
VIRO: A Scalable, Robust and Namespace Independent

Virtual Id ROuting for Future Networks

Sourabh Jain, Yingying Chen, Zhi-Li Zhang, Saurabh Jain

{sourj, yingying, zhzhang, saurabh}@cs.umn.edu

University of Minnesota-Twin Cities

Abstract—In this paper we propose VIRO — a novel, virtual
identifier (Id) routing paradigm for future networks. The objective
is three-fold. First, VIRO directly addresses the challenges faced
by the traditional layer-2 technologies such as Ethernet, while
retaining its simplicity feature. Second, it provides a uniform con-
vergence layer that integrates and unifies routing and forwarding
performed by the traditional layer-2 and layer-3, as prescribed
by the traditional local-area/wide-area network dichotomy. Third
and perhaps more importantly, VIRO decouples routing from
addressing, and thus is namespace-independent. The key idea in
our design is to introduce a topology-aware, structured virtual id
(vid) space onto which both physical identifiers as well as higher
layer addresses/names are mapped. VIRO completely eliminates
network-wide flooding in both the data and control planes, and
thus is highly scalable and robust. Furthermore, VIRO effectively
localizes failures, and possesses built-in mechanisms for fast
rerouting and load-balancing.

Index Terms—Routing, Future Networks, Scalability, Address-
ing & Namespace management

I. INTRODUCTION

Today’s Internet is increasingly strained to meet the de-

mands and requirements of these Internet services and their

users, such as scalability to accommodate the increasing num-

ber of network components and host devices, high availability,

robustness, mobility and security. As the universal “glue” that

pieces together various heterogeneous physical networks, the

Internet Protocol (IP) suffers certain well-known shortcom-

ings, e.g., the need for careful and extensive network con-

figurations – in particular, the need for address management

and configuration, inherently reactive approaches for handling

network failures, relatively poor support for mobility, and

so forth. In addition, despite the potential benefits offered

by a larger address space, transition from IPv4 to IPv6 has

been difficult and slow; among a variety of other factors,

the tight coupling of addressing, routing and other network

layer functions clearly make such transition not an easy task.

While Ethernet is largely plug-&-play, as it was originally

developed for small, local area networks, this traditional

layer-2 technology can hardly meet the scale as well as the

demanding efficiency and robustness requirements imposed on

today’s large, dynamic networks. A flurry of “fixes” [1]–[9]

have been proposed to address some of these limitations.

In this paper we propose VIRO — a novel and paradigm-

shifting approach to network routing and forwarding that is

not only highly scalable and robust, but also is namespace-

independent: i) VIRO directly and simultaneously addresses

the challenges faced by the traditional layer-2 technologies

such as Ethernet–while retaining its “plug-&-play” feature–as

well as those associated with the IP networks. ii) VIRO pro-

vides a uniform convergence layer that integrates and unifies

routing and forwarding performed by the traditional layer-2

(data link layer) and layer-3 (network layer), as prescribed

by the traditional local-area/wide-area network dichotomy.

iii) Perhaps more importantly, VIRO decouples routing from

addressing, and thus is namespace-independent. The key idea

behind VIRO is the introduction of a topology-aware, struc-

tured virtual identifier (vid in short) space onto which both

physical identifiers (e.g., Ethernet MAC addresses) as well as

higher layer addresses/names (e.g., IPv4/IPv6 addresses or flat-

id names) are mapped. Built on top of this topology-aware,

structured vid space, DHT (Distributed Hash Table)-style

routing and look-up mechanisms are employed for resolving

name/address and vid mappings as well as for routing and

forwarding data purely based on vid’s. VIRO is highly scalable

and robust, with built-in mechanisms for load-balancing, fast

rerouting and other key features needed to support future

networking and application needs. Moreover, VIRO allows

new (global or local) addressing and naming schemes (e.g., a

flat-id namespace [10]) to be introduced into networks without

the need to modify core router/switch functions, and can easily

and flexibly support inter-operability between existing and new

address schemes/namespaces.

In a nutshell, VIRO is designed with two broad sets of goals:

i) to support – with minimal manual configuration – (future)

large, dynamic networks which connect tens or hundreds of

thousands of diverse devices with rich physical topologies;

and ii) to meet the high availability, robustness, mobility,

manageability and security requirements of these networks and

the services running on top of them. These goals are motivated

partly by the rise of huge data centers, emergence of cloud-

computing and services, as well as the continued trends in

large campus, enterprise and ISP (wired, wireless and cellular

data) networks to use 1/10/100 Gigabit Ethernet as the core

(layer-2) networking technology. Toward these goals, in this

paper we outline an initial basic design. The remainder of the

paper is organized as follows. In Section II we provide an

overview of VIRO and its three key components, and briefly

discuss the related work. These three components and their

basic operations are presented in more details in Section III,

Section IV and Section V, respectively. Section VI provides

the detailed simulation based evaluation of VIRO. The paper

is concluded in Section VII.

II. OVERVIEW AND RELATED WORK

In this section we provide an overview of VIRO – in par-

ticular, its three key components, vid space construction and

vid assignment, VIRO routing, and vid lookup and forwarding

– and briefly discuss the related work. A summary of the

terminologies and notations used in the paper is included at

the end of the section.

A. Design of VIRO: An Overview

The key idea behind VIRO is the introduction of a topology-

aware, structured virtual id (vid) space onto which phys-

ical/application identifiers are mapped, see Fig.1(a) for an

illustration. By topology-aware, we mean that the physical net-

work topology, as formed by the connections among “routing-

nodes” or VIRO switches, is embedded into a structured

space, e.g., a Kademlia-like virtual tree [11], a hypercube, a

d-dimensional Euclidean space, in such a manner that physical

proximity among VIRO switches are approximately preserved.

For the physical network topology shown in Fig.1(a), Fig. 1(b)

shows such an embedding using a virtual binary tree, where

only the leaf nodes correspond to physical (switching/routing)

devices, i.e., routing nodes, whereas all intermediate nodes in

the virtual binary tree are logical (thus the term virtual binary

tree!), representing all the VIRO switches residing within its

subtree. Furthermore, since vid space is topology aware, the

vid of a node reflects the relative location of the node in the

underlying physical topology.

