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Abstract—Recent research efforts have shown that the popular BitTorrent only exploits a short-term history for makingload
BitTorrent protocol does not provide fair resource reciprocation  decisions. More specifically, upload decisions are madedas
and may allow free-riding. In this paper, we propose a BitTorent- 4, the most recent observations of the resource recipoocati
like protocol that replaces the peer selection mechanisms ithe . - ) ..
regular BitTorrent protocol with a novel reinforcement learning Th's_also implies that the uplogd dQCISlonS are S_h_ort badava
based mechanism. looking and not forward-looking, i.e., the decisions ard no

Due to the inherent opration of P2P systems, which involves foresighted. Thus, a peer can keep following the tit-far-ta
repeated interactions among peers over a long period of time policy only if it continuously uploads pieces of a partiaula
the peers can efficiently identify free-riders as well as désble g0 1 s ‘associated peers and as long as it receives pieces

collaborators by learning the behavior of their associatedpeers. . . . .
Thus, it can help peers improve their download rates and of interest in return. However, this is not always feasibde a

discourage free-riding, while improving fairess in the sptem.  irrespective of peers’ willingness to cooperate, they may n
We model the peers’ interactions in the BitTorrent-like net always have pieces in which the other peers are interested

work as a repeated interaction game, where we explicitly casider  jn [11]. However, such behavior is still perceived as a lack
the strategic behavior of the peers. A peer, which applies #hrein- of cooperation for interacting peers. In addition, it hagrbe

forcement learning based mechanism, uses a partial historgf the . . -
observations on associated peers’ statistical reciprociehaviors SNOWn that BitTorrent systems do not effectively cope with

to determine its best responses and estimate the correspdng ~ Selfish peers’ behaviors such as free-riding [12]-[14] dbose
impact on its expected utility. The policy determines the per's of their built-in optimistic unchoke mechanism. While the
resource reciprocations with other peers, which would maxnize  gptimistic unchoke mechanism enables peers to continyousl
the peer's long-term performance, thereby making foresigted  qiscover better peers (or leechers) to reciprocate resspic

decisions. . ) - .
We have implemented the proposed reinforcement-learning G20 Provide a major opportunity for selfish peers to obtata da

based mechanism and incorporated it into an existing BitTorent ~ Without uploading in return. This mechanism may also lead
client. We have performed extensive experiments on a contled to unfairness in the system, as it forces high-capacityspeer
Planetlab test bed. Our results confirm that our proposed interact with low-capacity peers.
protocol (1) promotes faimess in terms of incentives to edtpeers ke the approaches that are using short-term observa-
contribution e.g. high capacity peers improve their downlad .. hi ion-b d sch h b d
completion time by up to 33%, (2) improves the system stabity tion history, rePUt_at'c.m' ase ’ schemes ave_ Fj‘er.‘ profose
and robustness e.g. reducing the peer selection fluctuatien Overcome the limitations of tit-for-tat and optimistic unoke
by 57%, and (3) discourages free-riding e.g. peers reduce by mechanisms by exploiting global histories (e.@../[15H]17
64% their upload to free-rider, in comparison to the regular However, in order to maintain such a global history across
BitTorrent protocol. peers, these approaches require significant communication
overhead. Moreover, the reliability of global history caa b

. INTRODUCTION unclear as peers may exhibit different reciprocation binav

Peer-to-peer (P2P) content sharing protocols dominate #fih different peers. Alternatively, the long-term locair (
traffic on the Internet, and thus, have become an importaﬁﬂvate) history of upload behaviors with associated peers
part in building scalable Internet applicationig [1]. ThePP2'S used in several other reputation-based approaches such

protocols are used by a variety of Internet applicationshsul:f,ls (11}, _[18]_[20]' While these approaches can red.uce.the
as content distributior [2], voice over IP][3], and Streag]incommunlcatlon overheads, the focus of these systemsligrstil

multimedia P2P applications][4].1[5]. maximizing theimmediateutility, which may be less desirable

