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Abstract

We investigate the asymptotic behavior of the steady-spa¢eie length distribution under general-
ized max-weight scheduling in the presence of heavy-taikffic. We consider a system consisting of
two parallel queues, served by a single server. One of theegueceives heavy-tailed traffic, and the
other receives light-tailed traffic. We study the class abtighput optimal max-weight- scheduling
policies, and derive an exact asymptotic characterizaifahe steady-state queue length distributions.
In particular, we show that the tail of the light queue disition is heavier than a power-law curve,
whose tail coefficient we obtain explicitly. Our asymptatitaracterization also contains an intuitively
surprising result — the celebrated max-weight scheduliwlgcy leads to theworst possibldail of the
light queue distribution, among all non-idling policies.

Motivated by the above ‘negative’ result regarding the maeight« policy, we analyze a log-
max-weight (LMW) scheduling policy. We show that the LMW gl guarantees an exponentially
decaying light queue tail, while still being throughput iofl.

. INTRODUCTION

Traditionally, traffic in telecommunication networks haseln modeled using Poisson and Markov-
modulated processes. These simple traffic models exhduafirandomness’, in the sense that much
of the variability occurs in short time scales, and only aarage behavior is perceived at longer time
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scales. With the spectacular growth of packet-switchetors such as the internet during the last
couple of decades, these traditional traffic models have Baewn to be inadequate. This is because
the traffic in packetized data networks is intrinsically edbursty’, and exhibits correlations over
longer time scales than can be modeled by any Markovian pootess. Empirical evidence, such as
the famous Bellcore study on self-similarity and long-ramgependence in ethernet traffic [13] lead to
increased interest in traffic models with high variability.

Heavy-tailed distributions, which have long been used tdehbigh variability and risk in finance and
insurance, were considered as viable candidates to madgt tin data networks. Further, theoretical
work such as[[12], linking heavy-tails to long-range depamzt (LRD) lent weight to the belief that
extreme variability in the internet file sizes is ultimatefsponsible for the LRD traffic patterns reported
in [13] and elsewhere.

Many of the early queueing theoretic results for heavyethitraffic were obtained for the single
server queue; seel[4]./[5].[18] for surveys of these resiiltsirns out that the service discipline plays
an important role in the latency experienced in a queue, wherraffic is heavy-tailed. For example,
it was shown in[[1] that any non-preemptive service disoiplleads to infinite expected delay, when
the traffic is sufficiently heavy-tailed. Further, the asyatigc behavior of latency under various service
disciplines such as first-come-first-served (FCFS) andgasmr sharing (PS), is markedly different
under light-tailed and heavy-tailed scenarios [4], [23}isTis important, for example, in the context of
scheduling jobs in server farms [11].

In the context of communication networks, a subset of th#ficrdows may be well modeled as
heavy-tailed, and the rest better modeled as light-tailedsuch a scenario, there are relatively few
studies on the problem of schedulibgtweerthe different flows, and the ensuing nature of interaction
between the heavy-tailed and light-tailed traffic. Perhéygsearliest, and one of the most important
studies in this category i§1[3], where the interaction betwight and heavy-tailed traffic flows under
generalized processor sharing (GPS) is studied. In tharptqe authors derive the asymptotic workload
behavior of the light-tailed flow, when its GPS weight is degghan its traffic intensity.

One of the key considerations in the design of a schedulingydor a queueing network is
throughput optimality which is the ability to support the largest set of trafficesathat is supportable
by a given queueing network. Queue length based scheduliiiggs, such as max-weight scheduling
[21], [22] and its many variants, are known to be throughputimal in a general queueing network.
For this reason, the max-weight family of scheduling pekchas received much attention in various

networking contexts, including switches [15], satellif&§], wireless[[1¥], and optical networks|[6].



In spite of a large and varied body of literature related towaight scheduling, it is somewhat sur-
prising that the policy has not been adequately studiedarctimtext of heavy-tailed traffic. Specifically,
a question arises as to what behavior we can expect due totdr@dtion of heavy and light-tailed
flows, when a throughput optimal max-weight-like schedyliolicy is employed. Our present work is
aimed at addressing this basic question.

In a recent paper [14], a special case of the problem coreddeere is studied. Specifically, it was
shown that when the heavy-tailed traffic has an infinite vexéa the light-tailed traffic experiences an
infinite expected delay under max-weight scheduling. Faurtih was shown that the max-weight policy
can be tweaked to favor the light-tailed traffic, so as to nthkeexpected delay of the light-tailed traffic
finite. In the present paper, we considerably generalizeetiesults by providing a precise asymptotic
characterization of the occupancy distributions under rttex-weight scheduling family, for a large
class of heavy-tailed traffic distributions.

We study a system consisting of two parallel queues, seryaaidingle server. One of the queues is
fed by a heavy-tailed arrival process, while the other istfgtight-tailed traffic. We refer to these queues
as the ‘heavy’ and ‘light’ queues, respectively. In thidisgt we analyze the asymptotic performance of
max-weighter scheduling, which is a generalized version of max-weighesdaling. Specifically, while
max-weight scheduling makes scheduling decisions by cangp#he queue lengths in the system, the
max-weighter policy uses different powers of the queue lengths to makediding decisions. Under
this policy, we derive an exact asymptotic characterization of the ligitue occupancy distributipn
andspecify all the bounded moments of the queue lengths

A surprising outcome of our asymptotic characterizatiothit the ‘plain’ max-weight scheduling
policy induces the worst possible asymptotic behavior anlipht queue tail. We also show that by
a choice of parameters in the max-weighpolicy that increases the preference afforded to the light
queue, the tail behavior of the light queue can be improvdtimbtely however, the tail of the light
gueue distribution is lower bounded by a power-law-likeveyifor any scheduling parameters used in
the max-weighiz scheduling policy. Intuitively, the reason max-weighscheduling induces a power-
law-like decay on the light queue distribution is that thghti queue has to compete with a typically
large heavy queue for service.

The simplest way to guarantee a good asymptotic behavigh#light queue distribution is to give
the light queue complete priority over the heavy queue, ab ithdoes not have to compete with the
heavy queue for service. We show that under priority for tghtilqueue, the tail distributions difoth

queues are asymptotically as good as they can possibly ber ang policy. Be that as it may, giving
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Fig. 1. A system of two parallel queues, with one of them fethwieavy-tailed traffic.

priority to the light queue has an important shortcoming is ihot throughput optimal for a general
constrained queueing system.

We therefore find ourselves in a situation where on the ond,ithe throughput optimal max-weight-
a scheduling leads to poor asymptotic performance for thit lgueue. On the other hand, giving
priority to the light queue leads to good asymptotic behatdo both queues, but is not throughput
optimal in general. To remedy this situation, we proposeraudjhput optimal log-max-weight (LMW)
scheduling policy, which gives significantly more imporanto the light queue compared to max-
weight« scheduling. We analyze the asymptotic behavior of the LMWcpand show that thdight
gueue occupancy distribution decays exponentidfg also obtain the exact large deviation exponent
of the light queue tail under a regularity assumption on teavig-tailed input. Thus, the LMW policy
has both desirable attributes — it is throughput optimadl ensures an exponentially decaying tail for
the light queue distribution.

