter node
sends mostly correct reports. We also assume that when
they report the same spamming host, their reports mostly
match, since a host is expected to send spam to most of
the nodes it connects to [26]. In the rest of this paper,
we call correctly configured and trustworthy SocialFilter
reportershonest.

We also assume that the OSN provider and the Social-
Filter repository reliably maintain the social graph, and
the spammer reports. We trust the repository to correctly
compute the spammer belief values.

Last, we assume that social connections between ad-
mins have been properly vetted, i.e., when two admins
connect to each other in the OSN this implies that they
know each other and their ability to correctly maintain
their systems.

2.5 Threat Model
SocialFilter is a collaborative platform aiming at sup-
pressing malicious traffic. In addition, it is an open sys-
tem, meaning that any admin with a social network ac-
count and a device can join. As such, it is reasonable to
assume that SocialFilter itself will be targeted in order to
disrupt its operation.

Malicious nodes may issue false reports aiming at re-
ducing the system’s ability to detect spam or at disrupting
legitimate email traffic.

In addition, an adversary may attempt to create multi-
ple SocialFilter identities aiming at increasing its ability
to subvert the system using false spammer reports and di-
rect trust updates. Defending against Sybil attacks with-
out a trusted central authority that issues verified iden-
tities is hard. Many decentralized systems try to cope
with Sybil attacks by binding an identity to an IP ad-
dress. However, malicious users can readily harvest IP

addresses through BGP hijacking [20] or by command-
ing a large botnet. For more details on the threat model,
please see [23].

3 Design

3.1 Reporter Trust
Malicious nodes may issue false spammer reports to ma-
nipulate the perceived belief that a host is a spammer. In
addition, misconfigured nodes may also issue erroneous
spammer reports. SocialFilter can mitigate the nega-
tive impact of malicious or incorrect reports by assigning
higher weights to reports obtained from more nodes with
higher reporter trust.

The repository maintains a reporter trust value0 ≤
rti ≤ 1 for each nodei managed by an admin in the
social graph. This trust value corresponds to the repos-
itory’s estimation of the belief that nodei’s reports are
accurate. It is obtained from three sources: a) manual
trust assignments between friends in the social networks;
b) spammer report comparison; and c) transitive trust.

To derive trust values, the repository needs to maintain
the social graphS(V , E) of the admins in the SocialFilter
system.V denotes the set of the admins andE denotes the
set of the friend connections between socially acquainted
admins. The repository also maintains a reporter trust
graphT (V , E). The vertices of this graph is the set of all
SocialFilter admins as is the case for graphS(V , E). The
edgesE are the edges inE annotated withdirect trust
values between acquainted SocialFilter nodes. Next, we
describe how the direct trust values are derived and how
the reporter trust values are computed usingT (V , E).
User-defined trust. First, to initialize the direct trust
values, the repository relies on the fact that nodes are
administered by human users. Admins that are socially
acquainted can assess each other’s competence. An ad-
min i tags his acquaintance adminj with a user-defined
trustvalue0 ≤ utij ≤ 1 based on his belief onj’s ability
to correctly configure his node. The repository uses this
value to initialize the direct trust value between friend
nodesi and j: dij = utij . Users frequently use the
OSN to add friends and to communicate with each other,
thus the requirement for administrators to rate each other
should not induce a substantial usability burden.
Spammer reports comparison.Second, the repository
dynamically updates the direct trustdij by comparing
spammer reports submitted by two friend nodesi andj.
The spammer reports of two friend nodesi andj can be
compared if both nodes have reported on the same host
h. Intuitively, if i andj share similar opinions onh, i
should place high trust inj’s reports. Let0 ≤ vk

ij ≤ 1 be
a measure of similarity betweeni andj’s kth report on a
common host. The repository updatesi’s direct trust toj
using an exponential moving average:

dk+1
ij = α ∗ dk

ij + (1 − α) ∗ vk+1
ij (1)

As i and j submit more common reports, the direct
trustdk

ij gradually converges to the similarity of reports
from i and j. α is a system parameter that affects the
influence of history on direct trust assessment.

