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Abstract

We investigate the asymptotic behavior of the steady-statequeue length distribution under general-

ized max-weight scheduling in the presence of heavy-tailedtraffic. We consider a system consisting of

two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic, and the

other receives light-tailed traffic. We study the class of throughput optimal max-weight-α scheduling

policies, and derive an exact asymptotic characterizationof the steady-state queue length distributions.

In particular, we show that the tail of the light queue distribution is heavier than a power-law curve,

whose tail coefficient we obtain explicitly. Our asymptoticcharacterization also contains an intuitively

surprising result – the celebrated max-weight scheduling policy leads to theworst possibletail of the

light queue distribution, among all non-idling policies.

Motivated by the above ‘negative’ result regarding the max-weight-α policy, we analyze a log-

max-weight (LMW) scheduling policy. We show that the LMW policy guarantees an exponentially

decaying light queue tail, while still being throughput optimal.

I. INTRODUCTION

Traditionally, traffic in telecommunication networks has been modeled using Poisson and Markov-

modulated processes. These simple traffic models exhibit ‘local randomness’, in the sense that much

of the variability occurs in short time scales, and only an average behavior is perceived at longer time
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scales. With the spectacular growth of packet-switched networks such as the internet during the last

couple of decades, these traditional traffic models have been shown to be inadequate. This is because

the traffic in packetized data networks is intrinsically more ‘bursty’, and exhibits correlations over

longer time scales than can be modeled by any Markovian pointprocess. Empirical evidence, such as

the famous Bellcore study on self-similarity and long-range dependence in ethernet traffic [13] lead to

increased interest in traffic models with high variability.

Heavy-tailed distributions, which have long been used to model high variability and risk in finance and

insurance, were considered as viable candidates to model traffic in data networks. Further, theoretical

work such as [12], linking heavy-tails to long-range dependence (LRD) lent weight to the belief that

extreme variability in the internet file sizes is ultimatelyresponsible for the LRD traffic patterns reported

in [13] and elsewhere.

Many of the early queueing theoretic results for heavy-tailed traffic were obtained for the single

server queue; see [4], [5], [18] for surveys of these results. It turns out that the service discipline plays

an important role in the latency experienced in a queue, whenthe traffic is heavy-tailed. For example,

it was shown in [1] that any non-preemptive service discipline leads to infinite expected delay, when

the traffic is sufficiently heavy-tailed. Further, the asymptotic behavior of latency under various service

disciplines such as first-come-first-served (FCFS) and processor sharing (PS), is markedly different

under light-tailed and heavy-tailed scenarios [4], [23]. This is important, for example, in the context of

scheduling jobs in server farms [11].

In the context of communication networks, a subset of the traffic flows may be well modeled as

heavy-tailed, and the rest better modeled as light-tailed.In such a scenario, there are relatively few

studies on the problem of schedulingbetweenthe different flows, and the ensuing nature of interaction

between the heavy-tailed and light-tailed traffic. Perhapsthe earliest, and one of the most important

studies in this category is [3], where the interaction between light and heavy-tailed traffic flows under

generalized processor sharing (GPS) is studied. In that paper, the authors derive the asymptotic workload

behavior of the light-tailed flow, when its GPS weight is greater than its traffic intensity.

One of the key considerations in the design of a scheduling policy for a queueing network is

throughput optimality, which is the ability to support the largest set of traffic rates that is supportable

by a given queueing network. Queue length based scheduling policies, such as max-weight scheduling

[21], [22] and its many variants, are known to be throughput optimal in a general queueing network.

For this reason, the max-weight family of scheduling policies has received much attention in various

networking contexts, including switches [15], satellites[16], wireless [17], and optical networks [6].
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In spite of a large and varied body of literature related to max-weight scheduling, it is somewhat sur-

prising that the policy has not been adequately studied in the context of heavy-tailed traffic. Specifically,

a question arises as to what behavior we can expect due to the interaction of heavy and light-tailed

flows, when a throughput optimal max-weight-like scheduling policy is employed. Our present work is

aimed at addressing this basic question.

In a recent paper [14], a special case of the problem considered here is studied. Specifically, it was

shown that when the heavy-tailed traffic has an infinite variance, the light-tailed traffic experiences an

infinite expected delay under max-weight scheduling. Further, it was shown that the max-weight policy

can be tweaked to favor the light-tailed traffic, so as to makethe expected delay of the light-tailed traffic

finite. In the present paper, we considerably generalize these results by providing a precise asymptotic

characterization of the occupancy distributions under themax-weight scheduling family, for a large

class of heavy-tailed traffic distributions.

We study a system consisting of two parallel queues, served by a single server. One of the queues is

fed by a heavy-tailed arrival process, while the other is fedby light-tailed traffic. We refer to these queues

as the ‘heavy’ and ‘light’ queues, respectively. In this setting, we analyze the asymptotic performance of

max-weight-α scheduling, which is a generalized version of max-weight scheduling. Specifically, while

max-weight scheduling makes scheduling decisions by comparing the queue lengths in the system, the

max-weight-α policy uses different powers of the queue lengths to make scheduling decisions. Under

this policy, we derive an exact asymptotic characterization of the lightqueue occupancy distribution,

andspecify all the bounded moments of the queue lengths.

A surprising outcome of our asymptotic characterization isthat the ‘plain’ max-weight scheduling

policy induces the worst possible asymptotic behavior on the light queue tail. We also show that by

a choice of parameters in the max-weight-α policy that increases the preference afforded to the light

queue, the tail behavior of the light queue can be improved. Ultimately however, the tail of the light

queue distribution is lower bounded by a power-law-like curve, for any scheduling parameters used in

the max-weight-α scheduling policy. Intuitively, the reason max-weight-α scheduling induces a power-

law-like decay on the light queue distribution is that the light queue has to compete with a typically

large heavy queue for service.

The simplest way to guarantee a good asymptotic behavior forthe light queue distribution is to give

the light queue complete priority over the heavy queue, so that it does not have to compete with the

heavy queue for service. We show that under priority for the light queue, the tail distributions ofboth

queues are asymptotically as good as they can possibly be under any policy. Be that as it may, giving
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Fig. 1. A system of two parallel queues, with one of them fed with heavy-tailed traffic.

priority to the light queue has an important shortcoming – itis not throughput optimal for a general

constrained queueing system.

We therefore find ourselves in a situation where on the one hand, the throughput optimal max-weight-

α scheduling leads to poor asymptotic performance for the light queue. On the other hand, giving

priority to the light queue leads to good asymptotic behavior for both queues, but is not throughput

optimal in general. To remedy this situation, we propose a throughput optimal log-max-weight (LMW)

scheduling policy, which gives significantly more importance to the light queue compared to max-

weight-α scheduling. We analyze the asymptotic behavior of the LMW policy and show that thelight

queue occupancy distribution decays exponentially. We also obtain the exact large deviation exponent

of the light queue tail under a regularity assumption on the heavy-tailed input. Thus, the LMW policy

has both desirable attributes – it is throughput optimal, and ensures an exponentially decaying tail for

the light queue distribution.

The remainder of this paper is organized as follows. In Section II, we describe the system model.

In Section III, we present the relevant definitions and mathematical preliminaries. Section IV deals

with the queue length behavior under priority scheduling. Sections V and VII respectively contain our

asymptotic results for max-weight-α scheduling, and the LMW policy. We conclude the paper in Section

VIII.

II. SYSTEM MODEL

Our system consists of two parallel queues,H andL, served by a single server, as depicted in Fig. 1.

Time is slotted, and stochastic arrivals of packet bursts occur to each queue in each slot. The server

is capable of serving one packet per time slot from only one ofthe queues according to a scheduling

policy. LetH(t) andL(t) denote the number of packets that arrive during slott to H andL respectively.

Although we postpone the precise assumptions on the traffic to Section III-B, let us loosely say that

the inputL(t) is light-tailed, andH(t) is heavy-tailed. We will refer to the queuesH andL as the

heavy and light queues, respectively. The queues are assumed to be always connected to the server. Let
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qH(t) andqL(t), respectively, denote the number of packets inH andL during slott, and letqH and

qL denote the steady-state queue lengths, when they exist. Ouraim is to characterize the behavior of

P {qL > b} andP {qH > b} asb becomes large, under various scheduling policies.

III. D EFINITIONS AND MATHEMATICAL PRELIMINARIES

A. Heavy-tailed distributions

We begin by defining some properties of tail distributions ofnon-negative random variables.

Definition 1: A random variableX is said to belight-tailed if there existsθ > 0 for which

E [exp(θX)] < ∞. A random variable isheavy-tailedif it is not light-tailed.

