
Forwarding Anomalies in Bloom Filter Based
Multicast

Mikko Särelä, Christian Esteve Rothenberg, Tuomas Aura, Andras Zahemszky, Pekka Nikander, and Jörg Ott

Abstract—Several recently proposed multicast protocols use in-
packet Bloom filters to encode multicast trees. These mechanisms
are in principle highly scalable because no per-flow state is
required in the routers and because routing decisions can be
made efficiently by simply checking for the presence of outbound
links in the filter. Yet, the viability of previous approaches is
limited by the possibility of forwarding anomalies caused by false
positives inherent in Bloom filters.
This paper explores such anomalies, namely (1) packets storms,

(2) forwarding loops and (3) flow duplication. We propose
stateless solutions that increase the robustness and scalability
of Bloom filter based multicast protocols. In particular, we show
that the parameters of the filter need to be varied to guarantee
the stability of the packet forwarding, and we present a bit
permutation technique that effectively prevents both accidental
and maliciously created anomalies. We evaluate our solutions
in the context of BloomCast, a source-specific inter-domain
multicast protocol, using analytical methods and simulations.

I. INTRODUCTION

Since its the origins in the early 90s, IP multicast has
received much attention from researchers (e.g. [5], [18]) and
standards bodies (e.g. [9], [2], [14], [10], [8], [3]). These
multicast protocols require routers to store forwarding state
for each multicast group to which they forward packets. This
model is useful for a network with few (potentially large)
multicast groups but it breaks down if the number of groups
grows. Recent work by Karpilovsky et al. [13] shows that,
for the studied large AS, many groups have a low number of
receivers (≤ 3) and low bandwidth usage. This indicates that
there is, indeed, need for a multicast architecture that can scale
to large numbers of groups.
Bloom filters [4] carried in packet headers are a promising

approach to making multicast scalable to a large number of
multicast groups [19], [12], [7], [27]. The proposed proto-
cols separate the multicast group management and multicast
forwarding, thus removing the need for distributed multicast
route computation and per group state in multicast routers.
Instead of managing the group state in the routing system,
the state is maintained either at the source or in a separate
group management component. Similar to source routing, the
multicast tree is placed in the packet header, where it is
encoded as a Bloom filter.
This encoding creates false positives, i.e. some links may

match the Bloom filter even when they had not been intention-
ally added to it. The false positives give rise to anomalies in
packet forwarding. We analyze three such forwarding anoma-
lies, namely (1) packet storms, (2) forwarding loops, and (3)
duplicate flows. To our knowledge, of these, only forwarding

loops are discussed in existing work [6], [12]. We also propose
and evaluate effective solutions to these anomalies.
If the average number of false positives per router exceeds

one (in some part of the network), the result is a packet
storm. Networks with many highly connected nodes, such
as the Internet, are especially vulnerable to such phenomena.
We show that packet storms can be prevented by varying the
number of hash functions as a function of the out-degree of
the router. Each router chooses this parameter locally so that
the average number of false positives stays below one. Our
evaluation shows that in the Internet topology this also reduces
the overhead caused by false positives by 50%.
Forwarding loops and flow duplication are caused by false

positives that lead to a router in the original forwarding tree.
Loops are especially problematic since, every time a packet
goes through a loop, a copy is also sent to the legitimate
downstream receivers. We propose a per-hop bit permutation
scheme of Bloom filters as a stateless solution, and show by
means of analysis and simulations that it is an efficient and
effective method for preventing both forwarding loops and
duplicate flows.
The rest of the paper is organized as follows. Section II gives

an overview of Bloom filter based multicast. Packet storms,
looping, and duplication anomalies are explained in Section III
and the solutions to the anomalies are analyzed in Section IV.
In Section V, we introduce the BloomCast architecture and
use it for simulation based evaluation in Section VI. Finally,
Section VII concludes the paper.

II. BACKGROUND
A multicast tree can be encoded into a small Bloom filter

carried in each packet. Each router locally names the links to
its peers with a link mask ; a set of bit positions in the Bloom
filter set to 1. A forwarding tree is created by bitwise ORing
the link masks of the corresponding links in the multicast tree.
Every router that receives a router forwards the packet to each
peer When a packet is forwarded, the router checks for each
of its peers whether the corresponding bits in the link mask
for that peer are all set to 1. It forwards the packet to each
peer that matches.
The probability of a false positive is fpr = ρk where ρ is

the fill factor of the filter (i.e., the percentage of bits set to
1) and k is the number of bits set for each data item added
to the filter – typically after the applying k independent hash
functions on the item. Previous discussions of the effects of
false positives in such in-packet Bloom filter based forwarding
applications have revolved around two issues: (1) the extra



2

bandwidth they consume, and (2) potential forwarding loops
they may cause. The basic assumption in the literature is
that the false positive rate can be kept low enough for the
traffic overhead to be negligible. Ermolinskiy [6] found the
sharp decline in bandwidth efficiency once false positive rate
exceeded 0.2% to be caused by loops. LIPSIN [12] utilizes
a cache in all routers to capture looping packets, requiring
routers to maintain short-lived per packet state.
False positives are primarily controlled by adjusting the size

and by limiting the capacity of the Bloom filter i.e. the number
of data items stored in it. The latter is effectively a limit on
the size of the multicast tree (or the length of the forwarding
path for unicast). In order to optimize the Bloom filter for
the largest trees, the limit can be set so that ρ ≤ 50%. In
that case, the false positive rate will be fpr = 2−k, and the
maximum size of the path or multicast tree that can be encoded
in the Bloom filter is approximately n = (m/k) · ln 2. If larger
multicast groups are needed, they can either be divided into
several separate multicast trees [19] or by encoding a path as
a virtual link [12].