The topology-aware, structured vid space is constructed

at the network bootstrapping phase, i.e., when the network

is being set up. Let L denote the number of bits used to

represent the vid space. The vid of a node is the L-bit long

binary string along the path from the root to the corresponding

leaf. The logical distance between a pair of vids in this

vid space is defined as L minus the length of the longest

common prefix for the pair, see Eq.(1). In Sec. III we will

describe how the vid space construction and vid assignment

can be performed in either a centralized or distributed fashion

during the bootstrapping phase. Once the vid space has been

constructed, when a new routing node joins the network, its

vid will be assigned based on the subtree (and its neighbors in

the subtree) that it is attached to. For end-hosts, their vid’s are

dynamically assigned at the time when they join the network:

when an end-host is attached, either via wired or wireless

link, to a node in the network, it is assigned an extended

vid consisting of the L-bit vid of the node plus a randomly

assigned l-bit local id. The routing node that an end-host is

attached to will be referred to as its host-node. Hence the vid’s

for all end-hosts attached to the same host-node share an L-bit

prefix, and thus they are at 0 logical distance from each other.

Taking advantage of the topology-aware, structured vid

space, VIRO employs a DHT-style routing algorithm to build

routing tables at each node so as to maintain network-

wide connectivity and perform end-to-end data delivery. In

VIRO, routing tables are constructed piece-meal-wise using

the vid logical distance instead of physical distance (e.g., hop

counts). VIRO uses a publish-&-query mechanism at each

node to publish and query relevant routing information to

build routing entries at each level using a round-by-round,

bottom-up procedure (see Section IV). As a result, VIRO

completely eliminates network-wide flooding in both the data

plane (unlike Ethernet switching algorithm) and control plane

(unlike OSPF and other shortest path routing algorithms).

Furthermore, because of the natural hierarchical structure of

the vid space, routing information regarding far-away part of

the network is automatically aggregated using the vid prefixes.

Hence the routing table size is O(log N), where N is the

number of routing-nodes, as opposed to O(N) (as in the

case of OSPF). Unlike OSPF, in VIRO no network-wide full

topology needs to be maintained by any switch, thanks to the

structured vid space, and hence changes in network topology

do not need to be flooded globally. Due to the aggregate

routing information maintained by switches, failure of a link

or switch node can be localized, without affecting nodes in far-

away parts of the network. Furthermore, topology diversity can

be easily exploited in VIRO by using multiple routing entries;

hence failure of one routing entry (a nexthop node or link)

does not affect network-wide reachability.

The third major component of VIRO is vid lookup and for-

warding. VIRO maps both physical addresses and higher-layer

addresses/names onto the vid space. Routing and forward-

ing between VIRO nodes/switches is performed using vid’s;

only at the network edge are the physical addresses/logical

addresses/names needed (between a VIRO switch and an end-

host) to locate individual end-hosts, or data/services to be

delivered. VIRO performs address/name resolution and vid

look-up by building the (standard) DHT look-up mechanisms

on top of the same vid space.

In summary, 1) VIRO is highly scalable, robust; 2) it

decouples routing from addressing, and thus is namespace-

independent; 3) it provides seamless and efficient support for

multi-homing, mobility and access control; 4) VIRO localizes

failures, and provides built-in mechanisms for fast rerouting

and load-balancing; and 5) VIRO can be readily extended

to enable multiple (logical) topologies or multiple virtualized

networks on top of the same physical network substrate to

further enhance network robustness or service isolation.

B. Related Work

Closely related to our work, SEATTLE [2] focuses primarily

on addressing the scalability issues of Ethernet. While SEAT-

TLE eliminates data plane flooding, it employs OSPF-like

shortest path routing, which requires network-wide flooding

of link state advertisements (LSAs) in maintaining network

topology and tracking its changes. SEATTLE thus suffers

the same limitations plaguing OSPF-based IP routing: for

example, it is limited to the use of shortest paths; load-

balancing and fast rerouting can be messy to implement. In

contrast, VIRO avoids these inherent problems in shortest-path

routing. It is far more scalable and robust (e.g., with O(log N)
routing table sizes instead of O(N) in OSPF).

Our work is also substantially different from the “flat-

id” based routing schemes such as VRR [12], UIP [13] and

(a) VIRO and vid layer (b) vid space as a virtual binary tree: the grey dotted lines denote physical connectivity, the red dashed lines
indicate the logical neighbors at different levels of node A; the red boxes represent the unused vid’s.

Fig. 1. Overview of VIRO.

ROFL [14], which advocate a flat universal id space to replace

the current global IP address space. These schemes employ a

DHT-style randomly and consistently hashed id assignment–

which produces an id-space completely independent of the

underlying network topology–and perform routing based on

logical distance to the id of the destination, incurring a stretch

penalty (which is unbounded in the worst case). In addition,

link/node failures and node dynamics (node joining, leaving

or moving around in the network) often induce a network-

wide effect, as two logically close nodes may be far away in

the underlying physical network. By introducing a topology-

aware, structured vid space, VIRO circumvents these prob-

lems: it incurs fairly small routing stretches, and effectively

localizes the effect of failures. More importantly, VIRO is

namespace-independent, allowing any namespace to be used,

be it hierarchical or flat, and supporting inter-operability across

namespaces.

Furthermore, several works such as PathDCS [15],

GHT [16] and NoGeo [17] explored the coordinate based

routing schemes, where routing nodes are assigned an iden-

tifier based on their physical location. Although using the

coordinate-based schemes (eg., NoGeo) for id assignment may

be a good idea when the network is georgaphic-dispersed

(e.g., a wide-area network) with each node/subnet in one

location; however, when we have a densely connected network,

e.g., data centers, coordinate-based schemes for id assignment

would not be a good idea, as they cannot take physical

topology into account.