In other words, a light-tailed random variable is one that has a well defined moment generating

function in a neighborhood of the origin. The complementarydistribution function of a light-tailed

random variable decays at least exponentially fast. Heavy-tailed random variables are those which have

complementary distribution functions that decay slower than any exponential. This class is often too

general to study, so sub-classes of heavy-tailed distributions, such as sub-exponentials have been defined

and studied in the past [20]. We now review some definitions and existing results on some relevant

classes of heavy-tailed distributions. In the remainder ofthis section,X will denote a non-negative

random variable, with complementary distribution function F (x) = P {X > x} . For the most part, we

adhere to the terminology in [2], [7].

Notation: If f(x) andg(x) are positive functions defined on[0,∞], we write f(x) ∼ g(x) to mean

lim
x→∞

f(x)

g(x)
= 1.

Similarly, f(x) & g(x) means

lim inf
x→∞

f(x)

g(x)
≥ 1.

Definition 2: 1) F (x) is said to have aregularly varyingtail of index ν, notationF ∈ R(ν), if

lim
x→∞

F (kx)

F (x)
= k−ν , ∀ k > 0.

2) F (x) is said to beextended-regularly varying, notationF ∈ ER, if for some realc, d > 0, and

Γ > 1,

kd ≤ lim inf
x→∞

F (kx)

F (x)
≤ lim sup

x→∞

F (kx)

F (x)
≤ kc, ∀k ∈ [1,Γ].
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3) F (x) is said to beintermediate-regularly varying, notationF ∈ IR, if

lim
k↓1

lim inf
x→∞

F (kx)

F (x)
= lim

k↓1
lim sup
x→∞

F (kx)

F (x)
= 1.

4) F (x) is said to beorder-regularly varying, notationF ∈ OR, if for someΓ > 1,

0 < lim inf
x→∞

F (kx)

F (x)
≤ lim sup

x→∞

F (kx)

F (x)
< ∞, ∀k ∈ [1,Γ].

It is easy to see from the definitions thatR ⊂ ER ⊂ IR ⊂ OR. In fact, the containments are

proper, as shown in [7]. Intuitively,R is the class of distributions with tails that decay according to a

power-law with parameterν. Indeed, it can be shown that

F ∈ R ⇐⇒ F (x) = U(x)x−ν ,

whereU(x) is aslowly varyingfunction, i.e, a function that satisfiesU(kx) ∼ U(x), ∀k > 0. The other

three classes are increasingly more general, but as we shallsee, they all correspond to distributions that

are asymptotically heavier than some power-law curve. In what follows, a statement such asX ∈ IR

should be construed to meanP {X > x} ∈ IR.

Next, we define the lower and upper orders of a distribution.

Definition 3: 1) The lower orderof F (x) is defined by

ξ(F ) = lim inf
x→∞

−
logF (x)

log x
.

2) Theupper orderof F (x) is defined by

ρ(F ) = lim sup
x→∞

−
logF (x)

log x
.

It can be shown that for regularly varying distributions, the upper and lower orders coincide with the

index ν. It also turns out that both the orders are finite for the classOR, as asserted below.

Proposition 1: ρ(F ) < ∞ for everyF ∈ OR.

Proof: Follows from Theorem 2.1.7 & Proposition 2.2.5 in [2]. ✷

The following result, which is a consequence of Proposition1, shows that everyF ∈ OR is

asymptotically heavier than a power-law curve.

Proposition 2: Let F ∈ OR. Then, for eachρ > ρ(F ), we havex−ρ = o(F (x)) asx → ∞.

Proof: See Equation (2.4) in [19].

Definitions 2 and 3 deal with asymptotic tail probabilities of a random variable. Next, we introduce

the notion of tail coefficient, which is amomentproperty.
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Definition 4: The tail coefficientof a random variableX is defined by

CX = sup{c ≥ 0 | E [Xc] < ∞}.

In other words, the tail coefficient is the threshold where the power moment of a random variable starts

to blow up. Note that the tail coefficient of a light-tailed random variable is infinite. On the other hand,

the tail coefficient of a heavy-tailed random variable may beinfinite (e.g., log-normal) or finite (e.g.,

Pareto). The next result shows that the tail coefficient and order are, in fact, closely related parameters.

Proposition 3: 1 The tail coefficient ofX is equal to the lower order ofF (x).

Proof: Suppose first that the lower order is infinite, so that for anys > 0, we can find anx large

enough such that

−
logP {X > x}

log x
> s.

Thus, for large enoughx, we have

P {X > x} < x−s, ∀ s > 0.

This impliesE [Xc] < ∞ for all c > 0. Therefore, the tail coefficient ofX is also infinite.

Next suppose thatξ(F ) ∈ (0,∞). We will show that (i) E [Xc] < ∞ for all c < ξ(F ), and

(ii)E [Xc] = ∞ for all c > ξ(F ). To show (i), we argue as above that for large enoughx, we have

P {X > x} < x−s, whens < ξ(F ). Thus,E [Xc] < ∞ for all c < ξ(F ). To show (ii), let us consider

somes such thatc > s > ξ(F ). By the definition ofξ(F ) there exists a sequence{xi} that increases

to infinity as i → ∞, such that

−
logP {X > xi}

log xi
≤ s, ∀ i ⇐⇒ P {X > xi} ≥ x−s, ∀ i.

Therefore,

E [Xc] =

∫ ∞

0
xcdFX(x) ≥

∫ ∞

xi

xcdFX(x) ≥ xciP {X > xi} ≥ xcix
−s
i , ∀ i,

from which it follows thatE [Xc] = ∞. Therefore, the tail coefficient ofX is equal toξ(F ). ✷

We emphasize that Proposition 3 holds foranyrandom variable, regardless of its regularity properties.

Finally, we show that any distribution inOR necessarily has a finite tail coefficient.

Proposition 4: If X ∈ OR, thenX has a finite tail coefficient.

Proof: From Proposition 1, the upper order is finite:ρ(F ) < ∞. Thus, the lower orderξ(F ) is also

finite. But Proposition 3 asserts that lower order is equal tothe tail coefficient. ✷

1The first author is grateful to Jayakrishnan Nair (Caltech) for suggesting a proof of Proposition 3 via a personal

communication.



8

B. Assumptions on the arrival processes

We are now ready to state the precise assumptions on the arrivals processes.

1) The arrival processesH(t) andL(t) are independent of each other, and independent of the current

state of the system.

2) H(t) is independent and identically distributed (i.i.d.) from slot-to-slot.

3) L(t) is i.i.d. from slot-to-slot.

4) L(·) is light-tailed withE [L(t)] = λL.

5) H(·) ∈ OR with tail coefficientCH > 1, andE [H(t)] = λH .

We also assume thatλL + λH < 1, so that the input rate does not overwhelm the service rate. Then,

it can be shown that the system is stable2 under any non-idling policy, and that the steady-state queue

lengthsqH andqL exist.

C. Residual and Age distributions

Here, we define the residual and age distributions for the heavy-tailed input process, which will be

useful later. First, we note thatH(·) necessarily has a non zero probability mass at zero, sinceλH < 1.

DefineH+ as the strictly positive part ofH(·). Specifically,

P {H+ = m} =
P {H(·) = m}

1− P {H(·) = 0}
, m = 1, 2, . . . .

Note thatH+ has tail coefficient equal toCH , and inherits any regularity property ofH(·).

Now consider a discrete-time renewal process with inter-renewal times distributed asH+. Let HR ∈

{1, 2, . . . } denote the residual random variable, andHA ∈ {0, 1, . . . } the age of the renewal process

[9].3 The joint distribution of the residual and the age can be derived using basic renewal theory:

P {HR = k,HA = l} =
P {H+ = k + l}

E [H+]
, k ∈ {1, 2 . . . }, l ∈ {0, 1, . . . }. (1)

The marginals ofHR andHA can be derived from (1):

P {HR = k} =
P {H+ ≥ k}

E [H+]
, k ∈ {1, 2, . . . }. (2)

2The notion of stability used here is the positive recurrenceof the system occupancy Markov chain.
3We have defined the residual time and age such that if a renewaloccurs at a particular time slot, the age at that time slot

is zero, and the residual time is equal to the length of the upcoming renewal interval.
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P {HA = k} =
P {H+ > k}

E [H+]
, k ∈ {0, 1, . . . }. (3)

Next, let us invoke a useful result from the literature.

Lemma 1: If H(·) ∈ OR, thenHR ∈ ER, and

sup
n

nP {H+ > n}

P {HR > n}
< ∞. (4)

A corresponding result also holds for the ageHA.

Proof: See [7, Lemma 4.2(i)]. ✷

Using the above, we prove the important result that the residual distribution isone order heavier

than the original distribution.