A. Related work on Bloom filter based forwarding

Free Riding Multicast (FRM) [19] separates group mem-
bership management and forwarding by pushing the multicast
tree computation to the sender’s AS. Each AS maintains a
group set for each other AS in the network that describes the
groups the AS wants to receive. The sets are piggybacked on
BGP advertisements. For each AS-AS link, the link masks are
computed from the AS numbers A:B.
LIPSIN [12] uses a Bloom filter based forwarding fabric for

a network architecture designed to support publish/subscribe.
Each router has a set of d Link ID Tags for each link. For a
given multicast tree, a topology manager chooses the d value
that minimizes the number of false positives. Z-formation [7]
proposes dynamically computed link masks enabling routing
Bloom filters to act as capabilities [1]. MPSS [27] uses Bloom
filters for VPN multicast services in operator deployments.
Another variant was proposed in [22]. Each packet carries

a Bloom filter that encodes the set of IP destinations. The
proposed scheme ensures loop freeness, but is computationally
expensive as each router needs to recompute the Bloom filter
for each next hop.
Bloom filter enhancements: Variable-length Signatures [16]

and Popularity Conscious Bloom Filters [28] use similar ideas
to our varying k approach. The first allows setting partial
signatures, where only some of the bits need to be set. An
element is reported to be a member of the set if at least q(≤ k)
of the bits are set to 1. The latter varies the number of hash
functions as a function of the data item popularity to reduce the
average number of false positives. Recently, deletable Bloom
filters [20] have been proposed as a memory efficient add-on
to allow probabilistic element deletions, enabling for instance
to remove already processed outgoing links as the in-packet
Bloom filter traverses the network.

TABLE I
FALSE POSITIVE RATE, MAXIMUM MULTICAST TREE SIZE AND

BANDWIDTH OVERHEAD AS FUNCTIONS OF k (BLOOM FILTER LENGTH
m = 800, FILL FACTOR ρ = 50% AND NETWORK NODE DEGREE d = 10)

k fpr max tree size bandwidth overhead
4 6.3 % 139 114.3 %
5 3.1 % 111 34.8 %
6 1.6 % 92 14.5 %
7 0.8 % 79 6.7 %
8 0.4 % 69 3.2 %
9 0.2 % 62 1.6 %
10 0.1 % 55 0.8 %

B. Traffic amplification and routing loops
While we are not aware of any work on Bloom filter

based forwarding anomalies, similar problems have arisen
elsewhere. Internet routing loops have been shown to cause
traffic amplification [24], [25] causing congestion and enabling
denial-of-service attacks even against the backbone network.
Icarus [23] uses Bloom filters to prevent unicast loops and
multicast implosions in IP forwarding.

III. FORWARDING ANOMALIES

As explained earlier, Bloom filters can cause false positives.
In this Section, we analyze the effects of false positives in
the forwarding plane and describe three anomalies: (1) packet
storms, (2) loops, and (3) flow duplication.

A. Packet storms of false positives
In a network with unicast communication and constant

node degree b (each forwarding node has b neighbors), the
bandwidth overhead caused by the false positives is

lim
i→∞

(d− 2) · fpr ·
1− ((d− 1) · fpr )i

1− (d− 1) · fpr
=

(d− 2) · fpr

1− (d− 1) · fpr

if (d−1)·fpr < 1. If the product of the node degree and false-
positive rate exceeds one, (d − 1) · fpr = (d − 1) · ρk ≥ 1,
false positives will cause an unlimited traffic explosion in
the network. This is because each false positive will, on
the average, cause more than one false positive in the next
forwarding node. Theoretically, when we limit the filter fill
factor to ρ ≤ 50%, the network will be stable only if
(d− 1) · 2−k < 1. (Note that, excluding the ingress link, there
are d− 1 potential outbound links at each forwarding node.)
Table I shows some of these values for an 800-bit Bloom

filter. The bandwidth overheads caused by false positive pack-
ets have been calculated for the node degree d = 10. Based
on such estimates, the sensible values of k are usually thought
to be between 5 and 8.
Let k = 5 and consider high-degree core nodes in the

network. For example, if a node has 1000 neighbors, a packet
routed to it will cause, on the average, over 30 false positives
to be sent out. Moreover, every false positive received by such
a high-degree node will cause another over 30 copies of it to
be sent. This kind of amplification would cause a packet storm
in the highly connected core part of the network.



3

While practical network topologies have few very-high-
degree nodes, inter-domain routing in the Internet has enough
of them to be vulnerable to such instability. There are hundreds
of ASes with 32 or more peering relations. It can be assumed
that most of these are at the core of the network and that
they are highly connected to each other. With k = 5, the first
packet sent through this part of the network would cause an
unlimited packet storm as each false positive would induce,
on the average, at least one more false positive.
Moreover, the peering and transit relations between ASs

are determined by business aspects and technology should not
arbitrarily limit them. There is no guarantee that the node
degree in inter-domain routing will not grow in the future. It
would not be prudent to base the stability of an inter-domain
routing protocol on restrictive assumptions about network
characteristics that are difficult to measure and control.

B. Forwarding loops
In addition to the bandwidth overhead, the literature identi-

fies forwarding loops as another potential consequence of the
false positives. A loop can arise from a single false positive
that causes a packet to be sent back to a node which it has
already traversed, as shown in Figure 1. Even rare occurrences
of such loops can severely disrupt a network if the packet gets
stuck in the loop for a long or an unlimited time. In addition
the packets congesting the loop, a copy of each packet will
be sent to the intended downstream tree every time it goes
around the loop.
A further consideration is that a malicious sender may

intentionally construct packets that end in such infinite loops:
it can simply add the looping link intentionally to the filter.
This vulnerability is particularly alarming because one of the
promises of Bloom filter based publish-subscribe architectures
has been protection against packet-flooding attacks.
FRM [6] finds that false positive rate above 0.2% causes

a sharp decline in bandwidth efficiency due to forwarding
loops. LIPSIN [12] proposes several solutions: cached state
in the routers, a TTL field in the packets, and valley-free
network topology. These ideas have major limitations. The
cached state would make the protocol less scalable with
the number of flows and, thus, also create another denial-
of-service vulnerability. The TTL field would end the loop
after a finite number of rounds. That might suffice for loops
that occur accidentally with low probability. In DoS attacks,
however, even a small number of rounds in the loop can create
significant traffic amplification to the downstream tree. Valley-
free [11] networks prevent loops in theory1 but are vulnerable
to another routing anomaly that will be presented next.

