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Abstract—We consider an opportunistic spectrum access
(OSA) problem where the time-varying condition of each channel
(e.g., as a result of random fading or certain primary users’
activities) is modeled as an arbitrary finite-state Markov chain.
At each instance of time, a (secondary) user probes a channel
and collects a certain reward as a function of the state of the
channel (e.g., good channel condition results in higher data rate
for the user). Each channel has potentially different state space
and statistics, both unknown to the user, who tries to learn
which one is the best as it goes and maximizes its usage of
the best channel. The objective is to construct a good online
learning algorithm so as to minimize the difference between the
user’s performance in total rewards and that of using the best
channel (on average) had it known which one is the best from
a priori knowledge of the channel statistics (also known as the
regret). This is a classic exploration and exploitation problem
and results abound when the reward processes are assumed to
be iid. Compared to prior work, the biggest difference is that
in our case the reward process is assumed to be Markovian,
of which iid is a special case. In addition, the reward processes
are restless in that the channel conditions will continue to evolve
independent of the user’s actions. This leads to a restless bandit
problem, for which there exists little result on either algorithms
or performance bounds in this learning context to the best of our
knowledge. In this paper we introduce an algorithm that utilizes
regenerative cycles of a Markov chain and computes a sample-
mean based index policy, and show that under mild conditions
on the state transition probabilities of the Markov chains this
algorithm achieves logarithmic regret uniformly over time, and
that this regret bound is also optimal. We numerically examine
the performance of this algorithm along with a few other learning
algorithms in the case of an OSA problem with Gilbert-Elliot
channel models, and discuss how this algorithm may be further
improved (in terms of its constant) and how this result may lead
to similar bounds for other algorithms.

I. INTRODUCTION

In this paper we study the following opportunistic spectrum
access (OSA) problem. A (secondary) user has access to a set
of K channels, each of time-varying conditions as a result of
random fading and/or certain primary users’ activities. Each
channel is thus modeled as an arbitrary finite-state discrete-
time Markov chain. At each time step, the secondary user
(simply referred to as the user for the rest of the paper for there
is no ambiguity) probes a channel to find out its condition,
and is allowed to use the channel in a way consistent with
its condition. For instance, good channel conditions result in
higher data rates or lower power for the user and so on. This
is modeled as a reward collected by the user, the reward being
a function of the state of the channel or the Markov chain.

Channels have potentially different state spaces and statis-
tics, both unknown to the user. The user will thus try to
learn which one is the best and maximizes its usage of the
best channel. Within this context, the player’s performance is
typically measured by the notion of regret. It is defined as
the difference between the expected reward that can be gained
by an “infeasible” or ideal policy, i.e., a policy that requires
either a priori knowledge of some or all statistics of the arms or
hindsight information, and the expected reward of the player’s
policy. The most commonly used infeasible policy is the best
single action policy, that is optimal among all policies that
continue to play the same arm. An ideal policy could play for
instance the arm that has the highest expected reward (which
requires statistical information but not hindsight). This type
of regret is sometimes also referred to as the weak regret, see
e.g., work by Auer et al. [1]. In this paper we will only focus
on this definition of regret.

The above can be cast as a single player multiarmed bandit
problem, where the reward of each channel (also referred to
as an arm in the bandit problem literature) is generated by
a Markov chain with unknown statistics. Furthermore, it is a
restless bandit problem because the state of each Markov chain
evolves independent of the action of the user (whether the
channel is probed or not); by contrast, in a classic multiarmed
bandit problem the state of a Markov chain only evolves when
it is acted upon and stays frozen otherwise (also referred to
as rested). The restless nature of the Markov chains follows
naturally from the fact that channel conditions are governed by
external factors like random fading, shadowing, and primary
user activity.

In the remainder of this paper a channel will also be referred
to as an arm, the user as the player, and probing a channel as
playing or selecting an arm. This problem is a typical example
of the tradeoff between exploration and exploitation. On the
one hand, the player needs to sufficiently explore all arms so as
to discover with accuracy the best arm and avoid getting stuck
playing an inferior one erroneously believed to be the best.
On the other hand, he needs to avoid spending too much time
sampling the arms and collecting statistics and not playing the
best arm often enough to get a high return.

In most prior work on the class of multiarmed bandit
problems, originally proposed by Robbins [2], the rewards
are assumed to be independently drawn from a fixed (but
unknown) distribution. Its worth noting that with this iid



2

assumption on the reward process, whether an arm is rested
or restless is inconsequential for the following reasons. Since
the rewards are independently drawn each time, whether an
unselected arm remains still or continues to change does
not affect the reward the arm produces the next time it is
played whenever that may be. This is clearly not the case
with Markovian rewards. In the rested case, since the state
is frozen when an arm is not played, the state in which we
next observe the arm is independent of how much time elapses
before we play the arm again. In the restless case, the state of
an arm continues to evolve, thus the state in which we next
observe it is now dependent on the amount of time that elapses
between two plays of the same arm. This makes the problem
significantly more difficult.

To the best of our knowledge, there has been no study of
the restless bandits in this learning context, either in terms
of algorithms or performance bounds. Here lies the main
contribution of the present study. In this paper we give the
first result on the existence of order-optimal policies for the
above restless bandit problem. Specifically, we introduce an
algorithm that utilizes regenerative cycles of a Markov chain
and computes a sample-mean based index policy, and show
that under mild conditions on the state transition probabilities
this algorithm achieves logarithmic regret uniformly over time.