Proposition 5: If H(·) ∈ OR has tail coefficient equal toCH , thenHR andHA have tail coefficient

equal toCH − 1.

Proof: According to (4), we have, for alla and some realχ,

− log P {HR > a} ≤ − log a− log P {H+ > a}+ χ.

Let us now consider the lower order ofHR :

lim inf
a→∞

−
logP {HR > a}

log a
≤ lim inf

a→∞

− log a− logP {H+ > a}+ χ

log a
= CH − 1.

In the last step above, we have used the tail coefficient ofH+. Since the lower order ofHR equals its

tail coefficient (Lemma 3), the above relation shows that thetail coefficient ofHR is at mostCH − 1.

Next, to show the opposite inequality, let us consider theduration random variable, defined as

HD = HR +HA.

Using the joint distribution (1), we can obtain the marginalof HD as

P {HD = k} =
kP {H+ = k}

E [H+]
, k ∈ {1, 2, . . . }.

Thus, for anyǫ > 0, theCH − 1− ǫ moment ofHD is finite:

E

[

HCH−1−ǫ
D

]

=
∑

k≥1

kCH−1−ǫkP {H+ = k}

E [H+]
=

E

[

HCH−ǫ
+

]

E [H+]
< ∞.

SinceHR is stochastically dominated byHD, it is immediate thatE
[

HCH−1−ǫ
R

]

< ∞. Therefore, the

tail coefficient ofHR is at leastCH − 1, and the proposition is proved. ✷
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IV. T HE PRIORITY POLICIES

In this section, we study the two ‘extreme’ scheduling policies, namely priority forL and priority

for H. Our analysis helps us arrive at the important conclusion that the tail of the heavy queue is

asymptotically insensitive to the scheduling policy. In other words, there is not much we can do to

improve or hurt the tail distribution ofH by the choice of a scheduling policy. Further, we show that

giving priority to the light queue ensures the best possibleasymptotic decay forboth the queue length

distributions.

A. Priority for H

In this policy,H receives service whenever it is non-empty, andL receives service only whenH is

empty. It should be intuitively clear at the outset that thispolicy is bound to have undesirable impact

on the light queue. The reason we analyze this policy is that it gives us a best case scenario for the

heavy queue.

Our first result shows that the steady-state heavy queue occupancy is one order heavier than its input

distribution.

Theorem 1:Under priority scheduling forH, the steady-state queue occupancy distribution of the

heavy queue satisfies the following bounds.

1) For everyǫ > 0, there exists aκH(ǫ) such that

P {qH > b} < κH(ǫ)b−(CH−1−ǫ), ∀ b. (5)

2)

P {qH > b} ≥ λHP {HR > b} , ∀ b. (6)

Further,qH is a heavy-tailed random variable with tail coefficient equal to CH − 1. That is, for each

ǫ > 0, we have

E

[

qCH−1−ǫ
H

]

< ∞, (7)

and

E

[

qCH−1+ǫ
H

]

= ∞. (8)

Proof: Equation (7) can be shown using a straightforward Lyapunov argument, along the lines of [14,

Proposition 6]. Equation (5) follows from (7) and the Markovinequality.

Next, to show (6), we consider a time instantt at steady-state, and write

P {qH(t) > b} = P {qH(t) > b|qH(t) > 0}P {qH(t) > 0} = λHP {qH(t) > b|qH(t) > 0} .
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We have used Little’s law at steady-state to writeP {qH(t) > 0} = λH . Let us now lower bound

the termP {qH(t) > b|qH(t) > 0} . Conditioned onH being non-empty, denote bỹB(t) the number of

packets that belong to the burst in service that still remainin the queue at timet. Then, clearly,qH(t) ≥

B̃(t), from whichP {qH(t) > b|qH(t) > 0} ≥ P

{

B̃(t) > b
}

. Now, since theH queue receives service

whenever it is non-empty, it is clear that the time spent at the head-of-line by a burst isequal to its

size. It can therefore be shown that in steady-state,B̃(t) is distributed according to the residual variable

HR. Thus,P {qH(t) > b|qH(t) > 0} ≥ P {HR > b} , and (6) follows. Finally, (8) follows from (6) and

Proposition 5. ✷

When the distribution ofH(·) is regularly varying, the lower bound (6) takes on a power-law form

that agrees with the upper bound (5).

Corollary 1: If H(·) ∈ R(CH), then

P {qH > b} > U(b)b−(CH−1), ∀ b,

whereU(·) is some slowly varying function.

Since priority for H affords the most favorable treatment to the heavy queue, it follows that the

asymptotic behavior ofH can be no better than the above underany policy.

Proposition 6: Under any scheduling policy,qH is heavy-tailed with tail coefficient at mostCH − 1.

That is, Equation (8) holds for all scheduling policies.

Proof: The tail probabilityP {qH > b} under any other policy stochastically dominates the tail under

priority for H. Therefore, the lower bounds (6) and (8) would hold for all policies. ✷

Interestingly, under priority forH, the steady-state light queue occupancyqL is also heavy-tailed

with the sametail coefficient asqH . This should not be surprising, since the light queue has to wait

for the entire heavy queue to clear, before it receives any service.

Theorem 2:Under priority forH, qL is heavy-tailed with tail coefficientCH − 1. Furthermore, the

tail distributionP {qL > b} satisfies the following asymptotic bounds.

1) For everyǫ > 0, there exists aκL(ǫ) such that

P {qL > b} < κL(ǫ)b
−(CH−1−ǫ). (9)

2) If H(·) ∈ OR, then

P {qL > b} & λHP

{

HA >
b

λL

}

(10)

Proof: The upper bound (9) is a special case of Theorem 4 given in the next section. Let us show

(10). Notice first that the lower bound (10) is asymptotic, unlike (6) which is exact. As before, let us
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consider a timet at steady-state, and write using Little’s law

P {qL(t) > b} ≥ P {qL(t) > b|qH(t) > 0}P {qH(t) > 0} = λHP {qL(t) > b|qH(t) > 0} .

Let us denote bỹA(t) the number of slots that the current head-of-line burst has been in service. Clearly

then,L has not received any service in the interval[t−Ã(t), t], and has kept all the arrivals that occurred

during the interval. Thus, conditioned onH being non-empty,qL(t) ≥
∑t

σ=t−Ã(t)
L(σ). Next, it can

be seen that in steady-state,Ã(t) is distributed as the age variableHA. Putting it all together, we can

write

P {qL > b} ≥ λHP {qL(t) > b|qH(t) > 0} ≥ λHP

{
HA∑

i=1

L(i) > b

}

. (11)

Next, sinceH(·) ∈ OR, Lemma 1 implies thatHA ∈ ER ⊂ IR. We can therefore invoke Lemma 4

in the appendix to write

P

{
HA∑

i=1

L(i) > b

}

∼ P

{

HA >
b

λL

}

. (12)

Finally, (10) follows from (11) and (12). ✷

We note that ifH(·) is regularly varying, the lower bound (10) takes on a power-law form that

matches the upper bound (9).

B. Priority for L

We now study the policy that servesL whenever it is non-empty, and servesH only if L is empty.

This policy affords the best possible treatment toL and the worst possible treatment toH, among all

non-idling policies. Under this policy,L is completely oblivious to the presence ofH, in the sense

that it receives service whenever it has a packet to be served. Therefore,L behaves like a discrete time

G/D/1 queue, with light-tailed inputs. Classical large deviation bounds can be derived for such a queue;

see [10] for example.

Recall that sinceL(·) is light-tailed, the log moment generating function

ΛL(θ) = logE
[

eθL(·)
]

exists for someθ > 0. Define

EL = sup{θ|ΛL(θ)− θ < 0}. (13)

Proposition 7: Under priority forL, qL satisfies the large deviation principle (LDP)

lim
b→∞

−
1

b
logP {qL > b} = EL (14)
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In words, the above proposition asserts that the tail ofqL is asymptotically exponential, with rate

functionEL. We will refer toEL as theintrinsic exponentof the light queue. An equivalent expression

for the intrinsic exponent that is often used in the literature is

EL = inf
a>0

1

a
Λ∗
L(1 + a), (15)

whereΛ∗
L(·) is the Fenchel-Legendre transform [10] ofΛL(θ).

It is clear that the priority policy forL gives the best possible asymptotic behavior for the light

queue, and the worst possible treatment for the heavy queue.Surprisingly however, it turns out that the

heavy queue tail under priority forL is asymptotically as good as it is under priority forH.

Proposition 8: Under priority forL, qH is heavy-tailed with tail coefficientCH − 1.

Proof: This is a special case of Theorem 4, given in the next section. ✷

The above result also implies that the tail coefficient ofH cannot be worse thanCH − 1 under any

other scheduling policy.