C. Flow duplication
Loops are not the only anomaly that can arise because of the

false positives in probabilistic packet forwarding. Figure 2(a)
shows how a false positive can cause a packet to be forwarded

1In practice even valley free networks experience loops e.g. due to miscon-
figuration and routing dynamics.






Fig. 1. Forwarding loop

(a)






(b)






  


   





    


(c)






 



  




 


    

Fig. 2. Flow duplication

for a second time to a subtree even though the forwarding
topology is loop-free.
Figures 2(b)-(c) presents rather artificial constructions in

which the number of packets grows according to the Fibonacci
sequence and as powers of two. The numbers indicate the
number of copies of each packet that traverse the link. These
examples are interesting for two reasons. First, they shows
that exponential growth is possible even when packets have
low TTL values and when the valley-free forwarding rule is
observed.2 Second, more importantly, such extremely anoma-
lous cases could be constructed by malicious senders. While
accidental flow duplication is clearly not as serious a problem
as accidental forwarding loops, the duplication becomes an
important consideration when we consider secure ways of
preventing intentional attacks.

IV. INCREASING ROBUSTNESS AND SCALABILITY

In this section, we propose and analyze two methods
that can be used to prevent the three forwarding anomalies
identified in the previous section.

A. Varying Bloom filter parameters

False positives occur randomly, hence, packet storms cannot
be detected and stopped reactively. To control them, a stability
condition must be preserved, i.e. d · ρk < α, where α ≤ 1
is preferred maximum average number of false positives per
node, d is the node degree of the forwarding node and k is
the number of bits set in the link masks.

2The exponent is limited by the number of tiers in the routing architecture.



4

Given a fill factor, the average number of false positives is
independent of the length of the Bloom filter. This suggests
a two-fold solution: firstly, each node sets k locally based on
the node degree and, secondly, the source sets the length m
of the Bloom filter so that the fill factor ρ ≈ ρmax. (Either
technique can also be applied separately.)
1) Varying k: Each node sets k locally based on its degree:

k = %log2(d− 1)&+ r for some small global integer r.

This local condition guarantees that, at any node, the false
positive rate is fpr < ρrmax/(d − 1). Thus, a false positive
arriving at any node will cause, on the average, fewer than
2−r further false positives to be sent. If we set ρmax = 50%
and r globally to some small value, this limits the bandwidth
overhead caused by the false positives to 1/(2r − 1). For
example, for r = 3, the overhead is limited to 14%.
The variable k does not only prevent traffic storms at the

high-degree core parts of the network; it also optimizes the
usage of Bloom filter capacity so that there is no unnecessary
safety margin and the filter capacity can be used to encode
larger multicast trees. This is particularly important if the
multicast group size exceeds the maximum capacity of a single
filter and the group needs to be split into several trees. The
simulations in Section VI confirm this by showing about 50%
reduction of fpr with variable k compared to static k (holding
the Bloom filter size and multicast tree constant).
2) Varying the length of Bloom filter: The number of

elements added into the Bloom filter (together with the Bloom
filter length m and the number of bits used to identify a link
k) determines the fill factor ρ, which then determines the false
positive probability. The higher the fill factor, the higher the
probability of false positives. In other words, when encoding
bigger multicast trees, we can expect larger average number of
false positives with a given Bloom filter length m1. However,
if we use a longer filter length m2, we could reduce the false
positive probability for the same multicast tree, thus improving
efficiency, with the penalty of larger packet headers. Vice
versa, multicast trees containing only a couple of receivers
would require fewer bits for efficient packet delivery and
would save on per-packet overhead, which is important for
applications where average payload sizes are small.
We propose a scheme to implement the variable-length

Bloom filters. First, a long filter (e.g. M = 8000 bits) is
created for the multicast three. Then, the fill factor ρ, i.e. the
number of 1-bits divided by the filter length, is computed. This
allows us to compute what would have been the the optimal
length of the filter: m = %−M log2(1− ρ)&. A filter of length
m would result in a fill factor 50% for the tree. We then fold
the long filter into one of length m as follows:

iBF [i] =
∨

j=0...$M/m%

longBF [j ·m+ i] for i = 0 . . .m− 1.

(Note that the elements beyond the array boundaries are
considered to have value 0. Also, the fill factor of the resulting
vector may, by change, be above 50%, in which case m
should be decremented by one until the fill factor is below the

limit.) The forwarding algorithm is modified in such a way
that the k hash functions f1...i used to compute the locations
of the of the 1-bits in the link masks are modified to be
f ′
i(x) = fi(x) mod m.