In P2P content distribution systems, fairness among peeréﬁan maximizing théong-termutility, as peers can repeatedly

an important factor, as it encourages peers to activelyaloH mteract:_wnh each other O\;erl arl10ng period of time. H
rate in disseminating content, which can lead to an improved " IS lP;pe“ we kmo el the peedr Interactions in the
system performance. However, even BitTorrént [6], one ef gpitTorrent-ike network as a repeated interaction game —

most popular protocols used in P2P content distributi0|Ersd0repe""ted interactions  (i.e., reciprocating resourcespngm

not provide fair resource reciprocation, particularly foyde several participants (i.e., peers) in which a participahkes

populations having heterogeneous upload bandwidths [7"‘}9t'ondS (i.e. unchlok_e p;ers)l S(Zj as 1o msxmlée Ilo_ng term
[10]. This is because the tit-for-tat strategy implemenied "¢Ward (i.e., cumulative download rates). The underlyiages
of the environment changes stochastically, and is continge

L* This work was done while Dr. Izhak-Ratzin and Dr.Park wer&J&LA  upon the decisions of the participants. In our model, pegns ¢
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apply reinforcement-learning (RL) to make upload decision sources (i.e., higher upload capacities) can achieve highe
We explicitly consider the strategic behaviors of peersergh download rates. While, the peers that contribute fewer
the peers can observe partial historical information alloeit resources may achieve lower download rates.
reciprocation behaviors of their associated peers. Bas¢di® 4) It improves the system robustness by minimizing the
information, the peers that apply the RL-based strategy can impact of free-riding on the contributing peers’ perfor-
estimate their future expected rewards, and then, canrdieter mance.

accordingly their best responses. The future expectedrdswa 5) It improves the stability of the peer selection mechanism
can be determined using various types of interactive legrni which affects directly the performance of the system.

techniques. We use reinforcement learning, since it esdbie  The rest of the paper is organized as follows. In Sedfibn II,
peers to improve their peer selection strategies basedlysolge briefly describe the BitTorrent systems. In Section I,
on the knowledge of their past interactions, but not on thge briefly define the game and the adopted reinforcement
knowledge of the complete reciprocation behaviors of thearning solution and describe the RL-based peer selection
peers in the entire network. The reinforcementlearnin@b:sa mechanism. SectioElV presents the design of the proposed
each peer to forecast the impact of the current peer setectiftotocol. Details of our protocol implementation are dissed

on the future expected utility and to maximize it. Thereforen Section[V. The experimental results are presented in Sec-

the RL-based peer selection mechanism replaces both thetfin [V Finally, we discuss related work in Sectibn VII, and
for-tat and the optimistic unchoke mechanisms in the regulghe conclusions are drawn in Section VIII.

BitTorrent protocol.

Note that our protocol supports a non real-time media
transmission scenario, which has received less attention i In this section we briefly overview the BitTorrent proto-
the multimedia research community compared to the ogel [6]. The BitTorrent protocol is often adopted for P2P
demand media streaming scenario. In this type of protocotgntent distribution, because it can efficiently scale witarge
the requested content needs to be completely downloadwunber of participating clients.
before it is displayed. Thus, the ordering of which pieces ar Before the content distribution process begins, the canten
downloaded first is not important, but the overall time regdi provider divides the possessed data content into multiple
for completely downloading the content is important. Notpieces or chunks Then, the provider createsraetainfo file
that, however, the proposed protocol can be easily adaptgdich contains information necessary to initiate the conte
to on-demand media streaming applications using existidgwnloading process. The metainfo file includes the address
techniques such as [21]-]23]. the tracker, which plays the role of coordinator that facilitates

The proposed protocol consists of three main processespeer discovery. A client downloads the metainfo file before

« Learning Processwhich provides updated im‘ormationjoining atorrent (or swarm) — a group of peers interested in

about statistical behaviors of the associated peers’ I%partlcular_content._Then, it connects the tracker to vecai
source reciprocation peer setwhich consists of randomly selected peers currently

. Policy Finding Processwhich computes the peer SeleC_exchanging the same content. The peer set may include both
tion policy based on the reinforcement learning, and leechers peers that are still downloading content pieces, and

« Decision Processwhich determines the associated peePseeds peers that have the entire content and upload it to

that will be unchoked and choked during every rechol%th_er pefrs_.t The f{:hetnt_can the_trr\1 <_:tonnec_t ?ndd exchatrr:ge (o,
period based on the peer selection policy. reciprocatg its content pieces with itassociated peers the

: peers in its peer set.