The remainder of this paper is organized as follows. In $acki, we describe the system model.
In Section[Ill, we present the relevant definitions and mmdwecal preliminaries. Section ]V deals
with the queue length behavior under priority schedulingct®ng ¥ and VIl respectively contain our
asymptotic results for max-weight-scheduling, and the LMW policy. We conclude the paper ini8act
(VIIT]

[l. SYSTEM MODEL

Our system consists of two parallel queuBsand L, served by a single server, as depicted in Eig. 1.
Time is slotted, and stochastic arrivals of packet burstsioto each queue in each slot. The server
is capable of serving one packet per time slot from only onthefqueues according to a scheduling
policy. Let H(t) and L(t) denote the number of packets that arrive duringstoti and L respectively.
Although we postpone the precise assumptions on the traffieection III-B, let us loosely say that
the input L(¢) is light-tailed, andH (¢) is heavy-tailed. We will refer to the queuég and L as the

heavy and light queues, respectively. The queues are adsionbe always connected to the server. Let



qu(t) andqr(t), respectively, denote the number of packetddirand L during slott, and letqy and
qr, denote the steady-state queue lengths, when they existai@uis to characterize the behavior of

P{qr > b} andP {qy > b} asb becomes large, under various scheduling policies.

[1l. DEFINITIONS AND MATHEMATICAL PRELIMINARIES
A. Heavy-tailed distributions

We begin by defining some properties of tail distributionsnoh-negative random variables.
Definition 1: A random variableX is said to belight-tailed if there existsé > 0 for which
E [exp(6X)] < co. A random variable idheavy-tailedif it is not light-tailed.
In other words, a light-tailed random variable is one thas lmawell defined moment generating
function in a neighborhood of the origin. The complementdistribution function of a light-tailed
random variable decays at least exponentially fast. He¢aNgd random variables are those which have
complementary distribution functions that decay slowemtlany exponential. This class is often too
general to study, so sub-classes of heavy-tailed distoibsit such as sub-exponentials have been defined
and studied in the past [20]. We now review some definitions @xisting results on some relevant
classes of heavy-tailed distributions. In the remaindethid section,X will denote a non-negative
random variable, with complementary distribution funotiB(z) = P {X > x}. For the most part, we
adhere to the terminology inl[2],[7].

Notation: If f(x) andg(z) are positive functions defined df, o], we write f(x) ~ g(z) to mean

Similarly, f(x) 2 g(x) means

Definition 2: 1) F(x) is said to have aegularly varyingtail of index v, notationF' € R(v), if

F(k
i )

2) F(x) is said to beextended-regularly varyinghotation ' € £R, if for some realc,d > 0, and

I'>1, - -
k% < liminf li(kx) < limsup Flkz) < k¢, Vk € [1,T].




3) F(xz) is said to beintermediate-regularly varyingnotation ' € ZR, if

Fk Fk
lim lim inf _( ?) = lim lim sup _( ?) =1.
kl1 z—o00 F(l’) kIl z—o00 F(l’)

4) F(x) is said to beorder-regularly varying notationF € OR, if for someTl > 1,

F(k F(k
0 < lim inf _( 2) < limsupﬁ < oo, Vk € [1,T].

It is easy to see from the definitions th&t ¢ ER C ZR C OR. In fact, the containments are
proper, as shown in_[7]. IntuitivelyR is the class of distributions with tails that decay accogdio a

power-law with parameter. Indeed, it can be shown that
FeR < F(z)=U(z)z™",

whereU (z) is aslowly varyingfunction, i.e, a function that satisfié&kx) ~ U(z), Vk > 0. The other
three classes are increasingly more general, but as wessglthey all correspond to distributions that
are asymptotically heavier than some power-law curve. latwbllows, a statement such 88 € TR
should be construed to me&@{X >z} € IR.

Next, we define the lower and upper orders of a distribution.

Definition 3: 1) Thelower orderof F(z) is defined by

= e log F(z)
) =t g
2) Theupper orderof F(z) is defined by
p(F) = limsup _log F'(z)
T—00 IOgZL"

It can be shown that for regularly varying distributionsg thpper and lower orders coincide with the
index v. It also turns out that both the orders are finite for the cla®s, as asserted below.

Proposition 1: p(F) < o for every F € OR.

Proof: Follows from Theorem 2.1.7 & Proposition 2.2.5 id [2]. |

The following result, which is a consequence of Proposifijnshows that every® ¢ OR is
asymptotically heavier than a power-law curve.

Proposition 2: Let F' € OR. Then, for eaclp > p(F), we havez =" = o(F(z)) asx — oo.
Proof: See Equation (2.4) in [19].

Definitions[2 and 13 deal with asymptotic tail probabilitielseorandom variable. Next, we introduce

the notion of tail coefficient, which is momentproperty.



Definition 4: The tail coefficientof a random variableX is defined by
Cx =sup{c>0| E[X‘] < o0}.

In other words, the tail coefficient is the threshold whewe power moment of a random variable starts

to blow up. Note that the tail coefficient of a light-tailechdom variable is infinite. On the other hand,

the tail coefficient of a heavy-tailed random variable mayirifite (e.g., log-normal) or finite (e.qg.,

Pareto). The next result shows that the tail coefficient anderoare, in fact, closely related parameters.
Proposition B:H The tail coefficient ofX is equal to the lower order of ().

Proof: Suppose first that the lower order is infinite, so that for any 0, we can find an: large

enough such that
_logP{X > x} -

log x 5

Thus, for large enough, we have
P{X >z} <z™% Vs>0.

This impliesE [ X¢] < oo for all ¢ > 0. Therefore, the tail coefficient ok is also infinite.

Next suppose that(F) € (0,00). We will show that (i) E[X¢] < oo for all ¢ < &(F), and
(I)E[X°] = oo for all ¢ > ¢(F). To show (i), we argue as above that for large enoughve have
P{X >z} <a27% whens < ¢((F). Thus,E [X¢] < oo for all ¢ < ¢(F). To show (ii), let us consider
somes such thatc > s > ¢(F). By the definition of¢(F) there exists a sequende;} that increases
to infinity asi — oo, such that

—Mgs, Vi <— P{X >uz}>a2"° Vi

log x;
Therefore,
E[X9] = / w*dFy(z) > / wdFy (2) > 2P {X > @} > 2527, Vi,
0 T;
from which it follows thatE [X¢] = oo. Therefore, the tail coefficient ok is equal to&(F). O

We emphasize that Propositibh 3 holds &oryrandom variable, regardless of its regularity properties.
Finally, we show that any distribution i®@R necessarily has a finite tail coefficient.

Proposition 4:If X € OR, then X has a finite tail coefficient.

Proof: From Propositiofi]1, the upper order is finifg:F') < co. Thus, the lower orde¢(F) is also

finite. But Propositior I3 asserts that lower order is equah#tail coefficient. O

1The first author is grateful to Jayakrishnan Nair (Calteaty) $uggesting a proof of Propositidd 3 via a personal

communication.



B. Assumptions on the arrival processes
We are now ready to state the precise assumptions on thalarprocesses.

1) The arrival processed(t) andL(t) are independent of each other, and independent of the turren
state of the system.
2) H(t) is independent and identically distributed (i.i.d.) frototgo-slot.
3) L(t) is i.i.d. from slot-to-slot.
4) L(-) is light-tailed withE [L(t)] = AL.
5) H(-) € OR with tail coefficientCy > 1, andE [H(t)] = \g.
We also assume that; + Ay < 1, so that the input rate does not overwhelm the service raten,Th
it can be shown that the system is Stblmder any non-idling policy, and that the steady-state queu

lengthsqy andgq;, exist.

C. Residual and Age distributions

Here, we define the residual and age distributions for theyktsled input process, which will be
useful later. First, we note thdf (-) necessarily has a non zero probability mass at zero, sipce 1.

Define H, as the strictly positive part off(-). Specifically,

_ o P{H()=m} _
P{H, =m} = TP () =0} m=1,2,....

Note thatH has tail coefficient equal t6'y, and inherits any regularity property &f(-).
Now consider a discrete-time renewal process with inteewal times distributed ag, . Let Hy €
{1,2,...} denote the residual random variable, alid € {0,1,... } the age of the renewal process

[9]£ The joint distribution of the residual and the age can bevedrusing basic renewal theory:

P{H, =k+1}
E[H]

P{Hp =k Hy=1}= L ke{l,2...}, 1€{0,1,...}. (1)

The marginals offz and H4 can be derived fronl{1):

P{H, >k}

Fir =M= "Fm,]

L ke{1,2,...}. )

2The notion of stability used here is the positive recurresicthe system occupancy Markov chain.
3We have defined the residual time and age such that if a rermagats at a particular time slot, the age at that time slot

is zero, and the residual time is equal to the length of themying renewal interval.