Proposition 9: Under any non-idling scheduling policy,qH has a tail coefficient of at leastCH − 1.

That is, Equation (7) holds for all non-idling scheduling policies.

Proof: The tail probabilityP {qH > b} under any other policy is stochastically dominated by the tail

probability under priority forL. ✷

Propositions 6 and 9 together imply the insensitivity of theheavy queue’s tail distribution to the

scheduling policy. We state this important result in the following theorem.

Theorem 3:Underany non-idling scheduling policy,qH is heavy-tailed with tail coefficient equal to

CH − 1. Further,P {qH > b} satisfies bounds of the form (5) and (6) under all non-idling policies.

Therefore, it is not possible to either improve or hurt the heavy queue’s asymptotic behavior, by the

choice of a scheduling policy.

It is evident that the light queue has the best possible asymptotic behavior under priority forL.

Although priority for L is non-idling, and therefore throughput-optimal in this simple setting, we are

ultimately interested in studying more sophisticated network models, where priority forL may not

be throughput optimal. We therefore analyze the asymptoticbehavior of general throughput optimal

policies belonging to the max-weight family.

V. QUEUE LENGTH ASYMPTOTICS FORMAX -WEIGHT-α SCHEDULING

In this section, we analyze the asymptotic tail behavior of the light queue distribution under max-

weight-α scheduling. For fixed parametersαH > 0 andαL > 0, the max-weight-α policy operates as
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follows: During each time slott, perform the comparison

qL(t)
αL R qH(t)αH ,

and serve one packet from the queue that wins the comparison.Ties can be broken arbitrarily, but we

break them in favor of the light queue for the sake of definiteness. Note thatαL = αH corresponds to

the usual max-weight policy, which serves the longest queuein each slot.αL/αH > 1 corresponds to

emphasizing the light queue over the heavy queue, and vice-versa.

We provide an asymptotic characterization of the light queue occupancy distribution under max-

weight-α scheduling by deriving matching upper and lower bounds. Ourcharacterization shows that the

light queue occupancy is heavy-tailed under max-weight-α scheduling for all values of the parameters

αH andαL. Since we obtain distributional bounds on the light queue occupancy, our results also shed

further light on the moment results derived in [14] for max-weight-α scheduling.

A. Upper bound

In this section, we derive two different upper bounds on the overflow probabilityP {qL > b} , that

both hold under max-weight-α scheduling. However, depending on the values ofαH andαL, one of

them would be tighter. The first upper bound holds for all non-idling policies, including max weight-α

scheduling.

Theorem 4:Under any non-idling policy, and for everyǫ > 0, there exists a constantκ1(ǫ) > 0,

such that

E

[

qCH−1−ǫ
L

]

< ∞ (16)

and

P {qL > b} < κ1(ǫ)b
−(CH−1−ǫ). (17)

Proof: Let us combine the two queues into one, and consider the sum input processH(t)+L(t) feeding

the composite queue. The server serves one packet from the composite queue in each slot. Under any

non-idling policy in the original system, the occupancy of the composite queue is given byq = qH+qL.

Let us first show that the combined input has tail coefficient equal toCH .

Lemma 2:The tail coefficient ofH(·) + L(·) is CH .

Proof: Clearly, E
[
(H + L)CH+δ

]
≥ E

[
HCH+δ

]
= ∞, for every δ > 0. We next need to show that

E
[
(H + L)CH−δ

]
< ∞, for every δ > 0. For a random variableX and eventE, let us introduce
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the notationE [X;E] = E [X1E ] , where 1E is the indicator ofE. (Thus, for example,E [X] =

E [X;E] + E [X;Ec] .) Now,

E

[

(H + L)CH−δ
]

= E

[

(H + L)CH−δ;H > L
]

+ E

[

(H + L)CH−δ;H ≤ L
]

≤ E

[

(2H)CH−δ;H > L
]

+ E

[

(2L)CH−δ;H ≤ L
]

< 2CH−δ
{

E

[

HCH−δ
]

+ E

[

LCH−δ
]}

< ∞

where the last inequality follows from the tail coefficient of H(·), and the light-tailed nature ofL(·).✷

The composite queue is therefore a G/D/1 queue with input tail coefficientCH . For such a queue, it

can be shown that

E
[
qCH−1−ǫ

]
< ∞. (18)

This is, in fact, a direct consequence of Theorem 1.

Thus, in terms of the queue lengths in the original system, wehave

E
[
(qH + qL)

CH−1−ǫ
]
< ∞,

from which it is immediate thatE
[

qCH−1−ǫ
L

]

< ∞. This proves (16). To show (17), we use the Markov

inequality to write

P {qL > b} = P

{

qCH−1−ǫ
L > bCH−1−ǫ

}

<
E

[

qCH−1−ǫ
L

]

bCH−1−ǫ
< κ1(ǫ)b

−(CH−1−ǫ).

✷

The above result asserts that the tail coefficient ofqL is at leastCH − 1 under any non-idling policy,

and thatP {qL > b} is uniformly upper bounded by a power-law curve. Our second upper bound is

specific to max-weight-α scheduling. It hinges on a simple observation regarding thescaling of theα

parameters, in addition to a theorem in [14]. We first state the following elementary observation due to

its usefulness.

Observation:(Scaling ofα parameters) LetαH andαL be given parameters of a max-weight-α policy,

and letβ > 0 be arbitrary. Then, the max-weight-α policy that uses the parametersβαH andβαL for

the queuesH andL respectively, isidentical to the original policy. That is, in each time slot, the two

policies make the same scheduling decision.

Next, let us invoke an important result from [14].

Theorem 5:If max-weight-α scheduling is performed with0 < αH < CH−1, then, foranyαL > 0,

we haveE
[
qαL

L

]
< ∞.
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Thus, by choosing a large enoughαL, any moment of the light queue length can be made finite, as

long asαH < CH − 1. Our second upper bound, which we state next, holds regardless of how theα

parameters are chosen.

Theorem 6:Define

γ =
αL

αH
(CH − 1).

Under max weight-α scheduling, and for everyǫ > 0, there exists a constantκ2(ǫ) > 0, such that

E

[

qγ−ǫ
L

]

< ∞ (19)

and

P {qL > b} < κ2(ǫ)b
−(γ−ǫ). (20)

Proof: Givenǫ > 0, let us chooseβ = (CH−1)/αH−ǫ/αL, and perform max-weight-α scheduling with

parametersβαH andβαL. According to the above observation, this policy is identical to the original

max-weight-α policy. Next, sinceβαH < CH − 1, Theorem 5 applies, and we haveE
[

qβαL

L

]

=

E

[

qγ−ǫ
L

]

< ∞, which proves (19). Finally, (20) can be proved using (19) andthe Markov inequality.

✷

The above theorem asserts that the tail coefficient ofqL is at leastγ under the max weight-α

policy. We remark that Theorem 4 and Theorem 6 both hold for max-weight-α scheduling with any

parameters. However, one of them yields a stronger bound than the other, depending on theα parameters.

Specifically, we have the following two cases:

(i) αL

αH

≤ 1 : This is the regime where the light queue is given lesser priority, when compared to the

heavy queue. In this case, Theorem 4 yields a stronger bound.

(ii) αL

αH

> 1 : This is the regime where the light queue is given more priority compared to the heavy

queue. In this case, Theorem 6 gives the stronger bound.

Remark 1:The upper bounds in this section hold wheneverH(·) is heavy-tailed with tail coefficient

CH . We need the assumptionH(·) ∈ OR only to derive the lower bounds in the next subsection.

B. Lower bound

In this section, we state our main lower bound result, which asymptotically lower bounds the tail of

the light queue distribution in terms of the tail of the residual variableHR.
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Theorem 7:Let H(·) ∈ OR. Then, under max-weight-α scheduling with parametersαH andαL,

the distribution of the light queue occupancy satisfies the following asymptotic lower bounds:

1) If αL

αH

< 1,

P {qL ≥ b} & λHP

{

HR ≥
b

λL

}

(21)

2) If αL

αH

= 1,

P {qL ≥ b} & λHP

{

HR ≥ b

(

1 +
1

λL

)}

(22)

3) If αL

αH

> 1,

P {qL ≥ b} & λHP

{

HR ≥ bαL/αH

}

. (23)

As a special case of the above theorem, whenH(·) is regularly varying with indexCH , the lower

bounds take on a more pleasing power-law form that matches the upper bounds (17) and (20).

Corollary 2: SupposeH(·) ∈ R(CH). Then, under max-weight-α scheduling with parametersαH

andαL, the distribution of the light queue satisfies the followingasymptotic lower bounds:

1) If αL

αH

≤ 1,

P {qL ≥ b} & U(b)b−(CH−1) (24)

2) If αL

αH

> 1,

P {qL ≥ b} & U(b)b−γ , (25)

whereU(·) is some slowly varying function.