C. Notations & Definitions

In the following we define and list the key notations and

terminologies that will be used to describe VIRO in the

remaining sections. (See Table I for a quick summary.)

vid(x) Virtual id (vid) of a node x
pid(x) Physical/persistent address/name or other

lower/higher layer identifier of a node x
d(x, y) Shortest physical hop distance between nodes x and y
δ(x, y) Logical distance between nodes x and y

vidk(vx) First k bits(from left) of vid(x)
lcp(vx, vy) Length of the longest common prefix for vx and vy

Sk(x) {y : δ(x, y) ≤ k} kth sub-tree of node x
Bk(x) {y : δ(x, y) = k} kth bucket of node x

rdvk(x) kth level Rendezvous points for node x
Rk(x) Reachability information for node x’s bucket Bk(x)

hashk(val) Hash function to get k bit hash value for val

TABLE I
SUMMARY OF NOTATIONS

Logical Distance δ(x, y): The logical distance between any

two nodes say x and y in an L-bit vid space is defined as:

δ(x, y) = L− lcp(vid(x), vid(y)). (1)

Here, vid(x) and vid(y) are the virtual ids for the nodes

x and y. lcp(vid(x), vid(y)) is the length of the longest

common prefix for binary strings vid(x) and vid(y). e.g.

if vid(x) = 0011, vid(y) = 0101, and L = 4 then

δ(x, y) = 4 − lcp(vid(x), vid(y)) = 4 − 1 = 3
Bucket Bk(x): It is the set of nodes which are at logical

distance of k from node x.

Sub-tree Sk(x): It is the set of nodes which are at no more

than logical distance of k from node x.

Rendezvous Point (rdvk(x)): For a node x, a rendezvous

point at a level k, rdvk(x), is a node in the sub-tree

Sk−1(x), which stores the connectivity information to reach

its k-th bucket Bk(x). It is the node which is clos-

est (based on the xor distance) to the vid given by

vidL−r(x)hashr(vidL−r(x)) for r = k−1 in the vid space.

Gateway: The gateway for a node x to reach Bucket Bk(x)
is a node y ∈ Sk−1(x) such that it has a (physical) edge to a

node z ∈ Bk(x).
pid: We use pid to denote either the physical address (e.g.,

MAC address), IPv4/IPv6 addresses, persistent name (e.g., a

flat-id name) or other addresses/names that are used by either

lower layer or higher layer to address, name or identify a given

entity (an end-host, information or service of interest, etc).

Host-Node: A host-node for an end-host is the node in the

network that it is directly connected to.

Access-Node: An access-node for an end-host is the node

which stores the mapping pid ⇒ vid. An access-node for a

given pid is determined using the vid = hashL(pid), it is the

node closest (based on the xor distance) to the vid given by

the hash value of the pid.

Reachability Information (Rk(x)): It is a 4-tuple set, which

contains following information about the reachability to a

given bucket Bk(x) for node x. It consists of following values:

a) Bucket level k, b) vid prefix in Bk(x) that is reachable

using this entry. c) Nexthop to reach any node in this bucket.

d) Logically closest gateway to reach this Bk(x) prefix.

III. VIRTUAL ID ASSIGNMENT

The initial vid space construction and vid assignment is

performed at the network bootstrapping process when the

network is being set up. As mentioned earlier, the vid space is

structured in a virtual binary tree (with a depth of L), where

each node (VIRO switch) resides at a leaf node of the tree,

and is assigned an L-bit vid corresponding to the bit-string

from the root to this leaf node. After the network is set up,

the vid assignment for a new node that subsequently joins

the network is done based on its location and the vid’s of its

physical neighbors, and the (extended) vid for an end-host that

joins the network is assigned by its host-node (to which it is

attached). We describe these operations in more detail below.

A. vid Space Construction at Bootstrap

During the vid construction (and subsequent addi-

tion/deletion of nodes), two key invariant properties are always

maintained: i) The closeness property: if two nodes are close in

the vid space, then they are also close in the physical topology;

in particular, if δ(x, y) = 1 i.e., nodes x and y are logical

neighbors, then they must be physically directly connected.

ii) The connectivity property: any two logically adjacent (i.e.,

sharing a common prefix) and non-empty sub-trees must be

physically connected, i.e., there must be at least one physical

(wired/wireless) link connecting one node in a sub-tree to

another node in the other sub-tree. We have designed two

modes of vid space construction and vid assignment for

bootstrapping a VIRO network: a centralized algorithm and

a distributed algorithm. Both algorithms guarantee that the

constructed vid space satisfies these two properties.

The centralized mode is designed for networking envi-

ronments (e.g., ISP, large campus/enterprise or data center

networks) where the (at least the initial) topology is pre-

planned and thus known a priori. Given the topology, the

centralized vid assignment algorithm employs a top-down

approach to assign vid’s by starting from the root of the virtual

binary tree: it recursively partitions the network topology into

two subgraphs, and appends 1-bit to the (already assigned)

vid prefixes of the nodes in each subgraph. Due to space

limitation, we omit the detailed description of the algorithm

here. (see [18]).

The distributed mode is more suitable for networking envi-

ronments (e.g., home or small office networks, wireless ad

hoc networks) where networks are set up in a piecemeal,

unplanned or ad hoc fashion. The distributed vid assignment

algorithm employs a bottom-up approach to assign vid’s by

starting from the leaf nodes (namely, the lower-level vid

bits (a suffix) are determined first, and higher-level bits are

recursively assigned). As illustrated in Fig. 2, VIRO nodes

first discover their physical neighbors (e.g., via an OSPF-

like adjacency discover protocol, or local broadcast), and

collaboratively run a recursive clustering algorithm (similar

to those used in wireless ad hoc networks, see, e.g., [19]) to

construct a virtual binary tree.

B. vid Assignment upon New Node Join

After the network is set up (and the initial vid assignment

completed), when a new VIRO node (switch) joins the net-

work, its vid is assigned based on its location and the vid’s of

its physical neighbors. More specifically, it picks one of the

unused vid’s that are closest to one of its physical neighbors,

Fig. 2. Virtual ID assignment process using bottom-up clustering method. In
this example, nodes are initially assigned a vid 0, before the bootstrap process.
In the subsequent steps, nodes are clustered with their neighboring nodes and
’0’ or ’1’ bit is prepended to their vids

thus joining a subtree (of an appropriate level) of this neighbor.