We implemented our proposed protocol on top of an actual\yhjle reciprocating content pieces, each leecher detesnin
BitTorrent client, and performed extensive experimentfin 5 gat of peers among its peer set from where it can down-
controlled Planetlab test bed. The new proposed algorithghq its content pieces. The peer selection is determined by
is executed simply through policy modifications to existinghoking mechanismshich determined thehoking decisions
clients with no changes to the BltTorrent protocol. Our_ PrijtTorrent leechers adopt two choking mechanisms: tite
tocol does not demand full adoption or sparse adoption fr.tat resource reciprocation mechanism and tpimistic

the RL-based peer selection mechanism (as_in [7]) and Gg@fchokemechanism. The tit-for-tat mechanism prefers the
be run by any number of peers in a BitTorrent-like networlyeers that upload their pieces at the highest rate among the
We evaluated and quanuflgd the performance_of the proposgd ciated peers. Specifically, every 10 secondgeioke
protocol, and compared its performance with the regulggriog) a leecher checks the current download rates from its
BitTorrent protocol. Based on the experimental result® tyssociated peers and selects the peers that are uploaging th
proposed protocol provides the following advantages &jaifaces at the highest rates. Then, the leecher uploads only

II. BITTORRENTOVERVIEW

the regular BitTorrent protocol: to the selected associated peers, while choking (i.e.kbigc
1) It discourages free-riding by limiting the upload to nondownload) the rest of them during the rechoke period.
cooperative peers. The available upload bandwidth is equally divided into the

2) It promotes cooperation among high-capacity peers. unchoked peers. The optimistic unchoke mechanism reserves
3) It improves fairness; the peers that contribute more ra-portion of the available upload bandwidth to provide psece



to peers that are randomly selected. The purpose of this-mediscrete and measured in time slots. Finafty, S x A — R}
anism is to enable the leechers to continuously discoveebets a reward vector function defined as a mapping from the state
peers to associate itself with, and bootstrap newly joinimgofile S(t) € S at time ¢, and corresponding joint actions
leechers into the tit-for-tat mechanism. Optimistic unikd® A(t) € A, to a vector with each element being the reward to
are randomly rotated among the associated peers, typicallyparticular peer.
once every three rechoke periods, allowing enough time forTo find the optimal policy in the game (e.g., a stochastic
leechers to demonstrate their cooperative behaviors. game model[[25],[126]), peers may require the entire history
The number of unchoked peers (slots) may vary dependiofythe interactions among peers in the networks. However,
on specific implementation, and it can be fixed or dynamicalthis may be infeasible for real P2P networks. Unlike such
changed as a function of the available upload bandwidth. games, finding a RL-based policy only requires the peers’
Seeds deploy different choking mechanism as they alreaglyn histories of observations through their experiences (o
completed to download content. The most common implementeractions). Therefore we expect the RL-based peertsmbec
tation is based on round-robin schedule, aiming to disteibupolicy to be suboptimal.
data uniformly. This implementation is also deployed in our The history of observations in the network up to time 1

implementation. is defined as
H(t) =
[1l. REINFORCEMENTLEARNING FORRESOURCE
RECIPROCATION INP2P NETWORKS {8(0), A(0), R(0),...,St—1), At —1),R(t — 1)} € H(t)
Peers in BitTorrent-like systems often make repeated de- 1)