B. Bit permutation of the Bloom filter
In two of the forwarding anomalies introduced above,

routing loops and flow duplication, the same nodes forward
the same packet (or its exact copy) multiple times. Since we
do not want to store any state in the forwarding nodes, it is not
possible to detect the recurrence of the packet. However, the
packets do differ in their history, i.e. the path which they have
already traversed. Only one occurrence has traversed exactly
the path that was intended by the routing algorithm while
the others have taken some anomalous path and then rejoined
the intended route. If we could make the forwarding decision
dependent on the path already taken by the packet, then we
could prevent the copies with different history from following
the same path forward.
The history-dependent forwarding can be achieved by ac-

cumulating in the packet information about the traversed path.
For example, loops could be prevented by adding a hop counter
or TTL value in the packet and including it as an input to the
computation of the Bloom filter and link masks. This does not,
however, prevent flow duplication where the path length is the
same for both copies of the flow (e.g. Figure 2(a)). Hence, we
need an efficient way to include more information about the
history into the packet than just the hop count.
Our solution is to perform a bit permutation of the Bloom

filter on each traversed link. The cumulative permutation of
the filter along the forwarding path, in effect, makes the
forwarding decisions dependent on the path already traversed
by the packet. Every router should select a random permutation
for its inbound links and apply this permutation to the filters
of all packets arriving on that link. The forwarding algorithm
is shown in Figure 3.
It should be noted that the filters for packet headers can

no longer be computed simply as an OR of the link masks
of the multicast tree. Instead, they need to be computed
starting from the leaves of the tree (i.e. subscribers) towards
the root by alternatingly ORing the filter with a link mask
and permuting the filter (using the inverse permutation of the
up-link). Similar to previous protocols, it is still possible to
compute the filters for individual paths and OR them at the
sender, or to accumulate the subtree filters along the tree.
There are a few reasons for choosing bit permutations as

the technique for making forwarding dependent on the history
of the packet. First, (static) bit permutations can be efficiently
implemented in hardware. Second, performing a transforma-
tion on the filter does not consume any additional space in the
packet header. What is needed is a pair of transformations for
Bloom filters: f to be performed on forwarded packets and
f ′ for computing the filters in the reverse direction. These
transformation must meet the following conditions:
1) The process of forward transformation, setting additional
bits, and reverse transformation must not cause any bit



5

Algorithm 1: packet forwarding

Input: LinkMasks of the node;
Permutations of the node;
iBF in the packet header;

let π = Permutations[ingress link]
set iBF in packet to π(iBF);
foreach outgoing link l do
let mask = LinkMasks[ingress link, l]
if iBF & mask == mask then
Forward packet on the outgoing link l

end
end

Fig. 3. Pseudocode for packet forwarding

to be unset in the filter: ∀ filters x, y∃z : f ′(f(x)∨y) =
x ∨ z.

2) In order to avoid unnecessary false positives and con-
serve filter capacity, neither transformation should (sig-
nificantly) increase the number of 1-bits in the filter.

The only transformations that strictly meet the two criteria
are bit permutations of the filter, with f ′ being the inverse
permutation of f .
In order to understand the effect of the bit permutations,

consider first a forwarding architecture without the permu-
tations. Whether false positives can cause forwarding loops
depends on the topology and enforced forwarding policies of
the network. For example, tree-structured networks and ones
with a valley-free forwarding policy cannot have forwarding
loops. On the other hand, in a highly connected network with
many redundant routes and few rigid policies, such as the
Internet, loops may arise easily. If any node in the multicast
tree has a redundant link to a node higher in the same tree,
there is a relatively high probability that the packet will loop
back. The Bloom filter based forwarding allows false positive
rates of up to several percent and all it takes to create a loop
is one false positive on such a redundant link. Without the bit
permutations, every packet in the flow will then keep going
around the loop, producing a duplicate to downstream subtree
at every loop..
When a bit permutation is applied to the filter at every

hop, the first false positive is just as likely to occur but, after
that, the packet will usually not match the link masks of its
old route. Every further hop along the looping path requires
another false positive and, intuitively, we would expect the
packet to be dropped soon. This intuition is, however, slightly
misleading as infinite loops are still possible: the set of bits
tested by the link masks around the loop fall into some cycles
of the permutations, and the packet will go into an infinite
loop if and only if all bits in these cycles happen to be 1.
1) Upper bound on infinite loop probability:: Assume that

a false positive causes a packet to be forwarded back to a node
that it has previously traversed. Let us number the nodes in the
looping path as 1 . . . n (with the first recurring node numbered
1). Denote with πi the permutation applied by the ith node in
the loop, with βi the link mask of the egress link from the ith

router, with ki the number of randomly selected bits set to 1
in βi (because of collisions, the actual number of 1-bits may
be lower than ki), and with F the value of the Bloom filter
in the packet before the 1st router of the loop processes it for
the second time.
In order for the packet to go around the loop for a second

time, specific bits in it must be set. The bit mask indicating
those bits is B = ∨i=1...n(π

−1

1
◦ . . . ◦ π−1

i )(βi). That is, the
packet will go around the entire loop for a second time if
F ∧ B = B. Let us further denote the loop permutation as
π = π1◦. . .◦πn. In order for the packets to keep going around
the loop for an unlimited number of times, the following has to
hold: F ∧ πjB = πjB for j = 0, 1, 2, . . .. In other words, the
bits set in B must belong to cycles of the permutation π that
have all bits set in F . It remains to calculate the probability
this.
B is effectively a bit mask of length m where K =

∑

ki
randomly selected bits have been set to 1. Since collisions
are possible, the actual number of 1-bits in B will be some
1 ≤ b ≤ K . We want to know the probability P (b|K,m) of
the K random selections from m bits resulting in exactly b
distinct values. There are mK possible mappings from K to
m. The number of masks B with exactly b bits set is

(

m
b

)

. For
each such B, there are tb = bK −

∑

i=1...b−1

(

b
i

)

ti ways to
map the K selections into the b bits. (There are bK mappings
from K to b and we exclude those that map into fewer than b
distinct values.) This means that

(

m
b

)

tb out of the mK possible
selections result in exactly b 1-bits in B. Thus,

P (b|K,m) =

(

m

b

)

tb/m
K

The values of tb are easy to compute recursively.
Next, given b, we determine an upper bound for the proba-

bility P (infinite loop|b,m) of the b 1-bits in B falling into
cycles of π that have only 1-bits. Note that since π is a
composition of random permutations, it itself has the statistical
properties of a random permutation. The 1-bits of B always
fall into some cycles of π, and we denote the b + δ bits in
these cycles with Y.
b+ δ < ρ ·m is a necessary condition for the infinite loop,

because otherwise there are not enough 1-bits in F . We want
to count the permutations that meet this condition. For any δ,
there are