P{H, >k}

P{Hj =k} = T ,ke{0,1,...}. (3)
Next, let us invoke a useful result from the literature.
Lemma 1:If H(-) € OR, thenHr € ER, and
3 7 s Q
A corresponding result also holds for the afaq.
Proof: See [7, Lemma 4.2(i)]. O

Using the above, we prove the important result that the vesidistribution isone order heavier
than the original distribution.

Proposition 5: If H(-) € OR has tail coefficient equal t6'y;, then Hr and H 4 have tail coefficient
equal toCy — 1.

Proof: According to [4), we have, for alt and some reaj,
—logP{HRr > a} < —loga —logP{H; > a} + x.

Let us now consider the lower order éfy :

liminf—lOgP{HR > a} < lim inf —loga —logP{H; > a} + x _
a—00 loga a—00 loga

Cyg —1.

In the last step above, we have used the tail coefficieri of Since the lower order off p equals its
tail coefficient (Lemmal3), the above relation shows thattttilecoefficient of Hy is at mostC'y — 1.

Next, to show the opposite inequality, let us considerdheation random variable, defined as
Hp = Hip+ Hy.

Using the joint distribution[(1), we can obtain the marginalH , as

WP {H, — k)
E[H]

Thus, for anye > 0, the Cy — 1 — ¢ moment of Hp, is finite:

P{Hp =k} = Cke{l,2,...}.

o [Hg,,—l—e} -y KOn kP {H, =k} _ £ [HEH_E] < .

= E[H] E[H]
Since Hpy, is stochastically dominated byl p, it is immediate thai£ [Hﬁ”‘l‘e} < oo. Therefore, the

tail coefficient of Hy is at leastCy — 1, and the proposition is proved. O
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IV. THE PRIORITY POLICIES

In this section, we study the two ‘extreme’ scheduling geb¢ namely priority forL and priority
for H. Our analysis helps us arrive at the important conclusi@t the tail of the heavy queue is
asymptotically insensitive to the scheduling policy. Imet words, there is not much we can do to
improve or hurt the tail distribution off by the choice of a scheduling policy. Further, we show that
giving priority to the light queue ensures the best possiisigmptotic decay foboth the queue length

distributions.

A. Priority for H

In this policy, H receives service whenever it is non-empty, dnteceives service only wheH is
empty. It should be intuitively clear at the outset that thidicy is bound to have undesirable impact
on the light queue. The reason we analyze this policy is thgives us a best case scenario for the
heavy queue.

Our first result shows that the steady-state heavy queugancy is one order heavier than its input
distribution.

Theorem 1:Under priority scheduling foi/, the steady-state queue occupancy distribution of the

heavy queue satisfies the following bounds.

1) For everye > 0, there exists &y (e) such that

P{qm > b} < kg ()b~ (Cu179) v, (5)
2)

P{qy > b} > \yP{Hpr > b}, V. (6)

Further,qy is a heavy-tailed random variable with tail coefficient dgwaCy — 1. That is, for each

e > 0, we have

B[] <o ™)
and
E [ng_He} = 0. (8)

Proof: Equation [[¥) can be shown using a straightforward Lyapunguraent, along the lines of [14,
Proposition 6]. Equatiori {5) follows froni](7) and the Markimequality.

Next, to show[(B), we consider a time instarat steady-state, and write

P{qu(t) > b} =P{qu(t) > blqu(t) > 0} P{qu(t) > 0} = AuP {qu(t) > blqu(t) > 0}.
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We have used Little’s law at steady-state to wiltdqy(¢) > 0} = Ay. Let us now lower bound
the termP {¢#(t) > blgr(t) > 0} . Conditioned onH being non-empty, denote by (t) the number of
packets that belong to the burst in service that still renraithe queue at time. Then, clearlygy (t) >
B(t), from whichP {qg (t) > blqg (t) > 0} > P {B(t) > b} . Now, since theH queue receives service
whenever it is non-empty, it is clear that the time spent athkad-of-line by a burst iequalto its
size. It can therefore be shown that in steady-state) is distributed according to the residual variable
Hpr. Thus,P{qu(t) > blgu(t) > 0} > P{Hg > b}, and [6) follows. Finally,[(B) follows from[(6) and
Propositior_b. O

When the distribution of/(-) is regularly varying, the lower bound](6) takes on a poweardarm
that agrees with the upper bourd (5).

Corollary 1: If H(-) € R(Cq), then

P{qm > b} > U(b)b~ = v p,

whereU(-) is some slowly varying function.
Since priority for H affords the most favorable treatment to the heavy queuspllibvis that the
asymptotic behavior off can be no better than the above unday policy.
Proposition 6: Under any scheduling policyy is heavy-tailed with tail coefficient at moéty — 1.
That is, Equation[(8) holds for all scheduling policies.
Proof: The tail probabilityP {¢; > b} under any other policy stochastically dominates the tadesn
priority for H. Therefore, the lower bounds] (6) arid (8) would hold for alligies. O
Interestingly, under priority forH, the steady-state light queue occupangyis also heavy-tailed
with the sametail coefficient asqy. This should not be surprising, since the light queue has t wa
for the entire heavy queue to clear, before it receives anyicee
Theorem 2:Under priority for H, ¢z, is heavy-tailed with tail coefficient'; — 1. Furthermore, the

tail distributionP {q;, > b} satisfies the following asymptotic bounds.

1) For everye > 0, there exists a,(¢) such that
P{qr > b} < k()b (Cr179), (9)

2) If H(-) € OR, then

b
IP){qL>b}2/\HIP>{HA>)\—} (10)
L

Proof: The upper bound{9) is a special case of Theokém 4 given in é¢xé section. Let us show

(@0). Notice first that the lower bounf (10) is asymptoticliken (§) which is exact. As before, let us
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consider a timg at steady-state, and write using Little’s law
P{ar(t) > b} = P{qr(t) > blgu(t) > 0} P{qu(t) > 0} = AuP{qr(t) > blgu(t) > 0}.

Let us denote byl (t) the number of slots that the current head-of-line burst le@nlin service. Clearly
then, L has not received any service in the interftal A(t), ], and has kept all the arrivals that occurred
during the interval. Thus, conditioned di being non-emptyq (¢t) > Zzzt_%) L(o). Next, it can
be seen that in steady-staté(t) is distributed as the age variablé,. Putting it all together, we can

write

H,
P{qr > b} > AgP{qr(t) > blgu(t) > 0} > AgP {Z L(i) > b} . (12)
i=1

Next, sinceH(-) € OR, Lemmall implies that/4, € ER C ZR. We can therefore invoke Lemnia 4

in the appendix to write
Hy
. b
]P’{;L(z)>b}~IP’{HA>)\—L}. (12)
Finally, (I0) follows from [I1) and(12). O

We note that ifH(-) is regularly varying, the lower bound (10) takes on a power-form that

matches the upper bound (9).

B. Priority for L

We now study the policy that servdswhenever it is non-empty, and servEsonly if L is empty.
This policy affords the best possible treatmentZt@nd the worst possible treatment &5, among all
non-idling policies. Under this policyl, is completely oblivious to the presence Hf, in the sense
that it receives service whenever it has a packet to be seffextefore, . behaves like a discrete time
G/D/1 queue, with light-tailed inputs. Classical large idéion bounds can be derived for such a queue;
see [10] for example.