cisions to select unchoked peers given their dynamicaWhiCh summarizes all previous states, actions and rewdrds o
changing environment. The evolution of the peers’ intdgast 1€ PEErS in the network up to time- 1, where{({) is the set
across the various rechoke periods is modeled as a repe&@ll PoSsible histories up to time-1. Since a peey cannot
interaction game. We assume that this stochastic game2f£eSS the entire history of observations, (1), but rather
played over a long period of time, in order to support severd|POrtion of#{(t), a set of observations that pegcan access
popular applications such as video streaming or largefize 'S €XPressed a®;(t) € 0; and O, (t) € H(t). Note that the
delivery. current stateS; () is always observable, i.eS;(t) € O;(t).
In each time slot (i.e., rechoke period), every peer is ifhe state transition propabmty is calculated fr@}(t).

a state and needs to select its optimal action. The peerd) State Space of Pegr-S;: The state of peej represents
choose their own actions independently and simultaneoulf Set of resources received from the peer&’jnwhereC;

in each rechoke period. After that, the peers are rewarded fiFnOtes the set of peers associating with gedhus, it may
taking their actions and transit into the next states. There '€Present the uploading behavior of its associated peers, o

(received by each peer) and the state transition are camtingtduivalently, it can capture pegis download rates from its

upon other peers’ states and actions. associated peers. The upload rates from peer’; to peer;

During the repeated multiple peers’ interactions, the pett ime? are denoted by.;;(¢). In our proposed protocol, an
can only observe a partial history of their associated peeEsSloadmg behavior of peer observed by peey is denoted

reciprocation behaviors. Based on these observationpgities sij, and defined as
that adopt the RL-based peer selection policy can estimate (1, i Ly >0 )
their future expected rewards and can identify their best 5ij 0, otherwise @)

responses. The estimation of the future expected reward can . ) .
be computed using different types of learning schemes. hered; is a pre-determined threshold of pedi Thus, s,

this paper, we use reinforcement learning! [24], as it allowi@n be expressed with one bit and the state space of jpeer
the peers to improve their peer selection strategy using offtn be expressed as

knowledge of their own past reciprocati_on, withouF knowing S; = {(51,...,5n;)|s1; € {0,1} foralli e C;}  (3)
the complete knowledge of reciprocation behavior of the
associated peers in the network. where N denotes the number of peg¢s associated peers in

Formally, a reinforcement learning environment can b€j, i.e.,|C;| = N. Therefore, a stat8;(t) € S; can capture
represented by a tuplel,S, A, P,R). I is a set of peers the uploading behavior of the associated peers at time
in the game. If there aré/ peers in the gamel can be  2) Action Space of Peef — A;: The action of peerj
denoted byl = {1,...,M}. S is the set of state profilesrepresents the set of its peer selection decisions. The peer
of all peers in the game, i.e§ = S; x --- x S);, where selection decision of peej to peeri at time ¢ is denoted
S, is the state space of pegr A is the joint action space by a;;, and is defined as

A=A x---x Ay, whereA; is the action (peer selection) 0, if peerj chokes peet
aji(t) = { ’

space for peej. P: S x Ax S — [0,1] is a state transition L otherwise (4)
probability function that maps from state profig¢) € S at
time ¢ into the next state pr0f||§(t + 1) € Sattimet+1 2In order to minimize the computational complexity, we coesis;; €

given corresponding joint actiond(¢) € A. Note thatt hereis {0, 1} in this paper. However, the granularity of state can be pasitended.
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Associated Peers' [ earning ation [policy Finding | Optimal Decision
Upload Rateto | process Information Process Policy Process

Thus,a;; can also be expressed with one bit. The action spa
of peerj can be expressed as

I Section IV.A P, (S,8).R Section IV.B * Section IV.C
;Wi P

5 s
ij (Fig. 2) | Algorithm 1 ¥ (Fig. 4)