(m−b
δ

)

ways to choose Y . For any such choice of Y ,
there are (m− b− δ)! permutations of the bits that are not in
Y . The number of relevant permutations of Y has the upper
bound (b+δ)! (Some permutations of Y are redundant because
they have cycles that contain no 1-bits of B.) Combining these,
we get an upper bound for the number of permutations that
meet the condition b + δ < ρ · m for a given δ:

(

m−b
δ

)

(m −
b− δ)!(b+ δ)!. This allows us to compute an upper bound on
the probability of infinite loops for a given b. We take into
account the fact that π is a random one from the set of all m!
permutations and that the δ bits all must have value 1.



6

TABLE II
THE PROBABILITY OF INFINITE LOOPS WITH VARYINGm ANDK GIVEN

ρ = 0.5

K m = 64 m = 128 m = 256 m = 800
3 4.1 · 10−4 5.1 · 10−5 6.4 · 10−6 2.1 · 10−7

5 7.8 · 10−6 2.4 · 10−7 7.6 · 10−9 2.6 · 10−11

7 3.1 · 10−7 2.5 · 10−9 1.9 · 10−11 6.6 · 10−15

13 3.5 · 10−10 4.3 · 10−14 5.2 · 10−18 1.9 · 10−24

17 1.9 · 10−11 1.4 · 10−16 1.1 · 10−21 4.3 · 10−30

21 2.4 · 10−12 1.2 · 10−18 5.9 · 10−25 2.4 · 10−35

P (infinite loop|b,m)

≤
ρm−b
∑

δ=0

ρδ
1

m!

(

m− b

δ

)

(m− b − δ)!(b+ δ)!

=

(

m

b

)−1 ρm−b
∑

δ=0

ρδ
(

b+ δ

b

)

Finally, we get an upper bound for the probability that the
packet which has looped back once will stay in the loop for
ever.
P (infinite loop|K,m) = P (infinite loop|b,m) P (b|K,m)

< m−K ·
K
∑

b=1

tb ·
ρ·m
∑

δ=0

ρδ ·

(

b+ δ

δ

)

Probabilities for some values m and K are shown in Table II.
(Recall that K is the total number of bits se in the link masks
around the loop.)
2) Probability of duplicate flows with permutations: A

duplicate flow can happen when a false positive causes a
packet to be forwarded to a router that is part of the forwarding
tree. When the random permutations described above are in
use, the false positives packets will not be automatically be
forwarded down the tree from the node where they have
landed. Because of the randomizing effect, a false positive
must occur at every further hop. This is just as unlikely as
the propagation of any false positive. Thus, as long as the
stability condition of Section III-A is met, flow duplication
will not take place. This result applies both to the situations
of Figure 2 and to the copies sent downstream from a loop as
in Figure 1.

V. INTER-DOMAIN MULTICAST

In this Section, we provide a rough sketch of BloomCast
architecture that is designed to interconnect source specific
multicast protocols. Unlike traditional IP multicast approaches,
where the forwarding information is installed in routers on
the delivery tree, in BloomCast, transit routers do not keep
any group-specific state. It is influenced by Free Riding
Multicast [19] and Automatic IP Multicast Without Explicit
Tunnels (AMT) [21].
The rationale for this work is the following. First, we believe

the state requirements of traditional multicast to be prohibitive
for large scale and widespread use. Second, the analysis in

Fig. 4. The left side shows multicast Join message using Bloom filters.
The right side shows a simplified Membership Table MT(S) that contains the
Bloom filters for A, B, C, and D. The separated bottom row shows how to
combine the Bloom filters in to an Bloom filter.

FRM [19] shows that bandwidth requirements for unicast-
based large scale inter-domain multicast are unreasonably
high. Thirdly, FRM requires that each AS has a correct up-
to-date view of the routing topology with full routing vectors
for all destinations. Neither assumption holds: route changes
propagate slowly and using BGP route aggregation loses the
path vector information FRM needs.
We use BloomCast to evaluate our enhancements for Bloom

filter-based multicast via simulations.

A. BloomCast protocol

BloomCast is an inter-domain protocol, operating between
border routers in the AS hosting the source (source AS) and
the border routers of the ASes hosting the receivers (receiver
ASes). However, for the sake of simplicity, we will treat each
AS as a single node.
When an AS joins a multicast group, it sends a BloomCast

Join (BC JOIN) message towards the source AS. The message
contains an initially empty collector Bloom filter. While the
message travels upstream towards the source, each AS records
forwarding information in the control packet by inserting
the corresponding link mask into a collector. After this, it
performs a bit permutation on the collector. An illustration of
this process (without the permutations) is shown in Figure 4.
Once the BC JOIN message reaches the AS of the source,

the collector holds sufficient information so that the source
can send source-routing style packets to the recently joined
AS. The source AS stores this information in the Membership
Table (MT), as shown in Figure 4. The source AS can now
combine the individual Bloom filters by bitwise ORing them
and send packets to the multicast tree. It can split a large group
into several Bloom filters.
When an AS expresses its desire to leave a multicast

group, it will send a BloomCast Leave (BC LEAVE) message
specifying (S,G) to the source AS. Intermediate routers do not
need to process this packet. Hence, unlike pruning packets in
IP multicast, control packets are transparently routed to the
source of the tree. Upon receiving the message, the source
removes the receiver AS from the MT and reconstructs the
forwarding Bloom filter for the group. An example of a
combined Bloom filter for the group is shown in Figure 4
at the separated bottom row of the table.