Below we briefly summarize the most relevant results in the
literature. Lai and Robbins in [3] model rewards as single-
parameter univariate densities and give a lower bound on the
regret and construct policies that achieve this lower bound
which are called asymptotically efficient policies. This result
is extended by Anantharam et al. in [4] to the case of playing
more than one arm at a time. Using a similar approach
Anantharam et al. in [5] develops index policies that are
asymptotically efficient for arms with rewards driven by finite,
irreducible, aperiodic and rested Markov chains with identical
state spaces and single-parameter families of stochastic tran-
sition matrices. Agrawal in [6] considers sample mean based
index policies for the iid model that achieve O(log n) regret,
where n is the total number of plays. Auer et al. in [7] also
proposes sample mean based index policies for iid rewards
with bounded support; these are derived from [6], but are
simpler than the those in [6] and are not restricted to a specific
family of distributions. These policies achieve logarithmic
regret uniformly over time rather than asymptotically in time,
but have bigger constant than that in [3]. In [8] it is shown
that the index policy in [7] is order optimal for Markovian
rewards drawn from rested arms but not restricted to single-
parameter families, under some assumptions on the transition
probabilities.

Other works such as [9], [10], [11] consider the iid reward
case in a multiuser setting; players selecting the same arms
experience collision according to a certain collision model.
We would like to mention another class of multiarmed bandit
problems in which the statistics about the problem are known
a priori and the state is observed perfectly; these are thus
optimization problems rather than learning problems. The

rested case is considered by Gittins [12] and the optimal policy
is proved to be an index policy which at each time plays the
arm with highest Gittins’ index, while Whittle introduced the
restless bandit problem in [13]. The restless bandit problem
does not have a known general solution though special cases
may be solved. For instance, a myopic policy is shown to
be optimal when channels are identical and bursty in [14]
for an OSA problem formulated as a restless bandit problem
with each channel modeled as a two-state Markov chain (the
Gilbert-Elliot model).

The remainder of this paper is organized as follows. In Sec-
tion II we formulate the single player restless bandit problem.
In Section III we introduce an algorithm based on regenerative
cycles that employs sample-mean based indices. The regret of
this algorithm is analyzed and shown to be optimal in Section
IV. In Section V we numerically examine its performance
along with a few other learning algorithms in the case of an
OSA problem with Gilbert-Elliot channel models, and discuss
how this algorithm may be further improved (in terms of its
constant) and how this result may lead to similar bounds for
other algorithms. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider K arms (or channels) indexed by i = 1, 2, · · · , K .
The ith arm is modeled as a discrete-time, irreducible and
aperiodic Markov chain with finite state space S i. There is
a stationary and positive reward associated with each state
of each arm. Let ri

x denote the reward obtained from state
x of arm i, x ∈ S i; this reward is in general different
for different states. Let P i =

{
pi

xy, x, y ∈ Si
}

denote the
transition probability matrix and π i = {πi

x, x ∈ Si} the
stationary distribution of arm i.

Let (P i)′ denote the adjoint of P i on l2(π), and let P̂ i =
(P i)′P denote the multiplicative symmetrization of P i, where

(pi)′xy = (πi
ypi

yx)/πi
x, ∀x, y ∈ Si.

We will assume that the P is are such that P̂ is are ir-
reducible. To give a sense of how strong this assumption
is, we note that one condition that guarantees that the P̂ is
are irreducible is pxx > 0, ∀x ∈ Si, ∀i. For the application
under consideration, this condition means that there is always
positive probability for a channel to remain in the same state
over one unit of time, which appears to be a natural and benign
assumption1.

We assume the arms (or Markov chains) are mutually
independent and are restless, i.e., their states will continue
to evolve regardless of the user’s actions. The mean reward of
arm i, denoted by μi, is the expected reward of arm i under
its stationary distribution:

μi =
∑
x∈Si

ri
xπi

x . (1)

1Alternatively we could adopt a stronger assumption that the Markov chains
are aperiodic and reversible (note that aperiodicity and reversibility implies
that the multiplicative symmetrization of Pi is irreducible), in which case
the same order results can be obtained with a different constant if we use a
different large deviation bound from [15] instead of Lemma 1.
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For convenience, we will use ∗ in the superscript to denote the
arm with the highest mean. For instance, μ∗ = max1≤i≤K μi,
and so on. We assume that the arm with the highest mean is
unique.

Consistent with the discrete-time Markov chain model, we
will assume that the user’s actions occur also in discrete time.
For a policy α we define its regret Rα(n) as the difference
between the expected total reward that can be obtained by
playing the arm with the highest mean and the expected total
reward obtained from using policy α up to time n. Always
playing the arm with the highest mean reward is referred to as
the best single-action policy, and this arm will also be referred
to as the optimal arm; accordingly the others will be referred
to as suboptimal arms.

Let α(t) denote the arm selected by policy α at t, t =
1, 2, · · · , and xα(t) the state of arm α(t) at time t. Then we
have

Rα(n) = nμ∗ − Eα

[
n∑

t=1

r
α(t)
xα(t)

]
. (2)

The objective is to examine how the regret Rα(n) behaves
as a function of n for a given policy α and to construct
a policy whose regret is order-optimal, through appropriate
bounding. As we will show and as is commonly done, the key
to bounding Rα(n) is to bound the expected number of plays
of any suboptimal arm.

Our analysis utilizes the following known results on Markov
chains; the proofs are not reproduced here for brevity. The first
is a result by Lezaud [16] that bounds the probability of a large
deviation from the stationary distribution.