It takes several steps to prove Theorem 7; we start by definingand studying a related fictitious

queueing system.

C. Fictitious system

The fictitious system consists of two queues, fed by thesame input processesthat feed the original

system. In the fictitious system, let us call the queues fed byheavy and light trafficH̃ andL̃ respectively.

The fictitious system operates under the following service discipline.

Service for the fictitious system:The queueH̃ receives service in every time slot. The queueL̃

receives service at timet if and only if qL̃(t)
αL ≥ qH̃(t)αH .

Note that ifL̃ receives service and̃H is non-empty,two packets are served from the fictitious system.

Also, H̃ is just a discrete timeG/D/1 queue, since it receives service at every time slot. We now show

a simple result which asserts that the light queue in the original system is ‘longer’ than in the fictitious

system.
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Proposition 10: Suppose a given input sample path feeds the queues in both theoriginal and the

fictitious systems. Then, for allt, it holds thatqL̃(t) ≤ qL(t). In particular, for eachb > 0, we have

P {qL > b} ≥ P
{
qL̃ > b

}
.

Proof: We will assume the contrary and arrive at a contradiction. SupposeqL̃(0) = qL(0), and that for

some timet > 0, qL̃(t) > qL(t). Let τ > 0 be the first time whenqL̃(τ) > qL(τ). It is then necessary

that qL̃(τ − 1) = qL(τ − 1), since no more than one packet is served from a queue in each slot. Next,

qL̃(τ − 1) = qL(τ − 1), and qL̃(τ) > qL(τ) together imply thatL received service at timeτ − 1, but

L̃ did not. This is possible only ifqH(τ − 1) < qH̃(τ − 1), which is a contradiction, sincẽH receives

service in each slot. ✷

Next, we show that the distribution ofqL̃ satisfies the lower bounds in Equations (21)-(23). Theorem 7

then follows, in light of Proposition 10.

Theorem 8:In the fictitious system, the distribution ofqL̃ is asymptotically lower bounded as follows.

1) If αL

αH

< 1,

P
{
qL̃ > b

}
& λHP

{

HR >
b

λL

}

(26)

2) If αL

αH

= 1,

P
{
qL̃ > b

}
& λHP

{

HR > b

(

1 +
1

λL

)}

(27)

3) If αL

αH

> 1,

P
{
qL̃ > b

}
& λHP

{

HR > bαL/αH

}

(28)

Proof: Let us consider an instantt when the fictitious system is in steady-state. Since the heavy queue

in the fictitious system receives service in each slot, the steady-state probabilityP
{
qH̃ > 0

}
= λH by

Little’s law. Therefore, we have the lower bound

P
{
qL̃ > b

}
≥ λHP

{
qL̃ > b|qH̃ > 0

}
.

In the rest of the proof, we will lower bound the above conditional probability.

Indeed, conditioned onqH̃ > 0, denote as before bỹB(t), the number of packets that belong to the

head-of-line burst that still remain iñH at time t. Similarly, denote byÃ(t) the number of packets

from the head-of-line burst that have already been served bytime t. SinceH̃ is served in every time

slot, Ã(t) also denotes the number of time slots that the HoL burst has been in service atH̃.

The reminder of our proof shows thatqL̃(t) stochastically dominates a particular heavy-tailed random

variable. Indeed, at the instantt, there are two possibilities:
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(a) qL̃(t)
αL ≥ B̃(t)αH , or

(b) qL̃(t)
αL < B̃(t)αH ,

Let us take a closer look at case (b) in the following proposition.

Proposition 11: Suppose that

qL̃(t)
αL < B̃(t)αH .

Let σ ≤ t be the instant beforet thatL̃ last received service. Then, the current head-of-line burst arrived

at H̃ after the instantσ.

Proof: We have

qH̃(σ)αH ≤ qL̃(σ)
αL ≤ qL̃(t)

αL < B̃(t)αH .

The first inequality holds becausẽL received service atσ, the second inequality is true sincẽL does

not receive service betweenσ andt, and the final inequality is from the hypothesis.

We have shown thatqH̃(σ) < B̃(t), and hence the HoL burst could not have arrived by the time slot

σ. ✷

The above proposition implies that if case (b) holds,L̃ has not received service ever since the HoL

burst arrived atH̃. In particular,L̃ has not received service for̃A(t) time slots, and it accumulates all

arrivals that occur during the interval[t − Ã(t), t]. Let us denote the number of arrivals tõL during

this interval as

SÃ =

t∑

i=t−Ã(t)

L(i).

In this notation, our argument above implies that if case (b)holds, thenqL̃(t) ≥ SÃ. Putting this

together with case (a), we can conclude that

qL̃(t) ≥ min(B̃(t)αH/αL , SÃ). (29)

Therefore,

P
{
qL̃(t) > b

}
≥ λHP

{

B̃(t)αH/αL > b, SÃ > b
}

. (30)

Recall now that in steady-state,̃B(t) is distributed asHR, and Ã(t) is distributed asHA. Therefore,

the above bound can be written as

P
{
qL̃ > b

}
≥ λHP

{

H
αH/αL

R > b,

HA∑

i=1

L(i) > b

}

. (31)
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Lemma 5 shows that

P

{

H
αH/αL

R > b,

HA∑

i=1

L(i) > b

}

∼







P

{

HR ≥ b
λL

}
αL

αH

< 1,

P

{

HR ≥ b+ b
λL

}
αL

αH

= 1,

P
{
HR ≥ bαL/αH

}
αL

αH

> 1.

Notice that the assumptionH(·) ∈ OR is used in the proof of Lemma 5.

Theorem 8 now follows from the above asymptotic relation and(31). ✷

Proof of Theorem 7:The result follows from Theorem 8 and Proposition 10. ✷

VI. TAIL COEFFICIENT OFqL

In this section, we characterize the exact tail coefficient of the light queue distribution under max-

weight-α scheduling. In particular, we show that the upper bound (16)is tight for αL

αH

≤ 1, and (19) is

tight for αL

αH

> 1.

Theorem 9:The tail coefficient of the steady-state queue lengthqL of the light queue is given by

(i) CH − 1 for αL

αH

≤ 1, and

(ii) γ = αL

αH

(CH − 1) for αL

αH

> 1.

Proof: Consider first the caseαL

αH

≤ 1. The lower order (Definition 3) ofqL can be upper bounded

using (21) or (22) as follows

lim inf
b→∞

−
log P {qL > b}

log b
≤ lim inf

b→∞
−
log λH + log P

{

HR ≥ b
λL

}

log b

= lim inf
a→∞

−
logP {HR ≥ a}

log a
= CH − 1.

The last step is from Proposition 5. The above equation showsthat the tail coefficient ofqL is at most

CH − 1. However, it is evident from (16) that the tail coefficient ofqL is at leastCH − 1. Therefore,

the tail coefficient ofqL equalsCH − 1 for αL

αH

≤ 1. This proves case (i) of the theorem.

Next, considerαL

αH

> 1. Using (23), we can upper bound the lower order ofqL as

lim inf
b→∞

−
logP {qL > b}

log b
≤ lim inf

b→∞
−
logP

{
HR ≥ bαL/αH

}

log b

=
αL

αH
lim inf
a→∞

− logP {HR ≥ a}

log a
=

αL

αH
(CH − 1) (32)

Equation (32) shows that the tail coefficient ofqL is at mostγ. However, it is evident from (19) that

the tail coefficient ofqL is at leastγ. Therefore, the tail coefficient ofqL equalsγ = αL

αH

(CH − 1) for

αL

αH

> 1. This proves case (ii) of the theorem. ✷
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Fig. 2. The tail coefficient ofqL under max-weightα scheduling, as a function ofαL/αH , for CH = 2.5.

In Figure 2, we show the tail coefficient ofqL as a function of the ratioαL/αH . We see that the

tail coefficient is constant at the valueCH − 1 asαL/αH varies from 0 to 1. Recall thatαL/αH = 1

corresponds to max-weight scheduling, whileαL/αH ↓ 0 corresponds to priority forH. Thus, the tail

coefficient ofqL under max-weight scheduling is the same as the tail coefficient under priority forH,

implying that the max-weight policy leads to theworst possibleasymptotic behavior for the light queue

among all non-idling policies. However, the tail coefficient of qL begins to improve in proportion to

the ratioαL/αH in the regime where the light queue is given more importance.

Remark 2: If the heavy-tailed input has infinite variance (CH < 2), then it follows from Theorem 9

that the expected delay in the light queue is infinite under max-weight scheduling. Thus, [14, Proposition

5] is a special case of the above theorem.