7

When source AS sends a packet to a multicast group, it
adds a BloomCast Forwarding (BC FW) header to the packet,
which contains the forwarding Bloom filter. Each intermediate
AS makes its forwarding decision by performing a reverse bit
permutation on the forwarding Bloom filter and then querying
it with the question: which of my outgoing links are present
in the Bloom filter?
For each match found, the packet is forwarded to the cor-

responding neighboring ASes. Eventually, the packet reaches
all the destination ASes, following the sequence of ASes the
BC JOIN packets traversed in reverse order.
The BloomCast architecture shifts the group and tree man-

agement to the source and, hence, requires less processing and
state at the transit routers. Computing the link mask can be
done on line speed using e.g. a fast spreading hash function
(e.g. [15], [26]). BloomCast requires more processing and state
at the border routers in the source domain. However, we be-
lieve that the additional complexity is reasonable considering
that the source domain is the main beneficiary of the inter-
domain multicast architecture.

VI. EVALUATION
In this section, we evaluate our solutions using the Bloom-

Cast architecture and an inter-domain AS topology scenario.
We evaluated the effects of varying k scheme and bit permu-
tations with the CAIDA AS relationship data set3 and using
shortest valley free paths [11] for every pair of ASes. Loop
prevention was stress tested with an artificial simulation setup
of three nodes forming a ring.

A. Scalability with variable k

The multicast forwarding process was simulated with con-
stant and variable k for group sizes between 5 and 30 random
ASes and multicast trees based on valley free shortest paths
to each destination AS. For each parameter set, 5000 rounds
were run.
In the varying k scheme, each ASi sets ki = %log2(di)&,

with di being the AS degree, i.e., the number of neighboring
domains. The ki hashes are generated using the double hashing
technique, with MD5 and SHA1 as the independent hash
functions.
Forwarding efficiency was measured as the ratio of Bloom

filter edges to the total number of edges traversed (including
false positives and packet duplications). False positives were
recursively tested on the forwarding tree using the CAIDA AS
topology, i.e. whenever a false positive was found, additional
false positives were recursively tested by querying for Bloom
filter presence of adjacent domains.
Figure 5(a) shows the forwarding efficiency for varying

Bloom filter lengths and multicast group sizes. 20–25 receiving
ASes (≈ 40–50 edge-pair labels) is a practical limit to the
group size with Bloom filter of 800-1024 bits. This keeps the
fill ratio ρ < 0.5 and the forwarding efficiency at an acceptable
level (≥ 60–80%).

3Data set: as-rel.20091215.a0.01000.txt, http://as-rank.caida.org/

TABLE III
SIMULATION RESULTS, CONSTANT K VS. VARIABLE K.

group # transit AS hashes k fpr (%) fill factor ρ
size avg. (95th) avg. 95th avg. 95th

15 33.5 (38.5) kc = 9 0.027 0.050 0.31 0.35
kvar(b) 0.015 0.031 0.32 0.35

20 43.5 (49.1) kc = 9 0.062 0.109 0.38 0.43
kvar(b) 0.032 0.057 0.39 0.42

25 53.1 (59.5) kc = 9 0.143 0.252 0.45 0.49
kvar(b) 0.069 0.119 0.45 0.49

TABLE IV
SIMULATION RESULTS, PERMUTATION VS. NON-PERMUTATION. FOR

m = 800, kc = 9.

group rdm. fp per domain duplicates (#)
size perm. avg. 95th avg. 95th

15 NO 0.22 0.45 0.005 0.061
YES 0.22 0.45 0.004 0.060

25 NO 0.61 0.83 0.032 0.121
YES 0.61 0.81 0.023 0.061

Figure 5(b) shows the rank distribution of false positives
per domain with 100-byte Bloom filters and varying group
sizes when using both the bit permutation technique and the
varying k scheme. As expected, the majority of transit ASes
are false-positive-free, whereas more than 5 false positives per
domain correspond to less than 1% of the cases.
Table III compares the observed false positive rate (fpr)

between constant kc and variable kvar for multicast group
sizes between 15 and 25 AS receivers. The results show that, in
inter-domain AS topologies, the logarithmic computation of ki
results in a factor 2 improvement in fpr for the same receiver
group while keeping the average fill factor approximately the
same as in the constant k scheme.

B. Duplication prevention
Using the same simulation setup, we now focus on the

incidence of duplicate flows, i.e., the amount of duplicated
traffic delivered to the destination AS due to false positives.
The number of duplicate flows was measured as the sum of
falsely forwarded flows each receiver AS received. Our results
in Table IV show that using bit permutations contributes to a
reduction in the number of duplications.
The drop in flow duplications is relatively small because

many of the flow duplications encountered are caused by false
positives directly to a recipient AS (case shown in Fig. 2(a)),
instead of causing the flow to return to the forwarding tree.

C. Loop-freeness using bit permutations
Bit permutation-based loop prevention was stress tested

with an artificial topology of three nodes, interconnected as
a directional ring. An m-bit Bloom filter was generated by
inserting random link masks from a pool of 3M unique
randomly generated 32-bit identifiers until ρmax was reached.
100 different test link masks were randomly chosen for each



8

(a)
 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30

Ef
fic

ie
nc

y 
(%

)

Group size (#)

 m = 1024
 m = 800 
 m = 512 

(b)
 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6

Fr
ac

tio
n 

of
 tr

an
si

t A
S

Average false positives per AS

 group size = 25 
 group size = 20 
 group size = 15 

(c)
 0.0001

 0.001

 0.01

 0.1

 1

 1  2  4  8  16

Fr
ac

tio
n 

of
 o

bs
er

ve
d 

fin
ite

 lo
op

s

Number of loopings before discarded

 m = 64 
 m = 256 
 m = 800 

 m = 1024 

Fig. 5. (a) Average forwarding efficiency for different filter sizes m in function of the multicast group size. (b) Rank distribution of the average false positives
per domain using varying k, bit permutations and m = 800. (c) Distribution of the number of finite loops observed when ρ = 0.95 and k = 7.