Using Fig. 2 as an example, suppose a new node joins the

network and is connected to both node A and node B. It can

pick one of the two unused vid’s: {00001, 00011}, joining

either the level-1 subtree of node A or node B (see Fig. 1(b)).

We assume that in general L is configured in such a manner

that there will be sufficient empty slots under each subtree

to accommodate new node joins. In the (extremely rare) case

where L is ill-chosen initially, one could easily expand L by

appending additional bits. In our design, we reserve a 128-

bit header space for L, while allowing L to be configured

with a smaller value (i.e., only the first L bits are used). This

provides the advantage of using a smaller L (thus fewer routing

table entries per node) as well as the flexibility to expand L
if needed.

C. Host vid Assignment

In VIRO, the vid for end-hosts comprises two parts (see

Fig. 3): the L-bit host-node vid part identifies the host-node

(VIRO switch) that an end-host is directly connected to,

i.e., the vid of its host-node; the second l-bit host vid part

identifies the end-host, and distinguishes it from other end-

hosts attached to the same host-node. This l-bit host vid

part is selected randomly by the host-node, e.g., via a (l-

bit) random hash function, hashl(pid(h)), using a pid(h)
(e.g., MAC or IP address) of the end-host, to ensure local

uniqueness. The (L + l)-bit (expanded) vid thus uniquely

identifies each end-host in the network. When an end-host

moves from one part of the network to another (thus attaches

itself to a different VIRO node), its vid is also re-assigned.

The host-node periodically publishes and maintains pid-vid

mappings of end-hosts attached to it, see Section V for details.

Host‐node	vid Host‐ID	

L-bit l-bit

Fig. 3. vid structure for the hosts.

IV. VIRO ROUTING

Routing in VIRO is inspired by Kademlia-like [11] DHTs.

The key difference is that DHTs assume end-to-end connectiv-

ity, and utilize the underlying IP-layer for routing and look-up

operations, whereas VIRO must build end-to-end connectivity

by itself, using the (local) physical connectivity among VIRO

nodes. In the following we describe how this is done in VIRO,

and once the routing tables are constructed, how forwarding

is performed. We will also briefly discuss how failures are

handled by VIRO.

A. Overview and the Routing Invariant Property

Similar to Kademlia, each node in VIRO maintains a routing

table with (at most) L entries, one per level of the (virtual

binary) tree. Given an arbitrary (VIRO) node x in the network,

all other nodes in the network fall within one of L buckets,

Bk(x), 1 ≤ k ≤ L. For some k, Bk(x) may be empty, i.e.,

there are no VIRO switches residing at the corresponding leaf

nodes. The VIRO routing tables are constructed in such a

manner that for any non-empty Bk(x), 1 ≤ k ≤ L, as long

as node x knows how to reach a node within Bk(x), say,

y ∈ Bk(x), then x can reach (e.g., via y) any node within

Bk(x). Hence each node x in VIRO only needs to maintain

L routing entries.

Take the network in Fig. 1(b) as an example. Representing

each level of routing entries by the vid prefix (of nodes

within the corresponding bucket), the routing table at node

A (with vidA = 00000) contains 5 routing entries: the level-

1 ({00001}) routing entry is empty (no node in B1(A)); the

level-2 ({0001∗}) routing entry would contain B, the only

node in B2(A); the level-3 ({001 ∗ ∗}) routing entry would

contain either C or D or both ; the level-4 ({01∗∗∗}) routing

entry would contain either M or N , or both; and the level-5

({1 ∗ ∗ ∗ ∗}) routing entry would contain (at least) one of the

7 nodes in B5(A) (i.e. E, F, G, H, J, K, L).

Unlike standard DHTs where end-to-end connectivity is

assumed, VIRO must build up end-to-end connectivity by

itself. This is done through a bottom-up procedure, where for

k = 2, . . . ,L, the first k − 1 routing entries are constructed

before the level-k routing entry is built. If there is a node, say,

y, resides within B1(x), then by the closeness property of the

vid space, node x and node y must be directly connected (as

δ(x, y) = 1). Hence the level-1 can be trivially built. More

generally, if Bk(x) is not empty, then by the connectivity

property there must exist another node, say y, within Sk−1(x)
that is physically connected to a node, say z, in Bk(x).
Hence as long as x can reach y, then via y it can reach

z ∈ Bk(x), thus any node in Bk(x). Node y is thus referred

to as a (level-k) gateway to Bk(x). Since y ∈ Sk−1(x) (thus

δ(x, y) ≤ k − 1), y is contained in one of k − 1 buckets of

x, i.e., y ∈ Bk′(x), k′ < k. In other words, once the first

k−1 routing entries have been constructed, the gateway node

y to Bk(x) can be reached using these first k − 1 routing

entries. Using y, we can build the level-k routing entry to reach

any node in Bk(x). This leads us to the following invariant

property, referred as the routing Invariant Property (which is

essentially a re-statement of the connectivity property of the

vid space), that must be satisfied by any VIRO routing table

construction algorithm. In the next subsection we present one

such algorithm for constructing VIRO routing tables.

Routing Invariant Property. Let V be the set of all VIRO

nodes, and E the set of all physical links between VIRO nodes.

Suppose the following connectivity condition holds for any

x ∈ V and non-empty Bk(x), where 1 ≤ k ≤ L,

∃z ∈ Bk(x) ∧ ∃y ∈ Sk−1(x) such that (y, z) ∈ E. (2)

Then using y as a level-k gateway, it would guarantee the

connectivity for node x to reach any node in Bk(x).

B. Routing Table Construction Algorithm

VIRO employs a bottom-up, round-by-round procedure,

starting with round k = 1 to L, to build routing tables that

satisfy the above invariant property. At each round k (for

building level-k routing entry), each node x needs to discover

a level-k gateway that satisfies Eq.(2) so as to reach nodes in

Bk(x). We employ a publish-&-query based method for this

discovery process, thereby completely eliminating network-

wide (control plane) flooding. Before this round-by-round

procedure is invoked, each node x first runs a local physical

neighbor discovery protocol (e.g., via HELO messages, or

local broadcast) to discover its (physically) directly connected

neighbors. (Note that these (physical) neighbors may reside

in any Bk(x), 1 ≤ k ≤ L.) At the first round (k = 1), if

B1(x) is not empty, then any node y ∈ B1(x) must be a direct

(physical) neighbor of node x. Hence the level-1 routing entry

is constructed trivially based on node x’s locally discovered

physical neighbors.