VII. L OG-MAX -WEIGHT SCHEDULING

We showed in Theorem 9 that the light queue occupancy distribution is necessarily heavy-tailed with

a finite tail coefficient, under max-weight-α scheduling. On the other hand, the priority forL policy

which ensures the best possible asymptotic behavior for both queues, suffers from possible instability

effects in more general queueing networks.

In this section, we propose and analyze the log-max-weight (LMW) policy. We show that thelight

queue distribution is light-tailedunder LMW scheduling, i.e., thatP {qL > b} decays exponentially fast

in b. However, unlike the priority forL policy, LMW scheduling is throughput optimal even in more
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general settings. For our simple system model, we define the LMW policy as follows:

In each time slott, the log-max-weight policy compares

qL(t) R log(1 + qH(t)),

and serves one packet from the queue that wins the comparison. Ties are broken in favor of the light

queue.

The main idea in the LMW policy is to give preference to the light queue to a far greater extent than

any max-weight-α policy. Specifically, forαL/αH > 1, the max-weight-α policy comparesqL to a

power ofqH that is smaller than 1. On the other hand, LMW scheduling comparesqL to a logarithmic

function of qH , leading to a significant preference for the light queue. It turns out that this significant

de-emphasis of the heavy queue with respect to the light queue is sufficient to ensure an exponential

decay for the distribution ofqL in our setting.

Furthermore, the LMW policy has another useful property when the heavy queue gets overwhelmingly

large. Although the LMW policy significantly de-emphasizesthe heavy queue, it does notignore it,

unlike the priority forL policy. That is, if theH queue occupancy gets overwhelmingly large compared

to L, the LMW policy will serve theH queue. In contrast, the priority forL policy will ignore any

build-up in H, as long asL is non-empty. This property turns out to be crucial in more complex

queueing models, where throughput optimality is non-trivial to obtain. For example, when the queues

have time-varying connectivity, the LMW policy will stabilize both queues for all rates within the rate

region, whereas priority forL leads to instability effects inH.

Our main result in this section shows that under the LMW policy, P {qL > b} decays exponentially

fast in b, unlike under max-weight-α scheduling.

Theorem 10:Under log-max-weight scheduling,qL is light-tailed. Specifically, it holds that

lim inf
b→∞

−
1

b
logP {qL ≥ b} ≥ min(EL, CH − 1), (33)

whereEL is the intrinsic exponent, given by (13), (15).

Proof: Fix a smallδ > 0. We first write the equality
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P {qL ≥ b} = P {qL ≥ b; log(1 + qH) < δb}
︸ ︷︷ ︸

(i)

+ P {qL ≥ b; (1− δ)b ≥ log(1 + qH) ≥ δb}
︸ ︷︷ ︸

(ii)

+ P {qL ≥ b; log(1 + qH) > (1− δ)b}
︸ ︷︷ ︸

(iii)

(34)

We will next upper bound each of the above three terms on the right.

(i) P {qL ≥ b; log(1 + qH) < δb} : Intuitively, this event corresponds to an overflow of the light

queue, when the light queue is not ‘exponentially large’ inb, i.e., qH < exp(δb) − 1. Suppose

without loss of generality that this event happens at time0. Denote by−τ ≤ 0 the last instant

when the heavy queue received service. SinceH has not received service since−τ , it is clear that

log(1 + qH(−τ)) < δb. Thus,qL(−τ) < δb.

In the time interval[−τ + 1, 0] the light queue receives service in each slot. In spite of receiving

all the service, it grows from less thanδb to overflow at time0. This implies that every time the

event in (i) occurs, there necessarily exists−u ≤ 0 satisfying

0∑

i=−u+1

(L(i) − 1) > (1− δ)b.

Therefore,

P {qL ≥ b; log(1 + qH) < δb} ≤ P

{

∃u ≥ 0

∣
∣
∣
∣
∣

0∑

i=−u+1

(L(i) − 1) > (1− δ)b

}

.

Letting Su =
∑0

i=−u+1 L(i), the above inequality can be written as

P {qL ≥ b; log(1 + qH) < δb} ≤ P

{

sup
u≥0

(Su − u) > (1− δ)b

}

. (35)

The right hand side of (35) is precisely the probability of a single server queue fed by the process

L(·) reaching the level(1 − δ)b. Standard large deviation bounds are known for such an event.

Specifically, from [10, Lemma 1.5], we get

lim inf
b→∞

−
1

b
log P

{

sup
u≥0

Su − u > (1− δ)b

}

≥ inf
u>0

uΛ∗
L

(

1 +
1− δ

u

)

= inf
a>0

1− δ

a
Λ∗
L(1 + a) = (1− δ)EL. (36)



24

From (35) and (36), we see that for everyǫ > 0 and for large enoughb,

P {qL ≥ b; log(1 + qH) < δb} < κ1e
−b(1−δ)(EL−ǫ). (37)

(iii) Let us deal with the term (iii) before (ii). This is the regime where the overflow ofL occurs, along

with H becoming exponentially large inb. We have

P {qL ≥ b; log(1 + qH) > (1− δ)b} = P

{

qL ≥ b; qH > e(1−δ)b − 1
}

≤ P

{

qL + qH > e(1−δ)b
}

We have shown earlier in the proof of Theorem 4 that for any non-idling policy,

P {qL + qH > M} < κ2M
−(CH−1−ǫ)

for everyǫ > 0 and someκ2 > 0. Therefore,

P {qL ≥ b; log(1 + qH) > (1− δ)b} < κ2 exp (−(1− δ)b(CH − 1− ǫ)) , ∀ ǫ > 0. (38)

(ii) Let us now deal with the second term,P {qL ≥ b; (1− δ)b ≥ log(1 + qH) ≥ δb} . Let us call this

eventE2. Suppose this event occurs at time 0. Denote by−τ ≤ 0 the last time during the current

busy period thatH received service, and define

η = log(1 + qH(−τ)).

If H never received service during the current busy period, we take τ to be equal to the last instant

that the system was empty, andη = 0. We can deduce thatη ≤ (1 − δ)b, becauseH receives

no service in[−τ + 1, 0]. It is also clear thatqL(−τ) < η. Therefore,L grows from less thanη

to more thanb, in spite of receiving all the service in[−τ + 1, 0]. Using u and ξ as ‘dummy’

variables that represent the possible values taken byτ andη respectively, we can write

P {E2} ≤ P

{

∃ ξ ≤ (1− δ)b, u ≥ 0
∣
∣
∣Su − u > b− ξ; qH(−u) + qL(−u) ≥ eξ

}

≤

(1−δ)b
∑

ξ=0

P

{

∃ u ≥ 0
∣
∣
∣Su − u > b− ξ; qH(−u) + qL(−u) ≥ eξ

}

≤

(1−δ)b
∑

ξ=0

∑

u≥0

P

{

Su − u > b− ξ; qH(−u) + qL(−u) ≥ eξ
}

where the last two steps are by the union bound. Notice now that for every u ≥ 0, the event

Su − u > b− ξ is independent of the value ofqH(−u) + qL(−u), since these are determined by
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arrivals in disjoint intervals. Therefore, continuing from above

=

(1−δ)b
∑

ξ=0

∑

u≥0

P {Su − u > b− ξ}P
{

qH(−u) + qL(−u) ≥ eξ
}

≤

(1−δ)b
∑

ξ=0

∑

u≥0

P {Su − u > b− ξ}κ2e
−(CH−1−ǫ)ξ, ∀ ǫ > 0 (39)

≤

(1−δ)b
∑

ξ=0

κ1e
−(EL−ǫ)(b−ξ)κ2e

−(CH−1−ǫ)ξ, ∀ ǫ > 0. (40)

Equation (39) follows from (17), and (40) is a classical large deviation bound that follows, for

example, from [10, Lemma 1.5]. Thus, for everyǫ > 0,

P {E2} ≤

(1−δ)b
∑

ξ=0

κ1κ2e
−[(CH−1−ǫ)ξ+(EL−ǫ)(b−ξ)]. (41)

Let us now distinguish two cases:

– CH − 1 > EL : In this case, we can bound the above probability as

P {E2} ≤ κe−b(EL−ǫ), ∀ǫ > 0, (42)

whereκ > 0 is some constant.

– CH − 1 ≤ EL : In this case,

P {E2} ≤ κe−b(CH−1−ǫ)(1−δ), ∀ǫ > 0. (43)

Let us now put together the bounds on terms (i), (ii) and (iii)into Equation (34).