Recall that sincd.(-) is light-tailed, the log moment generating function
Ar(0) = logE [eeL(')}

exists for some& > 0. Define
Er, =sup{0|AL(0) — 6 < 0}. (13)

Proposition 7: Under priority for L, ¢, satisfies the large deviation principle (LDP)

1
lim ——logP{q; > b} = Ef, (14)
b—soo b
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In words, the above proposition asserts that the tailofis asymptotically exponential, with rate
function E;,. We will refer to E;, as theintrinsic exponendf the light queue. An equivalent expression

for the intrinsic exponent that is often used in the literatis
1
E; = inf =A% (1 15
1 = nf ~A7(1+a), (15)

whereA (-) is the Fenchel-Legendre transform [[10] &f(6).

It is clear that the priority policy forl. gives the best possible asymptotic behavior for the light
gueue, and the worst possible treatment for the heavy q&uprisingly however, it turns out that the
heavy queue tail under priority fat is asymptotically as good as it is under priority fHr.

Proposition 8: Under priority for L, q is heavy-tailed with tail coefficien®'y — 1.

Proof: This is a special case of Theorérn 4, given in the next section. O

The above result also implies that the tail coefficienttbicannot be worse tha@';; — 1 under any
other scheduling policy.

Proposition 9: Under any non-idling scheduling policyy has a tail coefficient of at leasty — 1.
That is, Equation[{7) holds for all non-idling schedulindipies.

Proof: The tail probability {¢qz > b} under any other policy is stochastically dominated by thie ta
probability under priority forL. O

Propositiond 6 and]9 together imply the insensitivity of theavy queue’s tail distribution to the
scheduling policy. We state this important result in thdofelng theorem.

Theorem 3:Underany non-idling scheduling policyyy is heavy-tailed with tail coefficient equal to
Cy — 1. Further,P{qy > b} satisfies bounds of the forrhl(5) arid (6) under all non-idlingiges.
Therefore, it is not possible to either improve or hurt thavequeue’s asymptotic behavior, by the
choice of a scheduling policy.

It is evident that the light queue has the best possible amtiopgehavior under priority forl.
Although priority for L is non-idling, and therefore throughput-optimal in thimple setting, we are
ultimately interested in studying more sophisticated mekwmodels, where priority for, may not
be throughput optimal. We therefore analyze the asymptmitavior of general throughput optimal

policies belonging to the max-weight family.

V. QUEUE LENGTHASYMPTOTICS FORMAX-WEIGHT-av SCHEDULING

In this section, we analyze the asymptotic tail behaviorhef light queue distribution under max-

weight« scheduling. For fixed parametesg; > 0 anday, > 0, the max-weightx policy operates as



14

follows: During each time slot, perform the comparison
a ()™ = qu(t)™,

and serve one packet from the queue that wins the compai&scan be broken arbitrarily, but we
break them in favor of the light queue for the sake of defirg=n Note thaty;, = oy corresponds to
the usual max-weight policy, which serves the longest quetweach slotay /ay > 1 corresponds to
emphasizing the light queue over the heavy queue, and ey

We provide an asymptotic characterization of the light cueecupancy distribution under max-
weight« scheduling by deriving matching upper and lower bounds. édaracterization shows that the
light queue occupancy is heavy-tailed under max-weiglstheduling for all values of the parameters
ay anday. Since we obtain distributional bounds on the light queuaupaacy, our results also shed

further light on the moment results derived in[14] for magight« scheduling.

A. Upper bound

In this section, we derive two different upper bounds on therftow probabilityP {q;, > b} , that
both hold under max-weight-scheduling. However, depending on the valuesvgf and oy, one of
them would be tighter. The first upper bound holds for all mtimg policies, including max weight-
scheduling.

Theorem 4:Under any non-idling policy, and for every > 0, there exists a constant;(¢) > 0,
such that

E [qu—lﬂ < 00 (16)

and
P{qz > b} < k1 (e)b~(Crn7179), (17)

Proof: Let us combine the two queues into one, and consider the soum imocesd7 (t) + L(t) feeding
the composite queue. The server serves one packet from thposite queue in each slot. Under any
non-idling policy in the original system, the occupancylod tomposite queue is given hy= gy +qr..
Let us first show that the combined input has tail coefficieniad to C'y.

Lemma 2: The tail coefficient ofH () + L(-) is Cy.
Proof: Clearly, E [(H + L)% *°] > E [H“# ] = oo, for every§ > 0. We next need to show that

E [(H+L)CH‘5] < oo, for every§ > 0. For a random variableX and eventE, let us introduce
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the notationE [X; E] = E[X1g|, where 1g is the indicator of E. (Thus, for exampleE [X] =
E[X;E] +E[X; E.) Now,

E [(H + L)CH—‘S} - E [(H L L) s L} +E [(H F L) g < L}

IN

E [(2H)CH—5; H> L} +E [(2L)CH—5; H< L}

< 9Cu=6 {E [HCH—ﬂ +E [LCH—‘SH <o

where the last inequality follows from the tail coefficieritd (-), and the light-tailed nature af(-).0
The composite queue is therefore a G/D/1 queue with inputeaifficientCy; . For such a queue, it
can be shown that
E [¢“" 717 < . (18)

This is, in fact, a direct consequence of Theofém 1.

Thus, in terms of the queue lengths in the original systemhaee
E [(qm + )" 7] < oo,
from which it is immediate thak [qf”‘l‘e} < oo. This proves[(16). To show (17), we use the Markov
inequality to write

E ng—l—E
7z[o,,_1_5 L. ()b (@10,

P{gqr >b} =P {ng_l_E > bCH_l_E} <
O
The above result asserts that the tail coefficienjpfs at leastCy; — 1 under any non-idling policy,
and thatP {q;, > b} is uniformly upper bounded by a power-law curve. Our secoppeu bound is
specific to max-weight scheduling. It hinges on a simple observation regardingsttading of thea
parameters, in addition to a theorem|inl[14]. We first stagefttiowing elementary observation due to
its usefulness.
Observation:(Scaling ofa. parameters) Letvy; anday, be given parameters of a max-weighpolicy,
and letg > 0 be arbitrary. Then, the max-weightpolicy that uses the parametefa; and S« , for
the queuedd and L respectively, iddentical to the original policy. That is, in each time slot, the two
policies make the same scheduling decision.
Next, let us invoke an important result from [14].
Theorem 5:1f max-weight« scheduling is performed with < oy < Cy — 1, then, foranyay, > 0,

we haveE [¢7*] < oo.
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Thus, by choosing a large enough,, any moment of the light queue length can be made finite, as
long asay < Cgx — 1. Our second upper bound, which we state next, holds regardiehow thex
parameters are chosen.

Theorem 6:Define

Y= a—L(CH — 1).
ag

Under max weightx scheduling, and for every > 0, there exists a constant(e) > 0, such that
E [qz_e} < 00 (19)

and
P{qr > b} < ka(e)b~ 79, (20)

Proof: Givene > 0, let us choos® = (Cy—1)/apg—e¢/ar, and perform max-weight- scheduling with
parametergay and Say,. According to the above observation, this policy is identicathe original
max-weighter policy. Next, sincefay < Cy — 1, Theorem[b applies, and we haﬂ}i‘e[qfo‘ﬂ =
E [qz_ﬁ} < oo, which proves|[(I9). Finally[(20) can be proved usipgl (19) #r& Markov inequality.
0
The above theorem asserts that the tail coefficiengpfis at leasty under the max weight-
policy. We remark that Theorefd 4 and Theorem 6 both hold fox-meight« scheduling with any
parameters. However, one of them yields a stronger boumdtigeother, depending on theparameters.
Specifically, we have the following two cases:
(i) 5= <1:Thisis the regime where the light queue is given lesser ifyjorhen compared to the
heavy queue. In this case, Theorem 4 yields a stronger bound.
(i) &= >1:This is the regime where the light queue is given more pyiccimpared to the heavy
gueue. In this case, Theorém 6 gives the stronger bound.
Remark 1: The upper bounds in this section hold whenekfér) is heavy-tailed with tail coefficient

Cr. We need the assumptidii(-) € OR only to derive the lower bounds in the next subsection.