Lemma 1: [Theorem 3.3 from [16]] Consider a finite-state,
irreducible Markov chain {Xt}t≥1 with state space S, matrix
of transition probabilities P , an initial distribution q and
stationary distribution π. Let Nq =

∥∥∥( qx

πx
, x ∈ S)

∥∥∥
2
. Let

P̂ = P ′P be the multiplicative symmetrization of P where
P ′ is the adjoint of P on l2(π). Let ε = 1 − λ2, where λ2

is the second largest eigenvalue of the matrix P̂ . ε will be
referred to as the eigenvalue gap of P̂ . Let f : S → R be
such that

∑
y∈S πyf(y) = 0, ‖f‖∞ ≤ 1 and 0 < ‖f‖2

2 ≤ 1.
If P̂ is irreducible, then for any positive integer n and all
0 < γ ≤ 1

P

(∑n
t=1 f(Xt)

n
≥ γ

)
≤ Nq exp

[
−nγ2ε

28

]
.

The second is a result by Bremaud, which can be found in
[17].

Lemma 2: If {Xn}n≥0 is a positive recurrent homogeneous
Markov chain with state space S, stationary distribution π and
τ is a stopping time that is finite almost surely for which
Xτ = x then for all y ∈ S

E

[
τ−1∑
t=0

I(Xt = y)|X0 = x

]
= E[τ |X0 = x]πy .

In the next two sections we first present a policy, referred
to as the regenerative cycle algorithm, and then analyze its
regret.

III. REGENERATIVE CYCLE ALGORITHM (RCA)

In this section we present an algorithm called the regener-
ative cycle algorithm (RCA), and prove in the next section
that this algorithm guarantees a logarithmic growth of the
regret uniformly over time under mild assumptions on the state
transition probabilities and the rewards.

As the name suggests, this algorithm operates on regenera-
tive cycles. In essence what the algorithm does is to construct
sample paths of each arm solely using those observed within
regenerative cycles while discarding the rest in its estimation
of the quality of an arm (in the form of an index). The reason
behind such a construction has to do with the restless nature
of the arms. As noted in the introduction, since each arm
continues to evolve according to the Markov chain regardless
of the user’s action, the probability distribution of the reward
we get by playing an arm is a function of the amount of time
that has elapsed since the last time we played the same arm.
Since we play one arm at a time, the arms become coupled (in
terms of the probability distributions of the rewards). While
this certainly does not affect our ability to collect rewards, it
makes it extremely hard to analyze the estimated quality (or
the index) of an arm calculated based on rewards collected
this way.

However, if instead of the actual sample path of all ob-
servations from an arm, we limit ourselves to a sample
path constructed (or rather stitched together) using only the
observations from regenerative cycles, then this sample path
essentially has the same statistics as the original Markov chain
due to the renewal property and one can now use the sample
mean of the rewards from the regenerative sample paths to
approximate the mean reward under stationary distribution.

Figure 1 illustrates one possible realization of this algorithm.
As shown, RCA operates in blocks. Within a block, the
algorithm plays the same arm in each time slot (arm i in the
first block in this example) till a certain pre-specified state (say
γi) is observed. Upon this observation we enter a regenerative
cycle and continue to play till the same state γ i is observed
a second time. This marks the end of the block labeled “play
arm i”. At the end of each block, the algorithm computes an
index for all arms and selects the one with the highest index to
play in the next block (arm k shown in the figure). It follows
that the block length is a random variable.

For the purpose of index computation and subsequent
analysis, each block is further broken into three sub-blocks
(SBs). SB1 consists of all time slots from the beginning of
the block to right before the first visit to γ i; SB2 includes all
time slots from the first visit to γ i up to but excluding the
second visit to state γi; SB3 consists of a single time slot
with the second visit to γ i. These are also shown in Figure 1.
The key to the algorithm is for each arm to single out only
observations within SB2’s in each block and virtually assemble
them (these are highlighted with thick lines). Because of the
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γ i

SB1 SB3

play arm i

γi γi

SB1 SB2 SB3

play arm i

γi γi

SB1 SB2 SB3

play arm i

SB2 SB3SB2SB1

play arm k

SB1 SB2 SB3

play arm j

i γ γk γk

γj γj

compute index compute index compute index

Fig. 1. Example realization of RCA

regenerative nature of the Markov chain, once put together,
the resulting sample path has exactly the same statistics as
given by the transition probability matrix P i; this results in a
tractable problem.

Throughout our discussion, we will consider a horizon of n
time slots. A list of notations used is summarized as follows;
some are also marked on Figure 2 for convenience:

j γi γiγi γi

2nd block1st block
last completed 
block b(n) 

slot T(n) slot (n)

γj γ

Fig. 2. Running RCA over a period of n slots

• γi: state that determine the regenerative cycles for arm i.
• α(b): the arm played in block b.
• b(n): total number of completed blocks up to time n.
• T (n): time at the end of the last completed block.
• T i(n): total number of times (slots) arm i is played up

to time T (n).
• Bi(b): total number of blocks within the first b blocks in

which arm i is played.
• X i

1(j): vector of observed states from SB1 of the jth
block in which arm i is played; it is empty if the first
observed state is γi.

• X i
2(j): vector of observed states from SB2 of the jth

block in which arm i is played;
• X i(j): vector of observed states from the jth block

in which arm i is played. Thus we have X i(j) =
[X i

1(j), X
i
2(j), γ

i].
• t(b): time at the end of block b; t(b) =∑K

i=1

∑Bi(b)
j=1 |X i(j)|.