Transitive trust. Third, the repository incorporates di-
rect trust and transitive trust [12, 13] to obtain the re-
porter trust value fori: rti. It does so by analyzing the
reporter trust graphT (V , E) from the point of view of a
small set of pre-trusted nodes inV . These pre-trusted
nodes are administered by competent admins that are
fully trusted by the SocialFilter repository.

We use transitive trust for the following reasons: a)
due to the large number of nodes, the admin of a pre-
trusted nodei cannot assign a user-defined trustutij to
every admin of a nodej, as he may not know him; b)
due to the large number of email-sending hosts, a pre-
trusted nodei may not have encountered the same hosts
with another nodej, thus the repository may be unable
to directly verifyj’s reports; and c) even if a pre-trusted
nodei has a direct trust value for another nodej, the
repository can improve the correctness ofrtj by learning
the opinions of other SocialFilter nodes aboutj.

The overall reporter trustrtj can be obtained as the
maximum trust path between a pre-trusted nodei and the
nodej in the trust graphT (V , E). That is, for each path
p ∈ P , whereP is the set of all paths between nodes the
pre-trusted node andj:

rtj = maxp∈P (Πu→v∈pduv) (2)

The above trust value is computed from the point of
view of a single pre-trusted node. We repeat this process
for every pre-trusted node. We then average the reporter
trust values for all pre-trusted nodes to derive a finalrtj
value. We use multiple pre-trusted nodes to ensure that
there is a trust path from a pre-trusted node to most hon-
est nodesj. We also use many pre-trusted nodes to limit
the influence of attackers that manage to establish a high
trust path with one of the pre-trusted nodes.

Similar to Credence [25], we use the maximum trust
path because it can be efficiently computed with Dijk-
stra’s shortest path algorithm inO(|E| log |V|) time for
the sparse social graphT (V , E). In addition, it yields
larger trust values than the minimum or average trust
path, resulting in faster convergence to high confidence
on whether a host is spamming. Finally, it mitigates the
effect of malicious nodes that have low direct trust value
towards honest nodes.

We compute the reporter trust from the point of view
of a few pre-trusted nodes, instead of the point of view
of each node for two reasons: a) we would need to com-
pute the maximum trust path from each of the hundrends
of thousands of nodes in the social graph, which would
result in a significant computation overhead; b) the sys-
tem aims at assessing a ground truth fact (whether a host
is a spammer) and not a subjective fact, therefore it is
appropriate to incorporate the transitive trust from multi-
ple points of view. We compute the maximum trust path
from the pre-trusted nodes to all other nodes periodically
to reflect changes in direct trust values.

3.2 Identity Uniqueness
Each node that participates in SocialFilter is admin-
istered by human users that have accounts with OSN
providers. The system needs to ensure that each user’s

social network identity is closely coupled with its So-
cialFilter node. To this end, SocialFilter employs sin-
gle sign-on authentication mechanisms, such as Face-
book Connect [4], to associate the OSN account with the
spammer repository account.

However, when malicious users create numerous fake
OSN accounts, SocialFilter’s spammer belief measure
can be subverted. Specifically, a malicious usera with
high reporter trust may create Sybils and assign high di-
rect trust to them. As a result, all the Sybils of the at-
tacker would gain high reporter trust. The Sybils can
then submit reports that greatly affect the spammer be-
lief values.

We leverage existing OSN repositories for Sybil user
detection. Using a SybilLimit-like [27] technique, OSNs
can approximate the belief that a node’s identity is not a
Sybil. We refer to this belief asidentity uniqueness.

Social-network-based Sybil detection takes advantage
of the fact that most OSN users have a one-to-one cor-
respondence between their social network identities and
their real-world identities. Malicious users can create
many identities or connect to many other malicious users,
but they can establish only a limited number of trust rela-
tionships with real users. Thus, clusters of Sybil attack-
ers are likely to connect to the rest of the social network
with a disproportionately small number of edges, form-
ing small quotient cuts.

SocialFilter adapts the SybilLimit algorithm to deter-
mine an identity-uniqueness value0 ≤ idi ≤ 1 for each
nodei. This value indicates the belief that the adminis-
trator of nodei corresponds to a unique user in real life
and thus is not part of a network of Sybils. To be Sybil-
resistant, SocialFilter multiplies the identity-uniqueness
valueidi by the reporter trust to obtain the trustworthi-
ness of nodei’s spammer reports. We describe in detail
how we computeidi in [23].