B. Lower bound

In this section, we state our main lower bound result, whigymaptotically lower bounds the tail of

the light queue distribution in terms of the tail of the restlvariable H .
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Theorem 7:Let H(-) € OR. Then, under max-weight- scheduling with parametersy and oy,

the distribution of the light queue occupancy satisfies tlewing asymptotic lower bounds:

1) If 2= <1,

P{qy > b} 2 AP {HR > Ai} (21)
L

2) If o2 =1,

P{qub}zAHP{Hsz<1+%>} (22)
L

3) If 5= >1,

P{as > b} 2 AuP { Hp > b/} (23)

As a special case of the above theorem, wiigfi) is regularly varying with indexCy, the lower
bounds take on a more pleasing power-law form that matchesipper bounds (17) and (20).
Corollary 2: SupposeH () € R(Cg). Then, under max-weight- scheduling with parametersy;
and ay,, the distribution of the light queue satisfies the followissymptotic lower bounds:
1) If &= <1,
P{qz > b} 2 U(b)b~ Y (24)
2) If o2 > 1,
P{qr > b} 2 U(D)b™7, (25)

whereU () is some slowly varying function.
It takes several steps to prove TheorEm 7; we start by defiaidy studying a related fictitious

gueueing system.

C. Fictitious system

The fictitious system consists of two queues, fed bygshme input processdbat feed the original
system. In the fictitious system, let us call the queues felldayy and light traffidl and L respectively.
The fictitious system operates under the following serviseipline.

Service for the fictitious systerithe queueH receives service in every time slot. The quelie
receives service at timeif and only if ¢; (1) > q5(t)*".

Note that if L receives service anH is non-emptyfwo packets are served from the fictitious system.
Also, H is just a discrete timé&'/D/1 queue, since it receives service at every time slot. We n@wsh
a simple result which asserts that the light queue in thar@igystem is ‘longer’ than in the fictitious

system.
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Proposition 10: Suppose a given input sample path feeds the queues in botbritiieal and the

fictitious systems. Then, for all it holds thatg; (t) < gz (¢). In particular, for eactb > 0, we have
P{qr > b} > P{q; > b}.

Proof: We will assume the contrary and arrive at a contradictiompp®seq; (0) = ¢.,(0), and that for

some timet > 0, ¢z (t) > qr(t). Let 7 > 0 be the first time whemw; (7) > ¢z (7). It is then necessary

thatg; (7 — 1) = qz.(7 — 1), since no more than one packet is served from a queue in eachNsk,

q; (T —1) = qr.(7 — 1), andq; (7) > qr(7) together imply thatl received service at time — 1, but

L did not. This is possible only ifz(r — 1) < g (7 — 1), which is a contradiction, sincll receives

service in each slot. O
Next, we show that the distribution ¢f satisfies the lower bounds in Equations|(21)-(23). Thegiem 7

then follows, in light of Propositiof_10.

Theorem 8:In the fictitious system, the distribution gf is asymptotically lower bounded as follows.

1) If &2 <1,
b
]P){QL>b}z)\H]P){HR>)\_} (26)
L
2) If oz —1,
1
]P’{qL>b}z)\H]P’{HR>b<1+)\—>} 27)
L
3) If oL >1,
P{g; >b} > AP {HR > bO‘L/O‘H} (28)

Proof: Let us consider an instantwhen the fictitious system is in steady-state. Since theyhgaeue
in the fictitious system receives service in each slot, teadst-state probability {qH > O} = Ag by

Little’'s law. Therefore, we have the lower bound
P{qi > b} > /\HIP){qi > blgg > 0}.

In the rest of the proof, we will lower bound the above comxdlitil probability.

Indeed, conditioned on; > 0, denote as before big(t), the number of packets that belong to the
head-of-line burst that still remain ifl at time ¢. Similarly, denote byA(t) the number of packets
from the head-of-line burst that have already been servetinby ¢t. Since H is served in every time
slot, A(t) also denotes the number of time slots that the HoL burst has eservice at.

The reminder of our proof shows that () stochastically dominates a particular heavy-tailed ramdo

variable. Indeed, at the instantthere are two possibilities:
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(@) gz (t)* > B(t)*", or
(b) ¢; (t)** < B(t)*,
Let us take a closer look at case (b) in the following proposit
Proposition 11: Suppose that
g (D) < B(t)*.

Let o < t be the instant beforethat L last received service. Then, the current head-of-linettaurived
at H after the instants.

Proof: We have

The first inequality holds becaudereceived service at, the second inequality is true sindedoes
not receive service betweenand¢, and the final inequality is from the hypothesis.

We have shown that; (o) < B(t), and hence the HoL burst could not have arrived by the time slot
o. O

The above proposition implies that if case (b) holfishas not received service ever since the HoL
burst arrived at. In particular,i has not received service foft(t) time slots, and it accumulates all
arrivals that occur during the intervéll — A(t),t]. Let us denote the number of arrivals foduring

this interval as .

Si= Y L(i)

i=t—A(t)
In this notation, our argument above implies that if caseHoblds, theng;(t) > S;. Putting this

together with case (a), we can conclude that

gz (t) > min(B(t)*/*, S ;). (29)

Therefore,
P{q;(t) > b} > AuP { B/ > b, S5 > b} (30)

Recall now that in steady-stat®,(t) is distributed asi z, and A(t) is distributed asH 4. Therefore,

the above bound can be written as

Hy
P{q; > b} > AgP {HgH/”L > b, ZL(Z’) > b} . (31)

=1
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Lemmal’ shows that
Ha P{HR = %} g_fo <1
P{H;;H/% >b, > L(i) > b} ~ p{HR > b+%} on 1,
= P{Hp>bow/on} oL 1,
Notice that the assumptioH (-) € OR is used in the proof of Lemnid 5.
Theoreni 8 now follows from the above asymptotic relation ¢2ik). O

Proof of Theoreml7The result follows from Theorei 8 and Proposition 10. O

VI. TAIL COEFFICIENT OFqy,

In this section, we characterize the exact tail coefficignthe light queue distribution under max-
weight« scheduling. In particular, we show that the upper bolnd i@ @ght for o<1, and [19) is
tight for &= > 1.

Theorem 9:The tail coefficient of the steady-state queue lengthof the light queue is given by

() Cg—1for 2= <1, and
(i) v=o£(Cp—1)for &> 1.

Proof: Consider first the casg- < 1. The lower order (Definitio |3) of;;, can be upper bounded
using [21) or[(2R) as follows

log \iy + log]P{HR > i}
lim inf _—log]P’ {ar > b} < liminf — A
b—00 log b b—00 log b

>
= lim inf ——IOgP{HR > a} =
a—00 loga

Cyg —1.
The last step is from Propositidh 5. The above equation shbatsthe tail coefficient ofj;, is at most
Cy — 1. However, it is evident from[(16) that the tail coefficientgf is at leastC'y — 1. Therefore,
the tail coefficient ofg;, equalsCy — 1 for S < 1. This proves case (i) of the theorem.

Next, consider;- > 1. Using (23), we can upper bound the lower ordeggpfas

logP{g, > b} log P { Hp > b/}

liming — limint —
hsoo0 log b = e log b
—logP{Hg >
. lim inf 0gP{Hp > a} = a—L(CH -1) (32)
QU a—o0 loga o

Equation [(3R) shows that the tail coefficient@f is at mosty. However, it is evident from[(19) that
the tail coefficient ofy;, is at leasty. Therefore, the tail coefficient af;, equalsy = g—;(C’H —1) for

oL > 1. This proves case (ii) of the theorem. O
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Fig. 2. The tail coefficient o, under max-weightx scheduling, as a function efr /ax, for Cy = 2.5.