• T i(t(b)): total number of time slots arm i is played up
to time t(b). Thus T i(t(b)) =

∑Bi(b)
j=1 |X i(j)|. Also note

that T i(t(b(n))) = T i(n).
• t2(b): total number of time slots spent in SB2 up to block

b. Thus t2(b) =
∑K

i=1

∑Bi(b)
j=1 |X i

2(j)|.
• ri(k): the reward from arm i when it’s played for the k-th

time, counting only those times played during an SB2.
• T i

2(t2(b)): total number of time slots arm i is played dur-
ing SB2 up to block b. Thus T i

2(t2(b)) =
∑Bi(b)

j=1 |X i
2(j)|.

RCA computes and updates the value of an index g i for
each arm i at the end of block b, based on the total reward
obtained from arm i during all SB2 as follows:

Regenerative Cycle Algorithm (RCA):

1: Initialize: b = 1, t = 0, t2 = 0, T i
2 = 0, ri = 0, ∀i =

1, · · · , K
2: for b ≤ K do
3: play arm b; set γb to be the first state observed
4: t := t+1; t2 := t2+1; T b

2 := T b
2 +1; rb := rb +rb

γi

5: play arm b; denote observed state as x
6: while x �= γb do
7: t := t+1; t2 := t2+1; T b

2 := T b
2+1; rb := rb+rb

x

8: play arm b; denote observed state as x
9: end while

10: b := b + 1; t := t + 1
11: end for
12: for j = 1 to K do
13: compute index gj := rj

T j
2

+
√

L ln t2
T j
2

14: j + +
15: end for
16: i := argmaxj gj

17: while (1) do
18: play arm i; denote observed state as x
19: while x �= γi do
20: t := t + 1
21: play arm i; denote observed state as x
22: end while
23: t := t+1; t2 := t2 +1; T i

2 := T i
2 +1; ri := ri + ri

x

24: play arm i; denote observed state as x
25: while x �= γi do
26: t := t+1; t2 := t2+1; T i

2 := T i
2+1; ri := ri+ri

x

27: play arm i; denote observed state as x
28: end while
29: b := b + 1; t := t + 1
30: for j = 1 to K do
31: compute index gj := rj

T j
2

+
√

L ln t2
T j
2

32: j + +
33: end for
34: i := argmaxj gj

35: end while

Fig. 3. Pseudocode of RCA

gi
t2(b),T i

2(t2(b)) = r̄i(T i
2(t2(b))) +

√
L ln t2(b)
T i

2(t2(b))
, (3)

where L is a constant, and

r̄i(T i
2(t2(b)) =

ri(1) + ri(2) + ... + ri(T i
2(t2(b)))

T i
2(t2(b))

denotes the sample mean of the reward collected during
an SB2: X i

2(1), X i
2(2), · · · , X i

2(B
i(b)) (this is arm i’s total

reward over the total number of times it’s played). The
second term in the index computation serves the purpose of
exploration: the relative uncertainty of the mean reward of an
arm grows as the arm is not played. This index definition is
similar to that proposed in [7], but computed only over SB2s.
RCA is formally given in Figure 3. In this description the
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algorithm continues indefinitely, but can obviously be stopped
at anytime that some desired horizon is reached.

Its worth noting that RCA also collects reward during SB1
and SB3. However, the computation of the indices only relies
on SB2. The reason becomes clearer in the next section
where we analyze its regret and show that it grows at most
logarithmically in n.

IV. REGRET ANALYSIS OF RCA

We begin by bounding the expected number of plays of a
suboptimal arm.

Theorem 1: Assume all arms are finite-state, irreducible,
aperiodic Markov chains whose transition probability ma-
trices have irreducible multiplicative symmetrizations and
assume all rewards are positive. Let πi

min = minx∈Si πi
x,

πmin = min1≤i≤K πi
min, rmax = maxx∈Si,1≤i≤K ri

x, Smax =
max1≤i≤K |Si|, π̂max = maxx∈Si,1≤i≤K

{
πi

x, 1 − πi
x

}
,

εmin = min1≤i≤K εi, M i
max = maxx,y∈Si,x �=y M i

x,y, where
εi is the eigenvalue gap of the multiplicative symmetrization
of the transition probability matrix of the ith arm and M i

x,y is
the mean hitting time of state y starting from an initial state x
for the ith arm. Then for a player using RCA with a constant
L ≥ 112S2

maxr
2
maxπ̂

2
max/εmin in (3), we have∑

i:μi<μ∗
(μ∗ − μi)E[T i(n)]

≤ 4L
∑

i:μi<μ∗

Di ln n

(μ∗ − μi)
+
∑

i:μi<μ∗
(μ∗ − μi)DiCi ,

where

Ci =
(

1 +
(|Si| + |S∗|)β

πmin

)
, β =

∞∑
t=1

t−2

Di =
(

1
πi

min

+ M i
max + 1

)
.

Proof: Throughout the proof all quantities pertain to
RCA, which will be denoted by α and suppressed from
the superscript whenever there is no ambiguity. Let c t,s =√

L ln t/s, and let l be any positive integer. Then,

Bi(b) = 1 +
b∑

m=K+1

I(α(m) = i)

≤ l +
b∑

m=K+1

I(α(m) = i, Bi(m − 1) ≥ l)

≤ l +
b∑

m=K+1

I(g∗t2(m−1),T∗
2 (t2(m−1))

≤ gi
t2(m−1),T i

2(t2(m−1)), B
i(m − 1) ≥ l)

≤ l +
b∑

m=K+1

I

(
min

1≤s≤t2(m−1)
g∗t2(m−1),s

≤ max
t2(l)≤si≤t2(m−1)

gi
t2(m−1),si

)

≤ l +
b∑

m=K+1

t2(m−1)∑
s=1

t2(m−1)∑
si=t2(l)

I(g∗t2(m),s ≤ gi
t2(m),si

)(4)

≤ l +
t2(b)∑
t=1

t−1∑
s=1

t−1∑
si=l

I(g∗t,s ≤ gi
t,si

) (5)

where as given in (3), g i
t,s = r̄i(s) + ct,s. The inequality in

(5) follows from the fact that the outer sum in (5) is over time
while the outer sum in (4) is over blocks and each block lasts
at least two time slots.