3.3 Spammer Belief

We now describe how we combine reporter trust, identity
uniqueness and spammer reports to derive a thespammer
beliefscore. We definespammer beliefas a score in0%
to 100% that can be interpreted as the belief that a host
is spamming: a host with0% spammer belief is very un-
likely to be a spammer, whereas a host with100% spam-
mer belief is very likely to be one.

A node i may have email classification functional-
ity through systems that interface with it using thei’s
ReportSpammer() API. In this case,i considers only
the reports of those systems in calculating the spammer
belief. Nodei uses the average (possibly weighted) con-
fidence of those reports to compute the similarity of its
reports with the reports of its friends, which is used to
derive direct trust values.

At initialization time, SocialFilter nodes consider all
hosts to be legitimate. As nodes receive emails from
hosts, they update their confidence (§ 2.2). For efficiency,
nodes send spammer report to the repository only when
the difference between the previous confidence in the
node being a spammer and the new confidence exceeds a
predetermined thresholdδ.

When a nodei receives a new spammer report forh,
this new report preempts an older report, which is there-
after ignored. Each spammer report carries a timestamp.
The time interval during which a spammer report is valid
and taken into account is a tunable system parameter.

A nodei that does not have email classification func-
tionality may receive multiple spammer reports originat-
ing from multiple nodesj ∈ Vi and concerning the same
hosth. Subsequently,i needs to aggregate the spammer
reports to determine an overall beliefIsSpammer(h)
thath is a spammer. Nodei derives the spammer belief
by weighing the spammer reports’ confidence with the
reporter trust and identity uniqueness of their reporters:

IsSpammer(h) =
Σj∈V h

i

rtj idj cj(h)

S
Logistic(S)

(3)
In the above equation,V h

i ⊆ Vi \ i is the set of mem-
bers ini’s view that have posted a spammer report forh.
In addition,S = Σj∈V h

i

rtj idj .
The factor0 ≤ Logistic(S) ≤ 1 discounts the be-

lief in a hosth being spammer in case the reporter trust
and identity uniqueness of the nodes that sent a spam-
mer report forh is low. It is used to differentiate be-
tween the cases in which there are only a few reports
from non-highly trustworthy nodes and the cases there
are sufficiently many and trustworthy reports. WhenS is
sufficiently large, we should consider the weighted aver-
age of the confidence in the reports to better approximate
the belief that a host is spammer. But whenS is small we
cannot use the spammer reports to derive a reliable spam-
mer belief value. Based on these observations, we define
the functionLogistic as the logistic (S-shaped) function
of S, whereb is a small constant set to 5 in our design:

Logistic(S) =
1

1 + e(b−5S)
(4)

3.4 Centralized Repository
Practice has shown that centralized email infrastructures
such as web mail providers and email reputation services
can scale to millions of clients. Thus, to simplify the de-
sign and provide better consistency and availability as-
surances we use a centralized repository. This repository
can comprise a well-provisioned cluster of machines or
even a data-center.

When a node queries the repository for the spammer
belief of a host, the repository is interested on the re-
ports for a single host. These reports are sent by multiple
nodes, thus for efficiency it is reasonable to index(key)
the reports based on the hash of the host’s IP.

4 Evaluation

We evaluate SocialFilter’s ability to block spam traffic
and compare it to Ostra [18]. The goal of our evaluation
is two-fold: a) to illustrate the importance of our design
choice, i.e., incorporating identity uniqueness; and b) to
shed light on the benefits and drawbacks of SocialFilter’s
and Ostra’s approach in using social links to mitigate
spam. For a brief description of Ostra and an efficacy

study of performing SocialFilter’s trust computations at
the centralized repository, we refer the reader to [23],

4.1 Simulation Settings
For a more realistic evaluation, we use a50K-user
crawled sample of the Facebook social graph [11]. The
sample is a connected component obtained from a50M -
user sample via the “forest fire” sampling method [17]..
Each user in the social network is the admin of an email
server, which we also refer to as a SocialFilter or Ostra
node. Nodes can send and receive email connections.