In Figure[2, we show the tail coefficient gf, as a function of the ratie;, /oy We see that the
tail coefficient is constant at the vald&; — 1 asay,/ay varies from 0 to 1. Recall thaty, /ay =1
corresponds to max-weight scheduling, while/«z | 0 corresponds to priority fofd. Thus, the tail
coefficient ofg;, under max-weight scheduling is the same as the tail coetfficiader priority forH,
implying that the max-weight policy leads to thrst possibleasymptotic behavior for the light queue
among all non-idling policies. However, the tail coeffidiarf ¢; begins to improve in proportion to
the ratioa, /oy in the regime where the light queue is given more importance.

Remark 2:If the heavy-tailed input has infinite varianc€g < 2), then it follows from Theorern]9
that the expected delay in the light queue is infinite undet-meight scheduling. Thud, [14, Proposition

5] is a special case of the above theorem.

VIl. LoG-MAX-WEIGHT SCHEDULING

We showed in Theorem 9 that the light queue occupancy disiib is necessarily heavy-tailed with
a finite tail coefficient, under max-weight-scheduling. On the other hand, the priority fbrpolicy
which ensures the best possible asymptotic behavior fdr Qoeues, suffers from possible instability
effects in more general queueing networks.

In this section, we propose and analyze the log-max-weigki{/) policy. We show that thdight
queue distribution is light-tailedinder LMW scheduling, i.e., th&{q; > b} decays exponentially fast

in b. However, unlike the priority for, policy, LMW scheduling is throughput optimal even in more
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general settings. For our simple system model, we define ié/Lpolicy as follows:

In each time slot, the log-max-weight policy compares

q(t) Z log(1 4 qu(t)),

and serves one packet from the queue that wins the compafiggnare broken in favor of the light
queue.

The main idea in the LMW policy is to give preference to théntigueue to a far greater extent than
any max-weightx policy. Specifically, foray, /ag > 1, the max-weighta policy compares;;, to a
power ofqy that is smaller than 1. On the other hand, LMW scheduling ameday;, to a logarithmic
function of ¢y, leading to a significant preference for the light queue. ihguout that this significant
de-emphasis of the heavy queue with respect to the lightegisesufficient to ensure an exponential
decay for the distribution of;, in our setting.

Furthermore, the LMW policy has another useful property vt heavy queue gets overwhelmingly
large. Although the LMW policy significantly de-emphasizée heavy queue, it does nigjnore it,
unlike the priority forL policy. That is, if theH queue occupancy gets overwhelmingly large compared
to L, the LMW policy will serve theH queue. In contrast, the priority fat policy will ignore any
build-up in H, as long asL is non-empty. This property turns out to be crucial in morenptex
gueueing models, where throughput optimality is nonitd obtain. For example, when the queues
have time-varying connectivity, the LMW policy will stalzié both queues for all rates within the rate
region, whereas priority fof. leads to instability effects i .

Our main result in this section shows that under the LMW polie{q; > b} decays exponentially
fast in b, unlike under max-weight- scheduling.

Theorem 10:Under log-max-weight scheduling;, is light-tailed. Specifically, it holds that
ligninf—% logP{qr, > b} > min(EL, Cy —1), (33)
— 00

where E, is the intrinsic exponent, given bi (13, {15).

Proof: Fix a smalls > 0. We first write the equality
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P{qr >0} = P{qr >b; log(1+qu) < 6b}
(i)
+ P{qr.>0b; (1—208)b>1log(l+ qy) > ob}
(i)
+ P{qr > b; log(1+qu) > (1 —4)b} (34)
(4d3)
We will next upper bound each of the above three terms on . ri

(i) P{qr > b; log(1+ qm) < 6b} : Intuitively, this event corresponds to an overflow of thehtig
queue, when the light queue is not ‘exponentially largebjn.e., ¢y < exp(db) — 1. Suppose
without loss of generality that this event happens at tim®enote by—7 < 0 the last instant
when the heavy queue received service. SiHckas not received service sinee, it is clear that
log(1 + qu(—7)) < 6b. Thus,qr(—7) < b.

In the time intervall—7 + 1, 0] the light queue receives service in each slot. In spite afivat
all the service, it grows from less thaid to overflow at time0. This implies that every time the

event in (i) occurs, there necessarily exists < 0 satisfying
0

> (L) —1) > (1 - )b

i=—u+1
Therefore,

P{qr > b; log(1 + qy) < 0b} < IP’{Elu >0

0
> (L(i)—1)>(1—6)b}.

i=—u+1
Letting S, = Z?:_uH L(i), the above inequality can be written as
P{qr > b; log(1+qpg) < 0b} <P {sup (Su—u)>(1- 5)b} . (35)
u>0

The right hand side of (35) is precisely the probability ofiegée server queue fed by the process
L(-) reaching the leve(l — §)b. Standard large deviation bounds are known for such an event.
Specifically, from [[10, Lemma 1.5], we get

1 1—-9
P | _ _ S X 1-0
hgggjlf 2 logIP’{il;%Su u> (1 5)1)} > iI;fOUAL <1 + " )

—inf —A3(1+a) = (1—0)EL. (36)

a>0  a
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From [3%) and[(36), we see that for every- 0 and for large enough,
P{qz > b; log(1 4 qr) < 6b} < ke P17 (EL=0), (37)

(iii) Let us deal with the term (iii) before (ii). This is thegime where the overflow df occurs, along

with H becoming exponentially large ih We have

P{qr > b; log(1 +qu) > (1 -6)b} = P{qL > b qg > 1700 1}

P {qL +qg > 6(1_6)1)}

IN

We have shown earlier in the proof of Theorem 4 that for any-idéing policy,
P{qr +qu > M} < Ko M (Crn=1=¢)
for everye > 0 and somes, > 0. Therefore,
P{qz, > b; log(1+ qr) > (1 —6)b} < kgexp(—(1—=8)b(Cxr —1—€)), Ve>0.  (38)

(i) Let us now deal with the second terii{q;, > b; (1 — )b > log(1+ qr) > b} . Let us call this
event&;. Suppose this event occurs at time 0. Denote-by< 0 the last time during the current

busy period thatd received service, and define

n =log(1+ qu(—71)).

If H never received service during the current busy period, Wetdo be equal to the last instant
that the system was empty, and= 0. We can deduce thaj < (1 — §)b, becauseH receives
no service in[—7 + 1,0]. It is also clear thay.(—7) < n. Therefore,L grows from less tham
to more thanb, in spite of receiving all the service if-7 + 1,0]. Using v and ¢ as ‘dummy’

variables that represent the possible values taken Bgdn respectively, we can write

P{&) < P{agg (1—8)b,u >0

(1-8)b

3 IP’{EIuZO

£=0
(1=5)b

< Y S P su-us -6 an(-u) +ar(-u) = ¢}

£=0 u>0

where the last two steps are by the union bound. Notice nowftraevery u > 0, the event

Su—u>b—¢& qu(—u)+qr(—u) > eﬁ}

IN

Su—u>b—§& qu(—u)+qr(—u) > ef}

Sy —u > b—¢ is independent of the value qf;(—u) + ¢1(—u), since these are determined by
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arrivals in disjoint intervals. Therefore, continuing rincabove
(1-58)b

= Y Y P{Su—u>b- P {an(—u) +ar(-u) = ¢
=0 u>0
(f—&)b

< YD P{Su—u>b— & hge @I e (39)
€=0 u>0
(1-5)b
< Z rre” (Fr=b=8) 0 o= (Cu—1-9¢ y ¢ 5 0, (40)
£=0
Equation [(39) follows from[(17), and_(40) is a classical &dgeviation bound that follows, for

example, from[[10, Lemma 1.5]. Thus, for every- 0,

(1-6)b
]P){gz} < Z 51526_[(0H—1—E)f+(EL—E)(b—f)}. (41)
&=0

Let us now distinguish two cases:

— Cg — 1> Eyr : In this case, we can bound the above probability as
P{&)} < ke PFr=9 ve >0, (42)

wherex > 0 is some constant.
— Cyg — 1< Eyp, : In this case,
P{&} < ke PCu=1=90-9) "y >, (43)
Let us now put together the bounds on terms (i), (ii) and {iitp Equation [(3}).
1) If Cy — 1> Ep, we get from [(3V),[(38), and (42),
P{qr > b} < e~b(1=0)(Er—¢) [m + ke ((1=0(Cr—1=FL)) 4 m] ) (44)
from which it is immediate that
1
b

Since the above is true for eaeland j, we get

ligninf— logP{qr > b} > (1 -6)(EL —¢).