We now show that g∗
t,s ≤ gi

t,si
implies that at least one of

the following holds:

r̄∗(s) ≤ μ∗ − ct,s (6)

r̄i(si) ≥ μi + ct,si (7)

μ∗ < μi + 2ct,si . (8)

This is because if none of the above holds, then we must have

g∗t,s = r̄∗(s) + ct,s > μ∗ ≥ μi + 2ct,si > r̄i(si) + ct,si = gi
t,si

,

which contradicts g∗
t,s ≤ gi

t,si
.

If we choose si ≥ 4L ln(t2(b))/(μ∗ − μi)2, then 2ct,si ≤
μ∗ −μi for t ≤ t2(b), which means (8) is false, and therefore
at least one of (6) and (7) is true with this choice of s i.
We next take l =

⌈
4L ln t2(b)
(μ∗−μi)2

⌉
, and proceed from (5). Taking

expectation on both sides and relaxing the outer sum in (5)
from t2(b) to ∞,

E[Bi(b)] ≤
⌈

4L ln t2(b)
(μ∗ − μi)2

⌉

+
∞∑

t=1

t−1∑
s=1

t−1∑
si=
⌈

4L ln t2(b)
(μ∗−μi)2

⌉ P (r̄∗(s) ≤ μ∗ − ct,s)

+
∞∑

t=1

t−1∑
s=1

t−1∑
si=
⌈

4L ln t2(b)
(μ∗−μi)2

⌉ P (r̄i(si) ≥ μi + ct,si).

Consider an initial distribution qi for the ith arm. We have:

Nqi =

∥∥∥∥∥
(

qi
y

πi
y

, y ∈ Si

)∥∥∥∥∥
2

≤
∑
y∈Si

∥∥∥∥∥ qi
y

πi
y

∥∥∥∥∥
2

≤ 1
πmin

,

where the first inequality follows from the Minkowski inequal-
ity. Let ni

y(t) denote the number of times state y of arm i is
observed during all SB2s up to the tth play. Then,

P (r̄i(si) ≥ μi + ct,si)

= P

⎛
⎝∑

y∈Si

ri
yni

y(si) ≥ si

∑
y∈Si

ri
yπi

y + sict,si

⎞
⎠

= P

⎛
⎝∑

y∈Si

(ri
yni

y(si) − ri
ysiπ

i
y) ≥ sict,si

⎞
⎠
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= P (
∑
y∈Si

(−ri
yni

y(si) + ri
ysiπ

i
y) ≤ −sict,si) . (9)

Consider a sample path ω and the events

A =

⎧⎨
⎩ω :

∑
y∈Si

(−ri
yni

y(si)(ω) + ri
ysiπ

i
y) ≤ −sict,si

⎫⎬
⎭ ,

B =
⋃

y∈Si

{
ω : −ri

yni
y(si)(ω) + ri

ysiπ
i
y ≤ −sict,si

|Si|
}

.

If ω /∈ B then,

−ri
yni

y(si)(ω) + ri
ysiπ

i
y > −sict,si

|Si| , ∀y ∈ Si

⇒
∑
y∈Si

(−ri
yni

y(si)(ω) + ri
ysiπ

i
y) > −sict,si

Thus ω /∈ A, and P (A) ≤ P (B). Then continuing from (9):

P (r̄i(si) ≥ μi + ct,si)

≤
∑
y∈Si

P

(
−ri

yni
y(si) + ri

ysiπ
i
y ≤ −sict,si

|Si|
)

=
∑
y∈Si

P

(
ri
yni

y(si) − ri
ysiπ

i
y ≥ sict,si

|Si|
)

≤
∑
y∈Si

Nqit
− Lεi

28(|Si|ri
yπ̂i

y)2 (10)

≤ |Si|
πmin

t
− Lεmin

28S2
maxr2

maxπ̂2
max , (11)

where (10) follows from letting

γ =
ct,si

|Si|ri
y π̂i

y

, π̂i
y = max

{
πi

y , 1 − πi
y

}

f(X i
t) =

I(X i
t = y) − πi

y

π̂i
y

,

and using Lemma 1 (note P̂ i is irreducible), which gives

P

(
ni

y(si) − siπ
i
y ≥ sict,si

|Si|ri
y

)

= P

(∑si

t=1 I(X i
t = y) − siπ

i
y

π̂i
ysi

≥ ct,si

|Si|ri
yπ̂i

y

)

≤ Nqit
− Lεi

28(|Si|ri
yπ̂i

y)2 (12)

We note that for γ > 1 the deviation probability is zero so the
bound still holds.