multicast node inserted in the Bloom filter. The presence of
false positives was tested recursively starting with an initial
router. The incidence of loops was tested using packets with
randomly filled Bloom filters both with and without bit per-
router permutations. This setup resulted in at least 10.000
rounds per parameter set; for some configurations over 10M
rounds were run so that some loops could be observed.
Table VI-C shows the results in terms of observed loop

rate with and without per-router bit permutations for varying
target fill factors (ρi ∈ [0.5, 0.75, 0.95, 0.98]),4 number of hash
functions (kc ∈ [5, 7, 13, 17, 21]), and 800-bit Bloom filters.
Not a single infinite loop was observed when bit permuta-

tions were used. In comparison, loop events of plain Bloom
filters were rare but observable for ρ = 0.5 and k ≤ 7 and
become common (> 1%) for ρ ≥ 0.75.
The results are consistent with the theoretical predictions.

Loop events were effectively contained due to per-node bit
permutations for practical fill factors (ρ < 0.75). Only for
very filled Bloom filters (ρ ≥ 0.95) some amount of finite
loop instances could be observed. In those cases, as expected,
increasing k and m reduces the amount of loopings (i.e.,
finite loops before the packet is discarded. This effect and the
relation to m can be observed in Fig. 5(c) for ρ = 0.95. Even
for 800-bit Bloom filters filled with 760 ones, the majority of
the loopings lasted only for 1 or 2 cycles. The longest finite
loop observed was for ρ = 0.98 (i.e., 784 bits set) where a
packet looped as many as 58 times before dying out. There
were only anecdotic instances of infinite loops when using
permutations for small filters (m = 256 and m = 64) and
always for unrealistic fill factors ρ ≥ 0.9.

D. Discussion
The three discussed anomalies – packet storms, forwarding

loops, and flow duplication – are especially problematic be-
cause, if they occur, they do not just affect a single packet
but every packet in a flow. Hence, even if the probability of a
problem is low, a few rare instances can cause major problems
in a network.
Packet storms can be prevented by local decisions, i.e. vary-

ing the ki to ensure that the average number of false positives

4While ρ values larger than 0.5 are not practical due instability packet
storms as discussed earlier, we use them solely for the purpose of illustrating
the effectiveness of permutations in preventing loops.

TABLE V
FRACTION OF OBSERVED INFINITE LOOPS WITH PERMUTATIONS (P) AND
WITHOUT (NP) FOR VARYING ρ, K ANDm = 800. NORMALIZED BY THE

NUMBER OF SYNTHETIC LOOP TRIALS.

K ρ = 0.5 ρ = 0.75 ρ = 0.95 ρ = 0.98
P nP P nP P nP P nP

5 0 2.8 · 10−5 0 1.37 · 10−2 0 0.46 0 0.74

7 0 2.8 · 10−7 0 2.4 · 10−2 0 0.34 0 0.66

13 0 0 0 1.5 · 10−5 0 0.14 0 0.46
17 0 0 0 0 0 0.08 0 0.36
21 0 0 0 0 0 0.05 0 0.29

is below the threshold of one. Allowing each AS to vary
ki gives it a policy tool that can be used to control local
false positives. First, peering policies often restrict the set of
possible outbound links depending on the ingress link of a
packet. For this reason, the out-degree of the node will be
smaller if it is calculated individually for each inbound link.
Consequently, determining the value of k separately for each
inbound link may help save filter capacity. Second, an AS
can vary the value of k for inbound/outbound combinations
e.g. based on traffic volumes, or importance of a particular
link. Decisions about such optimizations are matters of local
policy as long as every router meets the stability condition of
not amplifying false positives.
In Bloom filter based multicast, loops cause every packet

in the flow to loop in the network and for every loop, a copy
will be sent to downstream receivers. In theory, local routing
policies prevent loops in BGP. In practice, however, BGP
instabilities and configuration errors do cause routing loops
in the Internet (see e.g. [24]). For these reasons, local routing
policies should not be the only technique used to prevent loops
1) Using varying k and bit permutations: Bit permutations

are easy to use in FRM [19], LIPSIN [12], and MPSS [27].
FRM uses AS number pairs for Bloom mask computation
and the source is assumed to know the AS level path to
destination. The same AS pairs can be used for computing
the bit permutation performed on the Bloom filter. In LIPSIN
and MPSS, the routers can communicate the permutation they
use to the topology manager or PCE, respectively.
Varying k is easy to utilize both when there is a centralized

topology manager and when the Bloom filter is collected hop
by hop. This makes it simple for LIPSIN and MPSS. In FRM,
either a new protocol is needed or BGP would need to be



9

augmented to distribute the k values of each AS.
2) Route failures: A route failure can cause multiple re-

ceivers to disconnect simultaneously. The Bloom filter in the
packet can be used to reverse route an ICMP error packet
back to the source AS, since the use of both previous hop
and next hop AS ensures that the Bloom filter can be used
bidirectionally. Multipath routing that gives source control
over paths (see e.g. [17]) could be used to provide alternative
paths to the destinations in advance.
3) Security: The three anomalies described (packet storms,

forwarding loops, and flow duplication) present opportunities
for denial of service attacks. Each of them can be used for traf-
fic amplification attack: packet storms against the forwarding
infrastructure and forwarding loops and flow duplication both
against the network and a target recipient. The combination of
varying k and globally enforced maximum fill factor efficiently
prevents an attacker from causing packet storms. Random bit
permutations make it harder for an attacker to cause a packet
to loop or a flow duplication. They also ensure that even if a
packet loops, the duplicates will not necessarily be forwarded
to the downstream subtree.