—00

- 1

liminf ——logP{q;, > b} > E. (45)
b—o0 b

2) If Cy — 1< Eyp, we get from [(31),[(3B), and (43),

P{gr > b} < e t(1=0Cu—1=0) |\, o=(1=0b(EL=Cuut1)) | o) R] 7 (46)
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from which it is immediate that
1
liminf ——logP {qr > b} > (1 —96)(Cxg —1 —¢).
b—o0 b
Since the above is true for eaetand s, we get
1
liminf ——logP {q > b} > Cy — 1. (47)
b—oo b

TheorenID now follows from (45) and (47). O
Thus, the light queue tail is upper bounded by an exponetetied, whose rate of decay is given by
the smaller of the intrinsic exponeit;, and Cy — 1. We remark that Theorefin 110 utilizes only the
light-tailed nature ofL(-), and the tail coefficient of{(-). Specifically, we do not need to assume any
regularity property such a&(-) € OR for the result to hold. However, if we assume that the tail of
H(-) is regularly varying, we can obtain a matching lower bounth® upper bound in Theorem]10.
Theorem 11:Suppose thaH (-) € R(Cg). Then, under LMW scheduling, the tail distribution @f
satisfies an LDP with rate function given by
1
b
Proof: In light of Theoreni 1D, it is enough to prove that

Jim — logP{q; > b} = min(E, Cgx — 1).
— 00

) 1
lim sup ——
b—o0 b

logP{qr, > b} < min(Er, Cy —1).
Let us denote by](Lp) the queue length of the light queue, when it is given comppeterity over
H. Note thatP {q(Lp) > b} is a lower bound on the overflow probability undemy policy, including

LMW. Therefore, for allb > 0, P{q; > b} > ]P’{qép) > b} . This implies

1 1
1imsup—glogP{qL >b} < limsup—glogIF’{q(Lp) > b} =Fr, (48)

b—o0 b—ro0

where the last step is frorh ([14).
Next, we can show, following the arguments in Propositiohab@ Theoren8 that

Ha
P{qr > b} > )\H]P’{HR > e’ —1; ZL(i) > b} :
=1

But arguing similarly to Lemmal]5, we can show that

Ha
IP’{HRZeb—l; ZL(i)Zb}NIP{HRZeb—I}.

i=1
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Fig. 3. The large deviation exponent fgr under LMW scheduling, as a function af,. The light queue is fed by Poisson
bursts, andC'y = 2.5.

Thus,
P{q; > b}zP{HRz eb—1}.

Next, sinceH (-) is regularly varying with tail coefficien€y, Hp is also regularly varying with tail

coefficientCy — 1, so thatP { Hgr > €® — 1} = U(eb)e~*“»~1. Finally we can write

1 1 1 b
limsup—glogIP’{qL >b} < limsup—glog]P’{HR > b — 1} =Cyg—1- limsupM.

b—o0 b—o0 b—o0 b

The final limit supremum is shown to be zero in Leminha 6, using@easentation theorem for slowly

varying functions. Thus,

limsup—1 logP{qr > b} < Cpyx — 1. (49)
b—o0 b
Equations[(48) and_(49) imply the theorem. O

Figure[3 shows the large deviation exponent given by The@rms a function of\;, for Cy = 2.5,
and Poisson inputs feeding the light queue. There are twincligegimes in the plot, corresponding
to two fundamentally different modes of overflow. For relaly large values of\;, the exponent for
the LMW policy equalsEy, the intrinsic exponent. In this regime, the light queue @gers entirely
due to atypical behavior in the input process). In other wordsg;, would have grown close to the
level b even if the heavy queue was absent. This mode of overflow i® ileely for larger values of
Az, which explains the diminishing exponent in this regime.

The flat portion of the curve in Figufé 3 corresponds to a se@werflow mode. In this regime, the

overflow of the light queue occurs due to extreme misbehawiothe part of the heavy-tailed input.
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Specifically, the heavy queue becomes larger #iaafter receiving a very large burst. After this instant,
the heavy queue hogs all the service, and the light queuestgtged until it gradually builds up to
the levelb. In this regime, the light queue input behaves typically, arays no role in the overflow
of L. That is, the exponent is independent)gf, being equal to a constaity — 1. The exponent is

decided entirely by the ‘burstiness’ of the heavy-tailaaffic, which is reflected in the tail coefficient.

VIIl. CONCLUDING REMARKS

We considered a system of parallel queues fed by a mix of hidled and light-tailed traffic,
and served by a single server. We studied the asymptoticvioehaf the queue size distributions
under various scheduling policies. We showed that the aoop distribution of the heavy queue is
asymptotically insensitive to the scheduling policy usadd inevitably heavy-tailed. In contrast, the
light queue occupancy distribution can be heavy-tailedightitailed depending on the scheduling
policy.

The major contribution of the paper is in the derivation ofexiact asymptotic characterization of the
light queue occupancy distribution, under max-weigh$cheduling. We showed that the light queue
distribution is heavy-tailed with a finite tail coefficienhder max-weightz scheduling, for any values
of the scheduling parameters. However, the tail coeffiatantbe improved by choosing the scheduling
parameters to favor the light queue. We also observed theit’pnax-weight scheduling leads to the
worst possible asymptotic behavior of the light queue ihgtion, among all non-idling policies.

Another important contribution of the paper is the log-nweeight policy, and the corresponding
asymptotic analysis. We showed that the light queue ocaypdistribution is light-tailed under LMW
scheduling, and explicitly derived an exponentially deécgypper bound on the tail of the light queue
distribution. Additionally, the LMW policy also has the deble property of being throughput optimal
in a general queueing network.

Although we study a very simple queueing network in this pawe believe that the insights obtained
from this study are valuable in much more general settingsirtstance, in a general queueing network
with a mix of light-tailed and heavy-tailed traffic flows, wgpect that the celebrated max-weight policy
has the tendency to ‘infect’ competing light-tailed flowswheavy-tailed asymptotics. A similar effect
was also noted in_[14], in the context of expected delay.

We also believe that the LMW policy occupies a unique ‘swemt'sin the context of scheduling

light-tailed traffic in the presence of heavy-tailed traffitiis is because the LMW policy de-emphasizes
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the heavy-tailed flow sufficiently to maintain good light geeasymptotics, while also ensuring network-
wide stability.

For future work, we propose the extension of the resultsigfaper to more general single-hop and
multi-hop network models. Even in the context of parallekges, the incorporation of time-varying

channel models presents an interesting direction.

APPENDIX
Lemma 3:P{Hr >m, Hy >n} =P{Hr > m+n}
Proof: Using (1) and[(R),

P{Hr>m, Hy>n} = ZZP{H+—I<:+Z}

k>m I>n
— = P{H+—p}
= Z]P’{HRZk+n}
k>m

= IP’{HRzm—i—n}.

a

Lemma 4:Let N € ZR be a non-negative integer valued random variable. Xgti > 1 be i.i.d.

non-negative light-tailed random variables, with mearindependent ofV. Define

N
Sy = ZX
=1

Then,
P{Sy > b} ~P{N >b/u}.