We have two types of nodes:honestandspammers.
Honest nodes send 3 legitimate emails per day. 80% and
13% of the legitimate emails are sent to sender’s friends
and sender’s friends of friends respectively, and the des-
tination of the rest 7% emails is randomly chosen by the
sender. Spammers send 500 spam emails per 24h, each
to random honest nodes in the network. We set Ostra’s
credit bounds asL = −5 andU = 5. The above settings
are obtained from Ostra’s evaluation [18]. Honest and
spammer nodes correspond to users uniformly randomly
distributed over the social network.

Several nodes can instantly classify spam connections.
These instant classifiers correspond to systems that de-
tect spam by subscribing to commercial blacklists or by
employing content-based filters. On the other hand, nor-
mal nodes can classify connections only after their users
read the email. That is, the normal classification can
be delayed based on the behavior of the users (how fre-
quently they check their email.) 10% of honest SocialFil-
ter nodes have the ability of instant classification and the
average delay of the normal classification is 2 hours [18].
The direct trust between users that are friends is initial-
ized to a random value in[0, 1]. The number of pre-
trusted nodes used is100.

4.2 Resilience to Colluders and Sybils
We consider attack scenarios under which spammers col-
lude to evade SocialFilter and Ostra, as well as to dis-
rupt email communication from legitimate hosts. We as-
sume that spammers are aware of each other, which is
reasonable if the spammers belong to the same botnet.
In particular, to attack SocialFilter a spammer submits a
report{[spammer report] s, 0%} for each of the other
spammerss in the network. Also, when a spammer re-
ceives a connection from a legitimate hostl, it submits
{[spammer report] l, 100%} to induce SocialFilter to
block l’s emails. To attack Ostra, each spammer classi-
fies a legitimate email and a spam email connection as
unwanted and legitimate, respectively.

Figure 2(a) shows the percentage of blocked spam and
legitimate email connections in SocialFilter and Ostra
as a function of the percentage of nodes in the network
that are colluding spammers. Regarding the effective-
ness in blocking spam connections, SocialFilter outper-
forms Ostra, especially when the portion of colluding
spammers is less than0.5%. We also observe that Os-
tra achieves almost the same effectiveness in blocking
spam connections regardless of the percentage of collud-
ing spammers, whereas in SocialFilter, the percentage of
blocked spam decreases with the percentage of colluders.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

1

2

3

4

B
lo

c
k
e
d
 S

p
a
m

 (
%

)

B
lo

c
k
e
d
 L

e
g
it
im

a
te

 (
%

)

Percentage of Spammers (%)

SF-Spam
Ostra-Spam

Ostra-Legitimate
SF-Legitimate

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

1

2

3

4

5

B
lo

c
k
e
d
 S

p
a
m

 (
%

)

B
lo

c
k
e
d
 L

e
g
it
im

a
te

 (
%

)

Sybils per Spammer

Ostra-Spam
SF-Spam

SF-Spam-without IU
Ostra-Legitimate

SF-Legitimate-without IU
SF-Legitimate

(b)

Figure 2: (a) Percentage of blocked spam and legitimate email con-
nections for SocialFilter (SF) and Ostra as a function of theportion of
colluding spammers; (b) Percentage of blocked spam and legitimate
email connections for SocialFilter (SF) and Ostra as a function of the
number of Sybils created per spammer. The percentage of spammer
nodes is 0.5%. Results for SocialFilter that does not employidentity
uniqueness (IU) are also included.

We can also see in Figure 2(a) that Ostra suffers from
a substantial false positive rate when the percentage of
spammers is greater than0.1%. When the percentage of
spammers is1% (500 spammers), around0.8% of legit-
imate emails are blocked. We can attribute Ostra’s high
false positive rate to the following. In SocialFilter, a node
blocks an email sender only if it has been explicitly re-
ported as spammer by the repository. On the other hand,
Ostra blocks links (credit balance goes out of bounds)
in the socials path used by a spammer, and some honest
nodes cannot send email because those links are included
in all the social paths used by those honest nodes.

SocialFilter also suffers from a non-zero false positive,
however it is substantially less than for Ostra. This is
because colluding spammers have very low direct trust
to other honest users as their reports are different from
those of honest nodes. As a result, the reporter trust for
spammers is lower, resulting in their reports to be mostly
ignored by honest nodes.