More generally, suppose the first k routing entries have

already been constructed at node x. In round k + 1, if node

x is directly connected to node z ∈ Bk+1(x) (as discovered

during the local physical neighbor discovery process), node

x is then a level-(k + 1) gateway (for nodes within Sk(x)).
Besides installing itself as a gateway in its own level-(k + 1)

routing entry, it declares (to other nodes within Sk(x)) that

it is a level-(k + 1) gateway by publishing this information

(i.e., 〈 level-(k + 1) gateway, vid(x)〉) to the level-(k + 1)
rendezvous point(s) within Sk(x). Depending on the level

k and robustness requirement, one or multiple rendezvous

points (say, k rendezvous points per level k) may be used,

and they are selected based on certain consistent rules. We

use rdvk+1(x) to denote a level-(k + 1) rendezvous point

which is responsible for maintaining the level-(k+1) gateway

information. If node x is not directly connected to a node

in Bk+1(x), it discovers and learns about a level-(k + 1)

gateway by sending a query to one of the rendezvous points,

rdvk+1(x). The rendezvous point then replies with one of the

(published) level-(k + 1) gateways. Node x thus constructs

its level-(k + 1) routing entry, and moves on to the next

round until all L routing entries have been built. Using a

level-k gateway, each node x can recursively look up its

routing table (using first (k − 1) routing entries only) and

discover the next-hop (a directly connected neighbor) to reach

the gateway. The basic algorithm is described in pseudo-code

in Algorithm 1. We note that the local physical neighbor

discovery process as well as the publish-query-based routing

process are performed periodically by each node. In other

words, each node periodically updates its routing entries by

periodically publishing and querying gateway information.

Again using the network in Fig. 1(b) as an example, in

the following we illustrate how routing tables at node A can

be constructed using Alg. 1. First, during the local physical

neighbor discovery process, node A discovers its three phys-

Algorithm 1 Constructing routing tables for node i

1: S0(i) := i, B0(i) := i;

2: Input: N1(i) ← Physical neighbors for node i
3: Output: Routing table for the node i

4: for k = 1 to L do

5: if x in N1(i) and δ(i, x) = k then

6: Rk(i) := (BucketDistance = k, Prefix = pfxL−k(i),
NextHop = x, Gateway = i)

7: Publish (rdvk(i), edge(x↔ i))

8: else

9: gwk := Query (rdvk(i), k,i)

10: if gwk is not Nil then

11: d := δ(gwk, i)
12: nexthopk := Rd(i).nexthop

13: Rk(i) := (BucketDistance = k, Prefix = pfxL−k(i),
NextHop = nexthopk, Gateway = gwk)

14: end if

15: end if

16: end for

ical neighbors, B ∈ B2(A), C ∈ B3(A) and D ∈ B3(A).
Using the information about its local physical neighbors, in

round 1, A constructs a null level-1 routing entry. In round 2

and round 3, A constructs its level-2 and level-3 routing entries

by entering itself as the gateway, and also publishes itself as

the level-2 and level-3 gateways (to reach B2(A) and B3(A)
respectively). To build its level-4 routing entry, A queries a

level-4 rendezvous point and discovers a level-4 gateway, say,

node C (which is connected to node M ∈ B4(A)). It installs

C as its level-4 gateway (which is also the next-hop to reach C

itself). Similarly in round 5, A queries and discovers a level-5

gateway, node B (which is connected to node E ∈ B5(A)),
and installs it in its level-5 routing entry. We show the final

routing-table for node A in Table II.

Bucket Prefix NextHop Gateway

1 00001 - -
2 0001* B A
3 001** C,D A
4 01*** C C
5 1**** B B

TABLE II
ROUTING TABLE FOR NODE A SHOWN IN FIG. 2

Last but not the least, we note that in order to ensure

no routing loop is formed during the construction of routing

tables, the gateway selection process must be consistent. In

other words, when a node x queries a level-k rendezvous point

rdvk(x) to discover a level-k gateway, the rendezvous point

rdvk(x) – which may have learned multiple gateways, say,

four level-5 gateways, B, D, M , and N , to reach B5(A) –

cannot select an arbitrary gateway and return it to node x

(see [18] for an example where such a strategy may cause

a routing loop). Assuming that only one (default) gateway is

installed in the routing table of each node, a simple consistent

strategy is to always select one of those gateways whose vid

is closest to the vid of the querying node. Under this selection

rule, in the case of node A, node B will be selected as the

level-5 gateway for node A to reach B5(A). More generally,

when multiple gateways are installed in the routing tables, and

used, say, for load-balancing or fast rerouting, a generalized

consistent gateway selection rule is devised by associating

a special forwarding directive1 with each level-k gateway.

When this (level-k) gateway is selected to reach Bk(x), the

associated forwarding directive is also included in the packet

header to direct subsequent packet forwarding toward this

gateway. Due to space limitation, we do not provide the details

here. In [18] we formally prove that when either the simple

or the generalized consistent gateway selection rule is used,

loop-free routing/forwarding is guaranteed.

C. Forwarding Algorithm

Given the routing tables constructed above, forwarding

using vid is fairly straightforward. Consider a node x which

wants to send a (normal data) packet to a node with vid =
dest. Node x forwards the packet directly to dest if it is

one of its physical neighbors. Otherwise, it computes the

logical distance k = δ(x, dest), and sends the packet to

the next-hop as indicated in its level-k routing entry. (If its

level-k routing entry is null, it implies that Bk(x) is empty,

hence node x simply drops the packet). Upon receiving this

packet, the next-hop performs the same operation to determine

its next-hop for forwarding the packet. When the packet is

a control packet, e.g., publish, query packets, or pid-vid

mapping registration/lookup packets (see the next section), a

similar process is used: the key difference here is that the

destination vid does not correspond to a physical node, instead

it is a key that is meant to identify the VIRO node whose vid

is closest to this key. In this case, for node x if its level-k

routing entry is empty, where k = δ(x, dest), it does not drop

the packet. Instead it flips the (L−k)th bit (counting from the

left) in the destination vid, and uses this updated vid to look

up the routing table, to find a valid nexthop to reach the node

closest to vid. If the level-(k− 1) routing entry is also empty,

it flips the (L − (k − 1))th bit in the (updated) destination

vid, and looks up its level-(k− 2) routing entry. This process

stops either when a nexthop, or node x discovers that it is the

closest node to this destination vid.