Proof: For notational ease, we will prove the result foe 1, although the result and proof technique

are applicable for any, > 0. First, for a fixedd > 0, we have

P{Sy >b} = P{Sy>b N<bl—08}+P{Sy>b N >bl—0))}

< P {SLb(l—(S)J > b} +P{N >b(1-90)}. (50)

Next, we write a lower bound:
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P{Sy >b} > P{Sn>b; N>0b(1+6)}
= P{N>0(1+0)}—P{Sy <b; N >b(1+9)}

> P{N >b(1+0)} —P{Spaie <b}- (51)

Since the X; have a well defined moment generating function, their samapkrage satisfies an
exponential concentration inequality around the meanciBpally, we can show using the Chernoff

bound that there exist constamntsy such that
P{S\_b(l—é)J > b} < ke 0.

Thus, it follows that
]P){SLb(l—cS)J > b} = O(P {N > b}) (52)

asb — oco. Similarly,
P {Sl_b(l+5)J < b} = O(IFD {N > b}) (53)

Next, getting back to[(50),

PiS 15 >b _
fmsup EASY >0 o P {Spay > b PAN > b1 -9}

b—o0 P{N > b} b—o0 P{N > b} b—o0 P{N > b}

The first term on the right hand side is zero in view [of] (52), sat for all §, we have

. P{Sy >b} . P{N > b(1—6)}
1 ——— - <1
el PIN> 0} e’ BN >0

Taking the limit asé J. 0,

. P{Sy >b} . .. P{N > b(1—-96)}
—_—— <<
IS BN >0} = a P T BN > b

The final limit is unity, by the definition of the claggR. Similarly, we can show using (51}, (53) and

—1 (54)

the intermediate-regular variation of the tail &f that

liminf ————— 55
b P{N >b} (®5)
Equations[(54) and (55) imply the result. O

The above lemma can be proved under more general assumgitamstated here, see [19].
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Lemma 5:If H(-) € OR, we have

P{HRz%} a1,

oy

Ha
]P’{HszaL/aH, ZL(i)zb}N IP’{HRZbJr%} oL — ], (56)

i=1 "
P{Hp>bor/on} o>,
Proof: In this proof, let us take\;, = 1 for notational simplicity, although the same proof techusq
works without this assumption. Denafg = » ", L(4). We first get an upper bound. For every> 0,

we have

]P’{HRz posfon; Sy > b} _

]P’{HR > par/an. Gu > b Hy < b(1— 6 } + ]P’{ R > b/ Sy > b Hy > b(1—5)}
<P{Sy, >b Hs<b(l—08)} + ]P’{H > per/an, Huos b(1— 5)} (57)
<P{Sy, >b Ha<b(l—0) + IP{H > poe/an | p(1 — 5)} (58)
<P{Spa_s >b} + IP{ R > bor/o (1 — 5)} . (59)

In (58) we have utilized Lemmi 3, and in Equatién](59), we hased the independence &f, and

L(-). Next, let us derive a lower bound.

IP{HR > posfan, Gy > b} > IP{HR > ber/om s Sy > b Ha > b(1+ 5)}
IP’{HR > por/an; [ > (1 + 5)} - IP{HR > poe/an, Gy < b Ha > b(1+ 5)}
IP’{HR > ponfan [ s b(1 4 5)} — P{Sy, <b; Hs>b1+0)}>

]P{HR > pe/an 4 p(1 4 5)} — P{Spais) <b}- (60)

Equation[(6D) uses Lemrhia 3. Now, observe that the t@nS ,;_5); > b} in (69) andP { Sp1445y < b}

in (60) decay exponentially fast as— oo, for any § > 0. This is becausd.(-) is light-tailed, and

their sample average satisfies an exponential concemtratémuality around the mean (unity). More

precisely, a Chernoff bound can be used to show that

P{S|p1-5) > b} =0 (P {HR > por/on 4 b}) : (61)
and

P{Sppay <b} =0 (P{HR > pon/on b}) . (62)
Case (i): ¢ O‘—L < 1. Using [59), we write

> CVL/CVH > PiS _ b > ap /oy .
limSHPP{HR b SHA_b} < lim sup { b1-9) > }+limsupP{HR_b +b(1 5)}.

b—s 00 P{Hgr > b} b—s 00 P{Hgr > b} b—s 00 P{Hgr > b}
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The first limit supremum on the right is zero in view EKGl)nSég—Z < 1, we can write

P{Hp > bor/on, Sy >b > b(1 —
lim sup { R = » OHa = }SlimsupIP){HR_b(1 0}

, V&6 > 0.
b—roo P{Hg > b} b—so00 P{Hg > b}

Thus,
P{HR > baL/aH; SH, > b}

| L P{Hp > b(1 - 0)}
1 <liml
iy P {Hr = b} Tolo e P{Hr = b}

The final limit is unity, because according to Lemimddl;) € OR impliesHg € ER. Since€R C IR,

= 1. (63)

the final limit in (63) is unity, by the definition of intermeate-regular variation (Definitionl 2).
Along similar lines, we can usé (60), (62), and the fact tHat € ZR to show that

. JP{Hp>ver/ns Sy >0} o P{Hp>b(1+20)}
- >
lim inf P{Hp > b} = lim it =

Equations[(63) and_(64) imply that

~ 1 (64)

IP’{HR > pos/an, g > b} ~P{Hp> b},

which implies Lemmals forg‘—f{ <1,and)\p =1.

Case (ii): ¢= = 1. Similar to the previous case. Here, we get
P{Hpr >b; Sy, >b} ~P{Hp > 2b}.

Case (jii): 5= > 1.
For the upper bound, we have from (59) ahd| (52),
_ P{Hp > be/o; Sy, >b} P{Hp > b/ 4 b(1 —5)}
lim sup < limsup
b—o0 P{Hp > bor/on} b—o0 P{Hp > bor/on}
Similarly, for the lower bound, we have frorh_(60) andl1(53),
P{Hp > bor/on, >b P{Hg > b/ £ (146
lim inf { it = Sty 2 }Zliminf { = (1 + )},
b—00 P{Hp > bor/on} b—00 P{Hp > bor/on}

P{Hg > bor/*n(1+6)}

> ligg(i)lgf ]P’{HR > baL/aH} , Vo > 0.
Thus,
P ar/am. ar/ag
ing DR Z U Sy 2 b} e PAHRZ 0 (L4 0)) 1,
b—00 ]P’{HR > bO‘L/O‘H} 510 b—oo ]P’{HR > baL/OfH}

where the last limit is unity due to the intermediate-regukaiation of Hz. Therefore, we can conclude
for £ > 1 that
H
IP{HR > porlan, Gy > b} ~ IP{HR > bO‘L/O‘H} .

Lemmal® is now proved. O
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Lemma 6: For any slowly varying functiort/(+),

lim 22U _
a—oo  loga
Proof: We use the representation theorem for slowly varying femgtiderived in[[B]. For every slowly

varying functionU (-), there exists & > 0 such that for allz > B, the function can be written as

oo = (o) + [ W),

wherev(z) converges to a finite constant, atj(iz:) — 0 asx — oo. Therefore,

a C(y a ¢(y)
)+ d
lim M = lim f = lim 7y

a—oo  loga a—00 log a a—oo  loga

where the last step is becausg) converges to a constant. Next, given any 0, chooseC'(¢) such

that|C(a)| <€, Va> C(e). Then, we have

C(e a
. ‘ Y dy‘ . f e ( dy+fC y)|dy . elog C(e)
lim < lim < lim ———= =
a—00 log a a—00 log a a—oo  loga
Since the above is true for evetythe result follows. O
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