Similarly, we have

P (r̄∗(s) ≤ μ∗ − ct,s)

= P (
∑
y∈S∗

r∗y(n∗
y(s) − sπ∗

y) ≤ −sct,s)

≤
∑
y∈S∗

P (r∗yn∗
y(s) − r∗ysπ∗

y ≤ −sct,s

|S∗| )

=
∑

y∈S∗
P (r∗y(s −

∑
x �=y

n∗
x(s)) − r∗ys(1 −

∑
x �=y

π∗
x) ≤ −sct,s

|S∗| )

=
∑
y∈S∗

P (r∗y
∑
x �=y

n∗
x(s) − r∗ys

∑
x �=y

π∗
x ≥ sct,s

|S∗| )

≤
∑
y∈S∗

Nq∗t
− Lε∗

28(|S∗|r∗yπ̂∗
y)2 (13)

≤ |S∗|
πmin

t
− Lεmin

28S2
maxr2

maxπ̂2
max (14)

where (13) again follows from Lemma 1. Since

|Si| + |S∗|
πmin

∞∑
t=1

t−1∑
s=1

t−1∑
si=1

t
− Lεmin

28S2
maxr2

maxπ̂2
max

=
|Si| + |S∗|

πmin

∞∑
t=1

t
−Lεmin−56S2

maxr2
maxπ̂2

max
28S2

maxr2
maxπ̂2

max

≤ |Si| + |S∗|
πmin

∞∑
t=1

t−2, (15)

from (11) and (14), given b(n) = b we have

E[Bi(b(n))|b(n) = b] ≤
⌈

4L ln t2(b)
(μ∗ − μi)2

⌉
+

(|Si| + |S∗|)β
πmin

,

for all suboptimal arms. The inequality in (15) follows from
the assumption L ≥ 112S2

maxr
2
maxπ̂

2
max/εmin. Therefore,

E[Bi(b(n))] ≤ 4L lnn

(μ∗ − μi)2
+ 1 +

(|Si| + |S∗|)β
πmin

, (16)

since n ≥ t2(b(n)) almost surely.
Note that all the quantities in computing the indices

and the probabilities in above come from the intervals
X i

2(1), X i
2(2), · · · ∀i ∈ {1, · · · , K}. Since these intervals

begin with state γi and end with a return to γ i, by the
strong Markov property the process at these stopping times
has the same distribution as the original process. Moreover
by connecting these intervals together we form a continuous
sample path which can be viewed as a sample path generated
by a Markov chain with a transition matrix identical to the
original arm. This is the reason why we can apply Lezaud’s
bound to this Markov chain.

The total number of plays of arm i at the end of block
b(n) is equal to the total number of plays of arm i during the
regenerative cycles of visiting state γ i plus the total number
of plays before entering the regenerative cycles plus one more
play resulting from the last play of the block which is state
γi. This gives:

E[T i(n)] ≤
(

1
πi

min

+ M i
max + 1

)
E[Bi(b(n))] .

Thus, ∑
i:μi<μ∗

(μ∗ − μi)E[T i(n)]

≤ 4L
∑

i:μi<μ∗

Di ln n

(μ∗ − μi)
+
∑

i:μi<μ∗
(μ∗ − μi)CiDi.(17)

We now state the main theorem of this paper.
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Theorem 2: Assume all arms are finite-state, irreducible,
aperiodic Markov chains whose transition probability ma-
trices have irreducible multiplicative symmetrizations and
assume all rewards are positive. Let πi

min = minx∈Si πi
x,

πmin = min1≤i≤K πi
min, rmax = maxx∈Si,1≤i≤K ri

x, Smax =
max1≤i≤K |Si|, π̂max = maxx∈Si,1≤i≤K

{
πi

x, 1 − πi
x

}
,

εmin = min1≤i≤K εi, M i
max = maxx,y∈Si,x �=y M i

x,y, where
εi is the eigenvalue gap of the multiplicative symmetriza-
tion of the transition probability matrix of the ith arm and
M i

x,y is the mean hitting time of state y starting from
an initial state x for the ith arm. Then using a constant
L ≥ 112S2

maxr
2
maxπ̂

2
max/εmin, the regret of RCA can be upper

bounded uniformly over time by the following, ∀n:

RRCA(n) < 4L lnn
∑

i:μi<μ∗

1
μ∗ − μi

(
Di +

Ei

μ∗ − μi

)

+
∑

i:μi<μ∗
Ci

(
(μ∗ − μi)Di + Ei

)
+ F

where

Ci =
(

1 +
(|Si| + |S∗|)β

πmin

)
, β =

∞∑
t=1

t−2

Di =
(

1
πi

min

+ M i
max + 1

)
,

Ei = μi(1 + M i
max) + μ∗M∗

max,

F = μ∗
(

1
πmin

+ max
i∈{1,...,K}

M i
max + 1

)
.

Proof: Assume that the states which determine the regen-
erative sample paths are given a priori by γ = [γ 1, · · · , γK ].
We denote the expectations with respect to RCA given γ as
Eγ . First we rewrite the regret in the following form:

Rγ(n) = μ∗Eγ [T (n)] − Eγ [
T (n)∑
t=1

rα(t)
xα(t)

]

+μ∗Eγ [n − T (n)] − Eγ [
n∑

t=T (n)+1

rα(t)
xα(t)

]

=

{
μ∗Eγ [T (n)] −

K∑
i=1

μiEγ

[
T i(n)

]}− Zγ(n)

+μ∗Eγ [n − T (n)] − Eγ [
n∑

t=T (n)+1

rα(t)
xα(t)

] . (18)

where for notational convenience, we have used

Zγ(n) = Eγ

⎡
⎣T (n)∑

t=1

rα(t)
xα(t)

⎤
⎦− K∑

i=1

μiEγ

[
T i(n)

]
.