D. Handling Node/Link Failures

VIRO handles node/link failures, without resorting to flood-

ing of failure notifications (as used in OSPF). Instead, it

utilizes a withdraw & update mechanism: Upon discovering

the failure, a node adjacent to a failed node (say, a gateway

node) or a failed link (to a gateway node) notifies the ap-

propriate rendezvous point(s) by withdrawing its previously

published connectivity information. When a rendezvous point

receives this withdraw notification, it notifies all (or a subset

of) nodes in an affected sub-tree, namely, those that are

currently using the failed or no longer reachable gateway in

their routing tables. More specifically, the rendezvous point

sends an update message containing the withdrawal of the

current gateway, replacing it with a new gateway. Hence only

these nodes that are affected by the failures need to update

their routing entries. (When multiple gateways are used, fast

1The forwarding directive is a L-bit key, whose first L − k bits are the
same as those in the vid of the querying node, is associated with the level-k
gateway whose vid is closest to this key

Fig. 4. vid publish process. Fig. 5. Steps in packet forwarding.

rerouting can be invoked at the node detecting the failure,

see [18]) Hence under VIRO, failures are localized, as only

those nodes within the same subtree of the failed node/link

are likely to be affected. Nodes outside this subtree are in

general not affected, thus no routing table updates are needed

at all. When a rendezvous node fails, a neighboring node

would then take over and serve as the new rendezvous node.

The gateway information would be either (partially) recovered

from the current gateway(s) stored in its routing table, or from

another rendezvous point (when multiple rendezvous points

are used), or in the worst case, learned later through periodic

publications by gateways. In practice, we assume that for

large networks, multiple rendezvous points will be used for

enhanced robustness.

V. VIRTUAL ID LOOKUP AND FORWARDING

In VIRO, address/name resolution (i.e., pid-vid mappings)

is implemented on top of the vid space using Kademlia-style

DHTs. Once the vid of a host is looked up using its pid,

packet forwarding between VIRO nodes is done solely based

on vid. For more flexible and better support for mobility,

geographically-scoped hash functions [20] may also be used

for vid lookup and address/name resolution. Due to space

limitation, in the following we describe only the basic vid

lookup and forwarding operations in VIRO.

When an end-host h is attached to a VIRO switch (which

becomes the host’s host-node), in addition to assigning a vid to

the end-host, the host-node also publishes pid-vid mappings

(key-value pairs), e.g., MAC address, IP address, or a flat-

id name to vid mappings. Let 〈pid(h), vid(h)〉 denote such a

mapping. Using pid(h) as the key, the mapping is stored at

the node – referred to as the access-node of pid for the host h

– whose vid is closest to hashL(pid(h)) based on the XOR

distance, as in [11]. The host-node also stores these pid-vid

mappings in its local cache. As long as the end-host is attached

to its host-node, the host-node will periodically publish its pid-

vid mappings. Fig. 4 illustrates the vid publish mechanism:

when a host (y) joins the network by connecting to node A,

the host-node A for y publishes the mapping at the access

node, which is F in the example.

When another node wants to look up the vid(h) for a

host h identified by its pid(h) in some namespace (e.g., the

MAC address, IPv4 address or flat-id name of host h), it

uses pid(h) as the key, or more precisely, the hashed key,

vid = hashL(pid(h)), and queries the network. The corre-

sponding access-node (whose vid is closest to hashL(pid(h))
then responds with the stored vid(h), if host h exists in the

network; otherwise, an error message is returned.

We illustrate the packet forwarding mechanism in Fig. 5,

which consists of two steps: a) Host vid lookup: when a host x

wants to send a packet to a destination host y, it first performs

the vid resolution for host y, as described earlier. Namely, host

x sends a pid-vid mapping request to its host-node (node L),

which forwards it to the corresponding access-node for host

y, namely, node F whose vid is closest to hash(pid(y)) (step

1 in Fig. 5); upon receiving this request, node F looks up

its mapping table, and returns y’s vid (00000:01) to x (step

2). b) Packet forwarding using vid: host x includes y’s vid

as the destination vid in the packet, sends it to its host-node

L. Using y’s vid, the packet is then forwarded from node L

to node A (y’s host-node), using the VIRO routing algorithm.

Node A then delivers it to host y (step 3).

VI. EVALUATION

Through extensive simulations, in this section we evaluate

VIRO using various real and synthetic network topologies.

We also compare VIRO with several existing routing protocols

such as OSPF [21], SEATTLE [2], and VL2 [22]. Since, OSPF,

SEATTLE and VL2 use link-state routing protocol [23] to

construct the forwarding tables for the nodes. Therefore, in

the following when comparing the control overheads of VIRO

with these protocols, the link-state routing algorithm (OSPF)

is used as the representative example.(More in [18])

We have developed our customized in-house simulator for

VIRO so as to extensively simulate VIRO on large network

topologies using the available computing resources. The fol-

lowing topologies are used in our evaluation, which is also

summarized in Table III.

Router Level AS topologies: These are the router level AS

topologies collected by RocketFuel [24]. We provide simula-

tions results for following three AS’s topologies: i) (AS1) AS

1755, ii) (AS3) AS 3967 and iii) (AS6) AS 6461.

Data Center Topologies: We generated a large number of data-

center topologies using the Fat-Tree [25] based designs to

evaluate VIRO. Here we provide results for following three

topologies: i) DC1, ii) DC3, iii) DC5. Each of these topologies

were created using 125, 320 and 500 commodity switches

respectively, which were arranged to form 3 layers: i) ToR

(top of rack switches), ii) Aggregation switches and iii) Core

switches. Hence, maximum shortest distance between any two

switches(nodes) in these topologies is 4 hops.