VII. CONCLUSIONS
Bloom filters have been proposed as a scalable solution

for multicast. Their nature causes random false positives that
cause packets to be forwarded over some additional links. We
identified three anomalies in the forwarding plane that arise
from the probabilistic multicast: packet storms, forwarding
loops, and flow duplication. It is noteworthy that all packets
sent to the same multicast group have the same set of false pos-
itives (rather than being randomly distributed), exacerbating
the problem. The identified anomalies could also occur in other
forwarding technologies that follow a similar probabilistic
approach. Our evaluation shows that packet storms can be
efficiently mitigated by adapting the number of hash functions
to the node degree while forwarding loops and flow duplication
can be prevented using per hop bit permutations on the Bloom
filter.
We also introduced BloomCast, a source-specific inter-

domain multicast architecture based on in-packet Bloom fil-
ters. We intend to continue our work by improving fault
tolerance via multipath routing and further evaluating scal-
ability and fault tolerance of BloomCast. The possibilities
for preventing denial-of-service attacks will be studied in
the future. We also plan to evaluate the impact of ASes
varying the size of the link mask per inbound/outbound link
pair using local policies and experiment with safe (false-
negative-free) bit deletions. Finally, incentives for adoption
by the different stakeholders along with overlay and partial
deployment strategies are also part of our research agenda.

REFERENCES
[1] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet denial-

of-service with capabilities. In Hotnets II. ACM, 2004.
[2] N. Bhaskar, A. Gall, J. Lingard, and S. Venaas. Bootstrap Router

(BSR) Mechanism for Protocol Independent Multicast (PIM). RFC 5059
(Proposed Standard), Jan. 2008.

[3] S. Bhattacharyya. An Overview of Source-Specific Multicast (SSM).
RFC 3569 (Informational), July 2003.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[5] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint communication:
A survey of protocols, functions, and mechanisms. IEEE Journal on
Selected Areas in Communications, 15(3):277–290, 1997.

[6] A. Ermolinskiy. The Design and Implementation of Free Riding
Multicast. Master’s thesis, UCB, May 2007.

[7] C. Esteve, P. Jokela, P. Nikander, M. Särelä, and J. Ylitalo. Self-routing
Denial-of-Service Resistant Capabilities using In-packet Bloom Filters.
EC2ND, 2009.

[8] D. Farinacci and Y. Cai. Anycast-RP Using Protocol Independent
Multicast (PIM). RFC 4610 (Proposed Standard), Aug. 2006.

[9] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised). RFC 4601 (Proposed Standard), Aug. 2006.

[10] B. Fenner and D. Meyer. Multicast Source Discovery Protocol (MSDP).
RFC 3618 (Experimental), Oct. 2003.

[11] L. Gao. On inferring autonomous system relationships in the Internet.
IEEE/ACM Transactions On Networking, 9(6):733–745, 2001.

[12] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and P. Nikander.
LIPSIN: Line speed publish/subscribe inter-networking. In SIGCOMM,
2009.

[13] E. Karpilovsky, L. Breslau, A. Gerber, and S. Sen. Multicast redux: a
first look at enterprise multicast traffic. In Proceedings of the 1st ACM
workshop on Research on enterprise networking. ACM, 2009.

[14] D. Kim, D. Meyer, H. Kilmer, and D. Farinacci. Anycast Rendevous
Point (RP) mechanism using Protocol Independent Multicast (PIM) and
Multicast Source Discovery Protocol (MSDP). RFC 3446 (Informa-
tional), Jan. 2003.

[15] H. Krawczyk. LFSR-based hashing and authentication. In Advances in
Cryptology–CRYPTO’94, pages 129–139. Springer, 1994.

[16] Y. Lu, B. Prabhakar, and F. Bonomi. Bloom filters: Design innovations
and novel applications. In the Annual Allerton Conference, 2005.

[17] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing.
In ACM SIGCOMM. ACM, 2008.

[18] P. Paul and S. V. Raghavan. Survey of multicast routing algorithms and
protocols. In ICCC, pages 902–926, 2002.

[19] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP multicast.
ACM SIGCOMM Computer Communication Review, 36(4):26, 2006.

[20] C. E. Rothenberg, C. Macapuna, F. Verdi, and M. Magalhes. The
deletable bloom filter: a new member of the bloom family. IEEE
Communications Letters, 14(6):557 – 559, June 2010.

[21] D. Thaler, M. Talwar, A. Aggarwal, L. Vicisano, and T. Pusateri.
Automatic IP Multicast Without Explicit Tunnels (AMT). Internet-Draft
draft-ietf-mboned-auto-multicast-10, IETF, Mar 2010. Work in progress.

[22] X. Tian, Y. Cheng, and B. Liu. Design of a scalable multicast scheme
with an application-network cross-layer approach. IEEE Transactions
on Multimedia, 11(6), 2009.

[23] A. Whitaker and D. Wetherall. Forwarding without Loops in Icarus. In
Open Architectures and Network Programming, pages 63–75, 2002.

[24] J. Xia, L. Gao, and T. Fei. Flooding attacks by exploiting persistent
forwarding loops. In Proceedings of the 5th ACM SIGCOMM conference
on Internet Measurement, page 36. USENIX Association, 2005.

[25] J. Xia, L. Gao, and T. Fei. A measurement study of persistent forwarding
loops on the Internet. Computer Networks, 51(17):4780–4796, 2007.

[26] K. Yuksel. Universal hashing for ultra-low-power cryptographic hard-
ware applications. PhD thesis, Citeseer, 2004.

[27] A. Zahemszky, P. Jokela, M. Särelä, S. Ruponen, J. Kempf, and
P. Nikander. MPSS: Multiprotocol Stateless Switching. In Global
Internet Symposium 2010, 2010.

[28] M. Zhong, P. Lu, K. Shen, and J. Seiferas. Optimizing data popularity
conscious bloom filters. In ACM PODC, pages 355–364, 2008.