1) If CH − 1 > EL, we get from (37), (38), and (42),

P {qL ≥ b} < e−b(1−δ)(EL−ǫ)
[

κ1 + κ2e
−((1−δ)b(CH−1−EL)) + κ

]

, (44)

from which it is immediate that

lim inf
b→∞

−
1

b
logP {qL ≥ b} ≥ (1− δ)(EL − ǫ).

Since the above is true for eachǫ andδ, we get

lim inf
b→∞

−
1

b
log P {qL ≥ b} ≥ EL. (45)

2) If CH − 1 ≤ EL, we get from (37), (38), and (43),

P {qL ≥ b} < e−b(1−δ)(CH−1−ǫ)
[

κ1e
−((1−δ)b(EL−CH+1)) + κ2 + κ

]

, (46)
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from which it is immediate that

lim inf
b→∞

−
1

b
log P {qL ≥ b} ≥ (1− δ)(CH − 1− ǫ).

Since the above is true for eachǫ andδ, we get

lim inf
b→∞

−
1

b
logP {qL ≥ b} ≥ CH − 1. (47)

Theorem 10 now follows from (45) and (47). ✷

Thus, the light queue tail is upper bounded by an exponentialterm, whose rate of decay is given by

the smaller of the intrinsic exponentEL, andCH − 1. We remark that Theorem 10 utilizes only the

light-tailed nature ofL(·), and the tail coefficient ofH(·). Specifically, we do not need to assume any

regularity property such asH(·) ∈ OR for the result to hold. However, if we assume that the tail of

H(·) is regularly varying, we can obtain a matching lower bound tothe upper bound in Theorem 10.

Theorem 11:Suppose thatH(·) ∈ R(CH). Then, under LMW scheduling, the tail distribution ofqL

satisfies an LDP with rate function given by

lim
b→∞

−
1

b
logP {qL ≥ b} = min(EL, CH − 1).

Proof: In light of Theorem 10, it is enough to prove that

lim sup
b→∞

−
1

b
log P {qL ≥ b} ≤ min(EL, CH − 1).

Let us denote byq(p)L the queue length of the light queue, when it is given completepriority over

H. Note thatP
{

q
(p)
L > b

}

is a lower bound on the overflow probability underany policy, including

LMW. Therefore, for allb > 0, P {qL ≥ b} ≥ P

{

q
(p)
L > b

}

. This implies

lim sup
b→∞

−
1

b
logP {qL ≥ b} ≤ lim sup

b→∞
−
1

b
log P

{

q
(p)
L > b

}

= EL, (48)

where the last step is from (14).

Next, we can show, following the arguments in Proposition 10and Theorem 8 that

P {qL ≥ b} ≥ λHP

{

HR ≥ eb − 1;

HA∑

i=1

L(i) ≥ b

}

.

But arguing similarly to Lemma 5, we can show that

P

{

HR ≥ eb − 1;

HA∑

i=1

L(i) ≥ b

}

∼ P

{

HR ≥ eb − 1
}

.
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Fig. 3. The large deviation exponent forqL under LMW scheduling, as a function ofλL. The light queue is fed by Poisson

bursts, andCH = 2.5.

Thus,

P {qL ≥ b} & P

{

HR ≥ eb − 1
}

.

Next, sinceH(·) is regularly varying with tail coefficientCH , HR is also regularly varying with tail

coefficientCH − 1, so thatP
{
HR ≥ eb − 1

}
= U(eb)e−b(CH−1). Finally we can write

lim sup
b→∞

−
1

b
log P {qL ≥ b} ≤ lim sup

b→∞
−
1

b
logP

{

HR ≥ eb − 1
}

= CH − 1− lim sup
b→∞

logU(eb)

b
.

The final limit supremum is shown to be zero in Lemma 6, using a representation theorem for slowly

varying functions. Thus,

lim sup
b→∞

−
1

b
logP {qL ≥ b} ≤ CH − 1. (49)

Equations (48) and (49) imply the theorem. ✷

Figure 3 shows the large deviation exponent given by Theorem11 as a function ofλL, for CH = 2.5,

and Poisson inputs feeding the light queue. There are two distinct regimes in the plot, corresponding

to two fundamentally different modes of overflow. For relatively large values ofλL, the exponent for

the LMW policy equalsEL, the intrinsic exponent. In this regime, the light queue overflows entirely

due to atypical behavior in the input processL(·). In other words,qL would have grown close to the

level b even if the heavy queue was absent. This mode of overflow is more likely for larger values of

λL, which explains the diminishing exponent in this regime.

The flat portion of the curve in Figure 3 corresponds to a second overflow mode. In this regime, the

overflow of the light queue occurs due to extreme misbehavioron the part of the heavy-tailed input.
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Specifically, the heavy queue becomes larger thaneb after receiving a very large burst. After this instant,

the heavy queue hogs all the service, and the light queue getsstarved until it gradually builds up to

the levelb. In this regime, the light queue input behaves typically, andplays no role in the overflow

of L. That is, the exponent is independent ofλL, being equal to a constantCH − 1. The exponent is

decided entirely by the ‘burstiness’ of the heavy-tailed traffic, which is reflected in the tail coefficient.

VIII. C ONCLUDING REMARKS

We considered a system of parallel queues fed by a mix of heavy-tailed and light-tailed traffic,

and served by a single server. We studied the asymptotic behavior of the queue size distributions

under various scheduling policies. We showed that the occupancy distribution of the heavy queue is

asymptotically insensitive to the scheduling policy used,and inevitably heavy-tailed. In contrast, the

light queue occupancy distribution can be heavy-tailed or light-tailed depending on the scheduling

policy.

The major contribution of the paper is in the derivation of anexact asymptotic characterization of the

light queue occupancy distribution, under max-weight-α scheduling. We showed that the light queue

distribution is heavy-tailed with a finite tail coefficient under max-weight-α scheduling, for any values

of the scheduling parameters. However, the tail coefficientcan be improved by choosing the scheduling

parameters to favor the light queue. We also observed that ‘plain’ max-weight scheduling leads to the

worst possible asymptotic behavior of the light queue distribution, among all non-idling policies.

Another important contribution of the paper is the log-max-weight policy, and the corresponding

asymptotic analysis. We showed that the light queue occupancy distribution is light-tailed under LMW

scheduling, and explicitly derived an exponentially decaying upper bound on the tail of the light queue

distribution. Additionally, the LMW policy also has the desirable property of being throughput optimal

in a general queueing network.

Although we study a very simple queueing network in this paper, we believe that the insights obtained

from this study are valuable in much more general settings. For instance, in a general queueing network

with a mix of light-tailed and heavy-tailed traffic flows, we expect that the celebrated max-weight policy

has the tendency to ‘infect’ competing light-tailed flows with heavy-tailed asymptotics. A similar effect

was also noted in [14], in the context of expected delay.

We also believe that the LMW policy occupies a unique ‘sweet spot’ in the context of scheduling

light-tailed traffic in the presence of heavy-tailed traffic. This is because the LMW policy de-emphasizes
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the heavy-tailed flow sufficiently to maintain good light queue asymptotics, while also ensuring network-

wide stability.

For future work, we propose the extension of the results in this paper to more general single-hop and

multi-hop network models. Even in the context of parallel queues, the incorporation of time-varying

channel models presents an interesting direction.

APPENDIX

Lemma 3:P {HR ≥ m, HA ≥ n} = P {HR ≥ m+ n}

Proof: Using (1) and (2),

P {HR ≥ m, HA ≥ n} =
∑

k≥m

∑

l≥n

P {H+ = k + l}

E [H+]

=
∑

k≥m

∞∑

p=k+n

P {H+ = p}

E [H+]

=
∑

k≥m

P {HR = k + n}

= P {HR ≥ m+ n} .

✷

Lemma 4:Let N ∈ IR be a non-negative integer valued random variable. LetXi, i ≥ 1 be i.i.d.

non-negative light-tailed random variables, with meanµ, independent ofN. Define

SN =

N∑

i=1

Xi.

Then,

P {SN > b} ∼ P {N > b/µ} .

Proof: For notational ease, we will prove the result forµ = 1, although the result and proof technique

are applicable for anyµ > 0. First, for a fixedδ > 0, we have

P {SN > b} = P {SN > b; N ≤ b(1− δ)} + P {SN > b; N > b(1− δ)}

< P
{
S⌊b(1−δ)⌋ > b

}
+ P {N > b(1− δ)} . (50)

Next, we write a lower bound:
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P {SN > b} ≥ P {SN > b; N > b(1 + δ)}

= P {N > b(1 + δ)} − P {SN ≤ b; N > b(1 + δ)}

≥ P {N > b(1 + δ)} − P
{
S⌈b(1+δ)⌉ ≤ b

}
. (51)

Since theXi have a well defined moment generating function, their sampleaverage satisfies an

exponential concentration inequality around the mean. Specifically, we can show using the Chernoff

bound that there exist constantsκ, η such that

P
{
S⌊b(1−δ)⌋ > b

}
< κe−bη .