Synthetic Router Level AS topologies: We used Brite [26]

topology generator to generate the router level AS topologies

containing different number of nodes. See Table III.

A. vid-assignment evaluation

We evaluate the efficacy of the vid assignment in generating

a topology-aware vid space using both the distributed and

centralized vid assignment methods. For this evaluation we

considered all the topologies mentioned earlier. However, due

to space limitations we present results for only one topology

in each category i.e. BT600, DC500 and AS3967. We plot

average physical (minhop) distance for each pair of nodes

Router Level AS Topologies AS1(295 nodes, 543 edges) AS3(353 nodes, 820 edges) AS6(654 nodes, 1332 edges)

Data Center Topologies DC1(125 nodes, 500 edges) DC3(320 nodes, 2048 edges) DC5(500 nodes, 4000 edges)

Synthetic topologies using BRITE BT2(200 nodes, 790 edges) BT4(400 nodes, 1590 edges) BT6(600 nodes, 2390 edges)

TABLE III
SUMMARY OF THE TOPOLOGIES USED IN EVALUATION.

2 4 6 8 10

2

4

6

8

Logical Distance

A
v
e
ra

g
e
 P

h
y
s
ic

a
l
D

is
ta

n
c
e

(a) Distributed vid−assignment

2 4 6 8 10 12

2

4

6

8

Logical DistanceA
v
e
ra

g
e
 P

h
y
s
ic

a
l
D

is
ta

n
c
e (b) Centralized vid−assignment

DC500 AS3967 BT600

Fig. 6. Distribution of physical(MinHop) distance with the logical distance.
(Vertical bars at each data point represent the 95% confidence interval).

at different logical distances in Fig. 6. In this figure, y-

axis shows the average physical distance for all the pairs

of nodes, at a given logical distance shown on the x-axis.

As seen in this figure, the average physical distance for the

pairs of nodes increases with the logical distance for both

distributed and centralized vid assignments. Therefore, the

pairs of nodes which are logically closer to each other are

likely to be physically close too. These results show that both

the centralized and distributed vid assignments embed physical

topology and hence provide topology-aware vid-layer.

B. Routing Overheads

Routing Stretch: VIRO does not use shortest path routing,

therefore it incurs a marginal overhead in terms of the routing

optimality. We measure this overhead using routing stretch. We

define routing stretch as the ratio of the length of the path taken

using VIRO and the shortest path length between a source

and destination pair. Fig. 7 shows that average routing stretch

remains close to 1 for most of the topologies. Furthermore,

centralized vid assignment incurs much smaller stretch than

distributed vid assignment, it is because an optimal vid

assignment is achieved using graph-partitioning algorithms.

Routing Table Size: A key metric for evaluating the scala-

bility of routing protocol is the size of routing table at each

node. As seen in Fig. 8, VIRO creates much smaller routing

tables than link-state routing protocol. This is because VIRO

stores only one routing entry for each logical distance, on the

other hand link-state routing treats every node equally and has

to keep routing entry for each node in the network.

Since OSPF and SEATTLE use link-state routing protocol

to create similar routing tables, these protocols also keep

similar routing tables, which grows linearly with the number

of nodes in the network.

Control Overhead: Another metric that we use to evaluate

the scalability of the routing protocol is the control overhead.

We estimate the control-overhead for a node by counting

the number of control-messages processed by that node

to build the complete routing table. In case of VIRO

this control-overhead is created by the control-messages

corresponding to Rendezvous publish and query packets.

In this evaluation we also consider four different variants

of VIRO by allowing more than one rendezvous node at

different level. Here VIRO-1, VIRO-2, VIRO-4 are different

variants of VIRO with maximum of 1, 2 and 4 rendezvous

nodes at each level respectively. We compare the overhead

due to control-messages used by VIRO and link-state in

Fig. 9. In this figure, x-axis represents the different topologies

and y-axis(plotted on log-scale) shows the average number

of control-messages processed by each node in the network.

As seen in this figure, control-overhead is much larger

for the OSPF than VIRO. It is because of the “flooding”

based mechanism used by the link-state routing protocol. In

case of VIRO it is much lesser due to the publish-&-query

mechanism used by it. These results show that VIRO has

better scalability than the link-state based protocols in terms

of routing- table size and control overhead.

C. Failure Dynamics

In this section we compare the effect of failure dynamics

for VIRO and SEATTLE by simulating random node failures.

A recent study [22] has shown that 50% of the network device

failures in a data-center are caused by the failures of less than

4 network equipments and 95% device failures are due to

the failure of less than 20 network equipments. This shows

that most of the network failures are caused by the failure

of a very small number of devices. Therefore, we simulate a

large number of failure scenarios by randomly removing small

number of nodes from the topology.

Failure Control-Overhead: As seen in Fig. 10(a), our no

flooding based mechanism used in VIRO helps in reducing

the number of failure notification messages drastically, while

overhead for OSPF style routing protocols is much larger.

Next we evaluate the effect of rendezvous node failures

for VIRO. Here, we consider the scenario with only one

rendezvous node per level. It is because the failure of a

rendezvous node in case of multiple rendezvous nodes does

not create any overhead during failures, as nodes can easily

switch to other replicas of the rendezvous nodes in the event

of failures. Fig. 10(b) plots the overhead due to the failure

of the rendezvous nodes at different levels. In this figure y-

axis shows the control overhead on each node in the same

sub-tree as failed rendezvous node level, which is shown on

the x-axis. This figure shows that control-overhead to spread

the failure notifications increases with the level of rendezvous

node. However it stays very small for even higher levels, e.g.

it is only 6 control messages per node for the failure of the

rendezvous node at level 14.

We measure the effectiveness of VIRO to localize the effect

of failures by comparing the control overhead on the nodes

with the logical distance from the failed node (see Fig. 10(c)).

In this figure y-axis shows the control overhead on a node

DC1 DC3 DC5 AS1 AS6 AS3 BT2 BT4 BT6
0

1

2

3

Topology

A
v
e

ra
g

e
 S

tr
e

tc
h

 Centralized vid assignment

Distributed vid assignment

Fig. 7. Routing stretch distribution for VIRO.