We can bound the first difference in (18) logarithmically
using Theorem 1, so it remains to bound Zγ(n) and the last

difference. We have

Zγ(n) ≥
∑

y∈S∗
r∗yEγ

⎡
⎣B∗(b(n))∑

j=1

∑
X∗

t ∈X∗(j)

I(X∗
t = y)

⎤
⎦

+
∑

i:μi<μ∗

∑
y∈Si

ri
yEγ

⎡
⎣Bi(b(n))∑

j=1

∑
Xi

t∈Xi
2(j)

I(X i
t = y)

⎤
⎦ (19)

− μ∗Eγ [T ∗(n)]

−
∑

i:μi<μ∗
μi

(
1

πi
γi

+ M i
max + 1

)
Eγ

[
Bi(b(n))

]
,

where the inequality comes from counting only the rewards
obtained during the SB2s for all suboptimal arms. Applying
Lemma 2 to (19) we get

Eγ

⎡
⎣Bi(b(n))∑

j=1

∑
Xi

t∈Xi
2(j)

I(X i
t = y)

⎤
⎦ =

πi
y

πi
γi

Eγ

[
Bi(b(n))

]
.

Rearrange terms and noting μ∗ =
∑

y r∗yπ∗
y ,

Zγ(n) ≥ R∗(n) −
∑

i:μi<μ∗
μi(M i

max + 1)Eγ

[
Bi(b(n))

]
(20)

where

R∗(n) =
∑

y∈S∗
r∗yEγ

⎡
⎣B∗(b(n))∑

j=1

∑
X∗

t ∈X∗(j)

I(X∗
t = y)

⎤
⎦

−
∑

y∈S∗
r∗yπ∗

yEγ [T ∗(n)] .

Consider now R∗(n). Since all suboptimal arms are played
at most logarithmically, the number of time steps in which
the best arm is not played is at most logarithmic. It follows
that the number of discontinuities between plays of the best
arm is at most logarithmic. Suppose we combine successive
blocks in which the best arm is played, and denote by X̄∗(j)
the j-th combined block. Let b̄∗ denote the total number of
combined blocks up to block b. Each X̄∗ thus consists of two
sub-blocks: X̄∗

1 that contains the states visited from beginning
of X̄∗ (empty if the first state is γ∗) to the state right before
hitting γ∗, and sub-block X̄∗

2 that contains the rest of X̄∗ (a
random number of regenerative cycles).

Since a block X̄∗ starts after discontinuity in playing the
best arm, b̄∗(n) is less than or equal to total number of
completed blocks in which the best arm is not played up to
time n. Thus

Eγ [b̄∗(n)] ≤
∑

i:μi<μ∗
Eγ [Bi(b(n))]. (21)

We rewrite R∗(n) in the following from:

R∗(n) =
∑

y∈S∗
r∗yEγ

⎡
⎣b̄∗(n)∑

j=1

∑
X∗

t ∈X̄∗
2 (j)

I(X∗
t = y)

⎤
⎦ (22)

−
∑

y∈S∗
r∗yπ∗

yEγ

⎡
⎣b̄∗(n)∑

j=1

|X̄∗
2 (j)|
⎤
⎦ (23)
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+
∑

y∈S∗
r∗yEγ

⎡
⎣b̄∗(n)∑

j=1

∑
X∗

t ∈X̄∗
1 (j)

I(X∗
t = y)

⎤
⎦ (24)

−
∑

y∈S∗
r∗yπ∗

yEγ

⎡
⎣b̄∗(n)∑

j=1

|X̄∗
1 (j)|
⎤
⎦ (25)

> 0 − μ∗M∗
max

∑
i:μi<μ∗

Eγ [Bi(b(n))] (26)

where the last inequality is obtained by noting the difference
between (22) and (23) is zero by Lemma 2, using positivity
of rewards to lower bound (24) by 0, and (21) to upper bound
(25). Combine this with (16) and (20) we can thus obtain a
logarithmic upper bound on −Zγ(n). Finally, we have

μ∗Eγ [n − T (n)] − Eγ [
n∑

t=T (n)+1

rα(t)
xα(t)

]

≤ μ∗
(

1
πmin

+ max
i∈{1,...,K}

M i
max + 1

)
. (27)

Therefore we have obtained the stated logarithmic bound for
(18). Note that this bound does not depend on γ, and therefore
is also an upper bound for R(n), completing the proof.

Therefore, given minimal information about the arms such
as an upper bound for S 2

maxr
2
maxπ̂

2
max/εmin the player can

guarantee logarithmic regret by choosing an L in the RCA
algorithm that satisfies the condition in Theorem 2.

We end this section by noting that the logarithmic bound in
n is also order optimal for this restless bandit problem, i.e., no
better bound than ln n is possible (however a better constant
is possible). This follows from the fact that the rested bandit
problem is a special case of the restless problem and in [5]
it is shown that the best order is logarithmic for the rested
problem. Moreover, we conjecture that the order optimality
of RCA holds when it is used with any index policy that is
order optimal for the rested bandit problem. Because of the
use of regenerative cycles in RCA, the observations used to
calculate the indices can be in effect treated as coming from
rested arms. Thus an approach similar to the one in Theorem
1 can be used to prove order optimality.

V. AN EXAMPLE: GILBERT-ELLIOT CHANNEL MODEL

In this section we simulate RCA and two other algorithms
under the commonly used Gilbert-Elliot channel model, where
each channel has two states, good and bad (or 1, 0, respec-
tively). The first algorithm is the upper confidence bound
(UCB1) algorithm from [7]. In [8] we have proved that it
has a logarithmic regret in the case of Markovian rewards
when all arms are rested, by replacing the constant 2 in
the index calculation of UCB1 with L and using a result
from [15]. Using Lezaud’s bound as we have done in the
present paper it can be shown that this modified UCB1
algorithm, shown in Figure 4, has a logarithmic regret for
L ≥ 112S2

maxr
2
maxπ̂

2
max/εmin for the rested bandit problem.