Thus, it follows that

P
{
S⌊b(1−δ)⌋ > b

}
= o(P {N > b}) (52)

asb → ∞. Similarly,

P
{
S⌊b(1+δ)⌋ ≤ b

}
= o(P {N > b}). (53)

Next, getting back to (50),

lim sup
b→∞

P {SN > b}

P {N > b}
≤ lim sup

b→∞

P
{
S⌊b(1−δ)⌋ > b

}

P {N > b}
+ lim sup

b→∞

P {N > b(1− δ)}

P {N > b}
.

The first term on the right hand side is zero in view of (52), so that for all δ, we have

lim sup
b→∞

P {SN > b}

P {N > b}
≤ lim sup

b→∞

P {N > b(1− δ)}

P {N > b}
.

Taking the limit asδ ↓ 0,

lim sup
b→∞

P {SN > b}

P {N > b}
≤ lim

δ↓0
lim sup
b→∞

P {N > b(1− δ)}

P {N > b}
= 1 (54)

The final limit is unity, by the definition of the classIR. Similarly, we can show using (51), (53) and

the intermediate-regular variation of the tail ofN that

lim inf
b→∞

P {SN > b}

P {N > b}
≥ 1. (55)

Equations (54) and (55) imply the result. ✷

The above lemma can be proved under more general assumptionsthan stated here, see [19].
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Lemma 5: If H(·) ∈ OR, we have

P

{

HR ≥ bαL/αH ,

HA∑

i=1

L(i) ≥ b

}

∼







P

{

HR ≥ b
λL

}
αL

αH

< 1,

P

{

HR ≥ b+ b
λL

}
αL

αH

= 1,

P
{
HR ≥ bαL/αH

}
αL

αH

> 1.

(56)

Proof: In this proof, let us takeλL = 1 for notational simplicity, although the same proof technique

works without this assumption. DenoteSn =
∑n

i=1 L(i). We first get an upper bound. For everyδ > 0,

we have

P

{

HR ≥ bαL/αH ; SHA
≥ b

}

=

P

{

HR ≥ bαL/αH ; SHA
≥ b; HA < b(1− δ)

}

+ P

{

HR ≥ bαL/αH ; SHA
≥ b; HA > b(1− δ)

}

< P {SHA
≥ b; HA < b(1− δ)} + P

{

HR ≥ bαL/αH ; HA > b(1− δ)
}

(57)

≤ P {SHA
≥ b; HA < b(1− δ)} + P

{

HR ≥ bαL/αH + b(1 − δ)
}

(58)

< P
{
S⌊b(1−δ)⌋ > b

}
+ P

{

HR ≥ bαL/αH + b(1 − δ)
}

. (59)

In (58) we have utilized Lemma 3, and in Equation (59), we haveused the independence ofHA and

L(·). Next, let us derive a lower bound.

P

{

HR ≥ bαL/αH ; SHA
≥ b

}

≥ P

{

HR ≥ bαL/αH ; SHA
≥ b; HA > b(1 + δ)

}

=

P

{

HR ≥ bαL/αH ; HA > b(1 + δ)
}

− P

{

HR ≥ bαL/αH ; SHA
< b; HA > b(1 + δ)

}

≥

P

{

HR ≥ bαL/αH ; HA > b(1 + δ)
}

− P {SHA
< b; HA > b(1 + δ)} ≥

P

{

HR ≥ bαL/αH + b(1 + δ)
}

− P
{
S⌈b(1+δ)⌉ ≤ b

}
. (60)

Equation (60) uses Lemma 3. Now, observe that the termsP
{
S⌊b(1−δ)⌋ > b

}
in (59) andP

{
S⌈b(1+δ)⌉ ≤ b

}

in (60) decay exponentially fast asb → ∞, for any δ > 0. This is becauseL(·) is light-tailed, and

their sample average satisfies an exponential concentration inequality around the mean (unity). More

precisely, a Chernoff bound can be used to show that

P
{
S⌊b(1−δ)⌋ > b

}
= o

(

P

{

HR ≥ bαL/αH + b
})

, (61)

and

P
{
S⌈b(1+δ)⌉ ≤ b

}
= o

(

P

{

HR ≥ bαL/αH + b
})

. (62)

Case (i): αL

αH

< 1. Using (59), we write

lim sup
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P {HR ≥ b}
≤ lim sup

b→∞

P
{
S⌊b(1−δ)⌋ > b

}

P {HR ≥ b}
+lim sup

b→∞

P
{
HR ≥ bαL/αH + b(1− δ)

}

P {HR ≥ b}
.
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The first limit supremum on the right is zero in view of (61). Since αL

αH

< 1, we can write

lim sup
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P {HR ≥ b}
≤ lim sup

b→∞

P {HR ≥ b(1− δ)}

P {HR ≥ b}
, ∀δ > 0.

Thus,

lim sup
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P {HR ≥ b}
≤ lim

δ↓0
lim sup
b→∞

P {HR ≥ b(1− δ)}

P {HR ≥ b}
= 1. (63)

The final limit is unity, because according to Lemma 1,H(·) ∈ OR impliesHR ∈ ER. SinceER ⊂ IR,

the final limit in (63) is unity, by the definition of intermediate-regular variation (Definition 2).

Along similar lines, we can use (60), (62), and the fact thatHR ∈ IR to show that

lim inf
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P {HR ≥ b}
≥ lim

δ↓0
lim inf
b→∞

P {HR ≥ b(1 + 2δ)}

P {HR ≥ b}
= 1. (64)

Equations (63) and (64) imply that

P

{

HR ≥ bαL/αH ; SHA
≥ b

}

∼ P {HR ≥ b} ,

which implies Lemma 5 forαL

αH

< 1, andλL = 1.

Case (ii): αL

αH

= 1. Similar to the previous case. Here, we get

P {HR ≥ b; SHA
≥ b} ∼ P {HR ≥ 2b} .

Case (iii): αL

αH

> 1.

For the upper bound, we have from (59) and (52),

lim sup
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P
{
HR ≥ bαL/αH

} ≤ lim sup
b→∞

P
{
HR ≥ bαL/αH + b(1− δ)

}

P
{
HR ≥ bαL/αH

} ≤ 1.

Similarly, for the lower bound, we have from (60) and (53),

lim inf
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P
{
HR ≥ bαL/αH

} ≥ lim inf
b→∞

P
{
HR ≥ bαL/αH + b(1 + δ)

}

P
{
HR ≥ bαL/αH

} ,

≥ lim inf
b→∞

P
{
HR ≥ bαL/αH (1 + δ)

}

P
{
HR ≥ bαL/αH

} , ∀δ > 0.

Thus,

lim inf
b→∞

P
{
HR ≥ bαL/αH ; SHA

≥ b
}

P
{
HR ≥ bαL/αH

} ≥ lim
δ↓0

lim inf
b→∞

P
{
HR ≥ bαL/αH (1 + δ)

}

P
{
HR ≥ bαL/αH

} = 1,

where the last limit is unity due to the intermediate-regular variation ofHR. Therefore, we can conclude

for αL

αH

> 1 that

P

{

HR ≥ bαL/αH ; SHA
≥ b

}

∼ P

{

HR ≥ bαL/αH

}

.

Lemma 5 is now proved. ✷
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Lemma 6:For any slowly varying functionU(·),

lim
a→∞

logU(a)

log a
= 0.

Proof: We use the representation theorem for slowly varying functions derived in [8]. For every slowly

varying functionU(·), there exists aB > 0 such that for allx ≥ B, the function can be written as

U(x) = exp

(

v(x) +

∫ x

B

ζ(y)

y
dy

)

,

wherev(x) converges to a finite constant, andζ(x) → 0 asx → ∞. Therefore,

lim
a→∞

logU(a)

log a
= lim

a→∞

v(a) +
∫ a
B

ζ(y)
y dy

log a
= lim

a→∞

∫ a
B

ζ(y)
y dy

log a
,

where the last step is becausev(a) converges to a constant. Next, given anyǫ > 0, chooseC(ǫ) such

that |ζ(a)| < ǫ, ∀ a > C(ǫ). Then, we have

lim
a→∞

∣
∣
∣

∫ a
B

ζ(y)
y dy

∣
∣
∣

log a
≤ lim

a→∞

∫ C(ǫ)
B

|ζ(y)|
y dy +

∫ a
C(ǫ)

|ζ(y)|
y dy

log a
≤ lim

a→∞

ǫ log a
C(ǫ)

log a
= ǫ.

Since the above is true for everyǫ, the result follows. ✷
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