We also consider the case in which colluding spam-
mers create Sybils. These Sybils form a cluster that is di-
rectly connected to their creator spammer node. The pur-
pose of the Sybils is to decrease the belief of the reposi-
tory in the spammer node being malicious and to increase
the belief in an honest node being spammer. In addition,
Sybils allow the spammer to send messages from many
different sources, enabling him to further evade defenses.
At the start of the SocialFilter simulation, Sybils send
positive spam reports for all other spammer nodes (in-
cluding the Sybils.) Honest nodes may send legitimate
email to spammer nodes but not to their Sybils. When a
spammer node receives legitimate email from an honest
node, the spammer reports the good user as a spammer
and so do all the Sybils of the spammer.10% of all Sybils
act as spammers, sending spam messages at the same rate
as their creator. In the simulation for Ostra, Sybil nodes
classify a legitimate email and a spam email connection
as unwanted and legitimate, respectively.

Figure 2(b) shows the percentage of blocked spam and
legitimate email connections as a function of the number
of Sybils per spammer in the network. In SocialFilter,
Sybil users gets very low identity uniqueness, which be-
comes even lower as the number of Sybil users per spam-
mer increases. As a result, we can see in Figure 2(b)
that SocialFilter is resilient to this attack. In Ostra, Sybil

spammers cannot send spam because the few social links
that connect the creator of the Sybils with the rest of the
network become blocked. We observe that when each
spammer creates more than100 Sybils, Ostra is able to
block more spam than SocialFilter. However, Ostra still
suffers from a higher false positive rate.

Figure 2(b) also shows the case in which So-
cialFilter does not employ identity uniqueness (“SF-
Spam/Legitimate-without IU”). As can be seen, attackers
are very effective in manipulating the system in this case.
SocialFilter without identity uniqueness cannot block a
substantial percentage of spam, while it blocks a high
percentage of legitimate email. This result profoundly
illustrates the importance of integrating identity unique-
ness in the spammer belief computation (Equation 3.)

5 Related Work

SocialFilter is inspired by prior work on reputation
and trust management systems [14]. Well-known trust
and reputation management systems include the rating
scheme used by the eBay on-line auction site, object rep-
utation systems for P2P file sharing networks [15, 25]
and PageRank [8]. In contrary to the above systems,
our system incorporates social trust to mitigate false re-
porting and Sybil attacks. EigenTrust [15] provides trust
values that enable a system to rank users based on their
trustworthiness. However, this value cannot be explicitly
interpreted as the belief in a node being honest.

SocialFilter is similar to IP blacklisting services such
as SpamHaus [6], DShield [2, 28], CloudMark [1] and
TrustedSource [5] in that it employs a centralized reposi-
tory. Currently, IP blacklisting relies on a relatively small
number (in the order of a few hundreds or thousands)
of reporters. Reporters submit their attack logs to the
centralized repositories, and the repository synthesizes
blacklists based on the attack logs. SocialFilter differs in
that it automates the process of evaluating the trustwor-
thiness of the reports. Thus it does not incur the manage-
ment overhead of traditional IP blacklisting services. It
can therefore scale to millions of reporters.

Prior work also includes proposals for collaborative
spam filtering [3, 7, 29, 30]. Kong et al. [16] also con-
sider untrustworthy reporters, using Eigentrust to derive
their reputation. However, these solutions only enable
classifying the contents of emails and not the source of
spam. This requires email servers to waste resources on
email reception and filtering. Similar to SocialFilter, Re-
puScore [22] is also a collaborative reputation manage-
ment. Unlike SocialFilter, RepuScore does not employ
sybil-resilient and transitive trust inference, which results
in the trust values being susceptible to manipulation.

6 Conclusion

We presented SocialFilter, the first collaborative spam
mitigation system that assesses the trustworthiness of
spam reporters by both auditing their reports and by
leveraging the social network of the reporters’ adminis-
trators. SocialFilter weighs the spam reports according
to the trustworthiness of their submitters to derive a value

that reflects the system’s belief that a host is spamming.
The design and evaluation of SocialFilter illustrates

that: a) we can improve the reliability and the attack-
resilience of collaborative spam mitigation by introduc-
ing Sybil-resilient OSN-based trust inference mecha-
nisms; b) using social links to obtain the trustworthi-
ness of spammer reports can result in comparable spam-
blocking effectiveness with approaches that use social
links to rate-limit spam (e.g., Ostra [18]); c) SocialFil-
ter yields less false positives than Ostra.