Upper Confidence Bound (UCB1):

1: Initialize: n = 1
2: for n ≤ K do
3: play arm n; n := n + 1.
4: end for
5: while n > K do
6: r̄i(T i(n)) = ri(1)+ri(2)+...+ri(T i(n))

T i(n) , ∀i

7: gi
n,T i(n) = r̄i(T i(n)) +

√
L lnn
T i(n) , ∀i

8: play arm j, such that j = arg maxi gi
n,T i(n), update

rj(n) and T j(n).
9: n := n + 1

10: end while

Fig. 4. The UCB1 algorithm.

The second algorithm is an online randomized algorithm
proposed in [1], referred to as the Exp3 algorithm and shown
in Figure 5. The main distinction of Exp3 is that it is a ran-
domized algorithm: given all past observations the algorithm’s
current action is the outcome of a random variable. Random-
ization is helpful when rewards from arms are determined
by an adversary rather than a stochastic process. This is the
context in which Exp3 is introduced and studied in [1].

Exp3:

1: Initialize: select parameter a ∈ (0, 1) and set weights
wi(1) = 1, ∀i ∈ {1, 2, · · · , K}

2: while (1) do
3: at time n compute the probabilities pi(n) = (1 −

a) wi(n)∑K
j=1 wj(n)

+ a
K , ∀i.

4: take a random sample of the random variable X(n)
with pmf: P (X(n) = i) = pi(n); denote the
outcome by α(n).

5: play arm α(n), and get reward rα(n).
6: if α(n) = i then
7: set weight wi(n + 1) = wi(n) exp( ari(n)

Kpi(n) )
8: else
9: wi(n + 1) = wi(n)

10: end if
11: end while

Fig. 5. The Exp3 algorithm.

We simulate and compare the regret of these three algo-
rithms averaged over 100 runs, under two scenarios, denoted
S1 and S2, respectively. Each scenario involves 5 two-state
channels with varying transition probabilities. The statistics
and rewards used are given in Table V. Exp3 is run with two
different values of a: a1 = 0.1, a2 = min

{
1,
√

K ln K
(e−1)N

}
where N = 105 is the time horizon. All arms are as-
sumed to be in stationary distribution at the beginning.
112S2

maxr
2
maxπ̂

2
max/εmin is equal to 9556 in S1 and 1037.2

in S2.
Results are shown in Figures 6 and 7, under scenarios S1
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S1 p01, p10 r0, r1 S2 p01, p10 r0, r1

ch.1 0.01, 0.03 0.1, 1 ch.1 0.1, 0.2 0.1, 1
ch.2 0.04, 0.01 0.1, 1 ch.2 0.1, 0.3 0.1, 1
ch.3 0.03, 0.01 0.1, 1 ch.3 0.5, 0.1 0.1, 1
ch.4 0.02, 0.01 0.1, 1 ch.4 0.1, 0.4 0.1, 1
ch.5 0.01, 0.02 0.1, 1 ch.5 0.1, 0.5 0.1, 1

TABLE I
CHANNEL PARAMETERS

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1500

−1000

−500

0

500

1000

1500

time

R
(n

)/
 ln
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RCA, L=10000
UCB1, L=10000
RCA, L=10
UCB1, L=10
Exp3, a=a

1
Exp3, a=a

2

Fig. 6. Regret under scenario S1

and S2, respectively. We make the following observations
from this set of curves. Firstly, both RCA’s and UCB1’s
performance improves when a smaller value of L is used.
This suggests that the condition L ≥ 112S2

maxr
2
maxπ̂

2
max/εmin

is sufficient but not in general necessary for the logarithmic
regret to hold. Secondly, Exp3 shows good performance when
a2 is the constant choice, which utilizes the knowledge of
time horizon. If the time horizon is not given, then Exp3
has a linear regret instead as was proven in [1]. Lastly,
overall the performance of UCB1 is competitive compared
to RCA, which has been shown to have logarithmic regret in
the previous section. In particularly, in Figure 6 for L = 10
UCB1 outperforms RCA significantly. This is because in this
case the channels are very bursty, thus updating the indices at
every time step in UCB1 is a better option than waiting for
regenerative cycles to occur in RCA, which can take a long
time for an update to occur. These results suggest that there
may exist logarithmic bounds for UCB1 as well. Furthermore,
they suggest obvious ways to improve the performance of
RCA. However, as discussed earlier due to the restless nature
of the arms when the indices are updated constantly the
problem becomes intractable. It remains an interesting future
study to show such bounds for UCB1.

VI. CONCLUSION

We considered the OSA problem when the primary users’
activities are modeled as generic finite-state Markov chains.
This was formulated as a single-player restless bandit problem.
We proposed an algorithm that updates the sample mean based
indices using regenerative sample paths and showed that its
regret can be upper bounded uniformly and logarithmically
over time. This is the first results showing that log-regret is

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

200
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1400
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time

R
(n

)/
 ln

 n

 

 
RCA, L=1050
UCB1, L=1050
RCA, L=10
UCB1, L=10
Exp3, a=a

1
Exp3, a=a

2

Fig. 7. Regret under scenario S2

possible in a restless bandit learning problem. We numerically
compare the performance of RCA with two other algorithms,
UCB1 and Exp3, and conjectured that similar logarithmic
bounds may exist for UCB1 as well.
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