DC1 DC3 DC5 AS1 AS6 AS3 BT2 BT4 BT6
10

0

10
2

TopologyR
o

u
ti
n

g
 t

a
b

le
 s

iz
e

 p
e

r
n

o
d

e

OSPF VIRO

Fig. 8. Routing Table size comparison.

DC1 DC3 DC5 AS1 AS3 AS6 BT2 BT4 BT6

10

100

1000

10000

Topology

C
o

n
tr

o
l
O

v
e

rh
e

a
d

P

e
r

N
o

d
e

OSPF VIRO−1 VIRO−2 VIRO−4

Fig. 9. Control-overhead comparison.

DC1DC3DC5AS1 AS6 AS3 BT2 BT4 BT6
10

0

10
2

10
4

Topology

F
a

ilu
re

 O
v
e

rh
e

a
d

 P
e

r
N

o
d

e

VIRO OSPF

<=4 6 8 10 12 14
0

2

4

6

8

10

Rendezvous Node Level

F
a
ilu

re
 o

v
e
rh

e
a
d

o
n
 a

ff
e
c
te

d
 n

o
d
e
s

DC125

AS3967

BT200

<=4 6 8 10 12 14
0

2

4

6

Logical Distance

F
a
ilu

re
 O

v
e
rh

e
a
d

DC125

AS3967

BT200

(a) Control overhead (b) RDV Failure (c) Failure Localization

Fig. 10. Comparison of VIRO and Link-state for failures. (vertical bars show the 95% confidence interval for the mean values)

with respect to logical distance from the failed node, which is

shown on the x-axis. It shows that nodes which are logically

far from the failure are less affected by the failures. On the

other hand failures are more likely to affect the nodes which

are close to it. Therefore, VIRO is very effective in localizing

the effect of failures.

VII. CONCLUSION & FUTURE WORK

In this paper we have presented VIRO—a novel routing

architecture for large-scale networks. The key idea in our

design is to introduce a topology-aware, structured virtual id

(vid) space onto which both physical identifiers as well as

higher layer addresses/names are mapped. VIRO completely

eliminates network-wide flooding in both the data and control

planes, and thus is highly scalable and robust. Furthermore,

because of the structured vid space, VIRO effectively localizes

the effect of failures, performs fast rerouting and support mul-

tiple (logical) topologies on top of the same physical network

substrate to further enhance network robustness. VIRO also

facilitates the support for virtualized networks and network

services, as well as enables access control and isolation of

services for security and performance. Our evaluation of

VIRO using many synthetic and real topologies shows the

immense scalability and robustness of VIRO, while keeping

the overheads very low. As part of the on-going work, we are

developing a prototype of VIRO using OpenFlow and Click

modular router.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of our sponsors.

The work is supported in part by the NSF grants CNS-

0905037, CNS-1017647 and CNS-1017092 and the DTRA

Grant HDTRA1-09-1-0050.

REFERENCES

[1] “Ietf trill working group,” http://www.ietf.org/html.charters/trill-charter.
html.

[2] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” SIGCOMM, 2008.

[3] R. Perlman et al., “Rbridges: transparent routing,” in INFOCOM, 2004.

[4] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model: Scaling
Ethernet to a million nodes,” in HotNets, 2004.

[5] S. Sharma et al., “Viking: A multi-spanning-tree Ethernet architecture
for metropolitan area and cluster networks,” in INFOCOM, 2004.

[6] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson, “Smartbridge:
a scalable bridge architecture,” in SIGCOMM, 2000.

[7] C. Kim and J. Rexford, “Revisiting Ethernet: Plug-and-play made
scalable and efficient,” in 15th IEEE Workshop on Local & Metropolitan

Area Networks, 2007.
[8] S. Ray et al., “A Distributed Hash Table based Address Resolution

Scheme for Large-Scale Ethernet Networks,” in ICC, 2007.
[9] C. Alaettinoglu and A. Shankar, “Viewserver Hierarchy: A New Inter-

Domain Routing Protocol and its Evaluation,” INFOCOM, 1993.
[10] H. Balakrishnan et al., “A layered naming architecture for the internet,”

in SIGCOMM, 2004.
[11] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” in Proceedings of IPTPS02, 2002.
[12] M. Caesar et al., “Virtual ring routing: network routing inspired by

DHTs,” in SIGCOMM, 2006.
[13] B. Ford, “Unmanaged internet protocol: taming the edge network

management crisis,” SIGCOMM, 2004.
[14] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica,

“Rofl: routing on flat labels,” in SIGCOMM, 2006.
[15] C. Ee, S. Ratnasamy, and S. Shenker, “Practical data-centric storage,”

in NSDI 2006.
[16] S. Ratnasamy et al., “Ght: a geographic hash table for data-centric

storage,” in WSNA ’02: Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications.

[17] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in MobiCom ’03.

[18] S. Jain et al., “VIRO: A Plug & Play, Scalable, Robust and Namespace
Independent Virtual Id Routing for Future Networks,” in Tech report, at

http://networking.cs.umn.edu/veil/viro.pdf.
[19] L. Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal, “Clustering

algorithms for wireless ad hoc networks,” in DIALM, 2000.
[20] Y. Yu, G. Lu, and Z. Zhang, “Enhancing location service scalability with

HIGH-GRADE,” in 2004 IEEE International Conference on Mobile Ad-

hoc and Sensor Systems, 2004.
[21] J. Moy et al., “OSPF Version 2,” 1994.
[22] A. Greenberg et al., “VL2: A scalable and flexible data center network,”

SIGCOMM, 2009.
[23] J. McQuillan, I. Richer, E. Rosen, B. Beranek, and N. Inc, “The

new routing algorithm for the ARPANET,” Communications, IEEE

Transactions on [legacy, pre-1988], vol. 28, no. 5, pp. 711–719, 1980.
[24] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring isp

topologies with rocketfuel,” IEEE/ACM Trans. Netw., 2004.
[25] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in SIGCOMM, 2008.
[26] A. Medina et al., “BRITE: a flexible generator of Internet topologies,”

2000.