Acknowledgements

This work was funded in part by an NSF CAREER
Award CNS-0845858 and Award CNS-0925472. We
thank the anonymous reviewers for their helpful feed-
back and suggestions.

References
[1] Cloudmark.www.cloudmark.com/en/home.html.
[2] Cooperative Network Security Community. http://www.dshield.

org/.
[3] Distributed Checksum Clearinghouses Reputations.

www.rhyolite.com/dcc/reputations.html.
[4] Facebook connect.developers.facebook.com/connect.php.
[5] Secure Computing, TrustedSource. www.securecomputing.com/

index.cfm?skey=1671.
[6] The SpamHaus Project.www.spamhaus.org/.
[7] J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, and M. Zinkevich.

Collaborative Email-Spam Filtering with the Hashing Trick. In CEAS,
2009.

[8] S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual Web
Search Engine. InComputer Networks and ISDN Systems, 1998.

[9] A. Cheng and E. Friedman. Sybilproof Reputation Mechanisms. In
P2PEcon, 2005.

[10] J. R. Douceur. The Sybil Attack. InIPTPS, March 2002.
[11] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. A Walk in Face-

book: Uniform Sampling of Users in Online Social Networks. In INFO-
COM, 2010.

[12] E. Gray, J.-M. Seigneur, Y. Chen, and C. Jensen. Trust Propagation in Small
Worlds. InLNCS, pages 239–254. Springer, 2003.

[13] R. K. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of Trust
and Distrust. InWWW, 2004.

[14] K. Hoffman, D. Zage, and C. Nita-Rotaru. A Survey of Attack and Defense
Techniques for Reputation Systems. InACM Computing Surveys, 2008.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. TheEigenTrust
Algorithm for Reputation Management in P2P Networks. InWWW, 2003.

[16] J. S. Kong, B. A. Rezaei, N. Sarshar, V. P. Roychowdhury,and P. O. Boykin.
Collaborative Spam Filtering Using e-mail Networks. InIEEE Computer,
2006.

[17] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. InSIGKDD,
2006.

[18] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi. Ostra: Leveraging
Social Networks to Thwart Unwanted Traffic. InNSDI, 2008.

[19] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.
In Computer Networks, 1999.

[20] A. Ramachandran and N. Feamster. Understanding the Network-level Be-
havior of Spammers. InACM SIGCOMM, 2006.

[21] G. Singaraju and B. B. Kang. RepuScore: Collaborative Reputation Man-
agement Framework for Email Infrastructure. InUSENIX LISA, 2007.

[22] G. Singaraju, J. Moss, and B. B. Kang. Tracking Email Reputation for
Authenticated Sender Identities. InCEAS, 2008.

[23] M. Sirivianos, X. Yang, and K. Kim. SocialFilter: Introducing Social
Trust to Collaborative Spam Mitigation.www.cs.duke.edu/~msirivia/
publications/socialfilter-tech-report.pdf, 2010.

[24] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-Resilient Online
Content Rating. InNSDI, 2009.

[25] K. Walsh and E. G. Sirer. Experience with an Object Reputation System
for Peer-to-Peer Filesharing. InNSDI, 2006.

[26] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipko. Spamming
Botnets: Signatures and Characteristics. InACM SIGCOMM, 2008.

[27] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. A Near-Optimal Social
Network Defense Against Sybil Attacks. InIEEE S&P, 2008.

[28] J. Zhang, P. Porras, and J. Ullrich. Highly Predictive Blacklisting. In
USENIX Security, 2008.

[29] Z. Zhong, L. Ramaswamy, and K. Li. ALPACAS: A Large-scale Privacy-
Aware Collaborative Anti-spam System. InIEEE INFOCOM, 2008.

[30] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, andJ. Kubia-
towicz. Approximate Object Location and Spam Filtering on Peer-to-Peer
Systems. InACM/IFIP/USENIX Middleware, 2003.