(Fig. 3)
Aj = {(ajlv ] ajN)| aji € {07 1} foralli € CJ} ) (5) 1 Unchoked PeersAj%
Hence, an actiomA;(t) € A; is of vector that consists of
peer;’s peer selection decisions to its associated peers at time ~ Fig. 1. Main processes in the proposed protocol design.
t. In the proposed protocol, we assume that pgés able
to unchokeN, (< N) peers. Note that peer allocates the _ ) o )
same amount of upload bandwidths to all unchoked peef§vironment dynamics keeps changing in practice, and thus,
the variable case can be future explored. Thus, the banwiflt€ Policy needs to be updated frequently. This may require
allocated to an unchoked peérby peerj at time ¢ is @ high computationa}l comp_lexity. Hence,_it is important to
determined byL;;(t) = B;/N.,, where B; is the maximum reduce the cor_aneX|ty for flnc_ilng the policy, such that the
upload bandwidth available to pegr proposed algorithm can be efficiently deployed.

3) State Transition Probability of Pegr A state transition
probability represents the probability that an actin(t) €
A; of peerj in stateS;(t) € S; at timet will lead to another  In this section, we describe the proposed protocol design
stateS;(t + 1) € S; at timet + 1. This can be expressed asthat replaces the tit-for-tat and optimistic unchoke petes

Pao(S5(0)S5(¢ -+ 10) = Pr(S (¢ + 1850, 4500 (8) 00 SRt o eoe peer selection meshaniem,
A peer;j can estimate the state transition probability functions The protocol design is summarized in Fig. 1. The protocol
based on its history interactions 8f(¢’), A;(t') andS;(t'+ consists of three main processes running in parallel:
1) for t’ < ¢, which.r.nay be stored in a transitiqn table. While 1) The learning processwhich provides updated informa-
we deploy an empirical frequency based algorithm to esémat "~ tjon about statistical behaviors of the associated peers’
_the state trar_1$|t|on probab|llty function in this paper,ieth resource reciprocatio®, (t)(C H(t)). This process is
is presented in Sectidn IVIA, other algorithms (e.g.. [25) necessary since the peers’ reciprocation behaviors are

also be used. not foretold. Therefore, peers are required to act in the

4) The Reward of Peef — R;: The reward of apeerina  gnyironment in order to gain observation of the transition
state is its total estimated download rate in that statesThu function and the rewards of the associated peers.

reward of a peer in a state is the sum of the estimated downloag) The policy finding processwhich computes the policy
rates from all of its associated peers. More specifically, a using reinforcement learning. This process needs to be

reward of peerj from stateS;(t) € S; can be expressed running in the entire downloading process as the changes

IV. THE PROTOCOLDESIGN

as of peers’ reciprocation behaviors (identified by the learn-
R;(S;(1) = (S [Lislicc,) = Y Ly ) ing process) can result in the policies obtained in the
€C; previous time slots being outdated.

where(X,Y) denotes the inner-product between two vectors3) The decision processvhich determines the decisions on
of X andY. A set of rewards for all peers in the system is  peer selection in each rechoke period based on the policy
denoted byR = {Ry,...,Rn}. and the observed state.

5) RL-based Policyr;: The policy 7;, which can be  More details about these processes are discussed next.
obtained from the reinforcement learning, can provide a spe
cific action A;(t) for peerj in stateS;(¢) at timet, i.e., A. The Learning Process
Wj_l:_r‘]gj = A Tr;]us,z?]j (t) :I m; (S, (tzj) , q It is difficult to estimate (odearn) the other peers’ states,

. 3 ac'urc])n; t ﬁtt € policy provi hes to p?ﬁ@red.eter- reyards and state transition probabilities due to the unan-
mined such that they can maximize the cumulative discountgg e information, network scalability constraintsnet

eﬁectedirewa_rd, Wh';h IS detfl?e(: for a pgen states; (t) varying network dynamics, etc. In our proposed protocol, a
attimet = t. given a discount factof; as RL-based peer learns the other peers’ states, rewards, stat

f P (= (tet1)) transition probability, etc., using the observations efdbm-
R;(S;(te)) = Z Vo - R;(S;(1)). (8) peting peers from the past. Thus, each peer needs to update
t=tet+l the above information regularly through the learning pssce

Thus, the policyr; maps each stat®;(¢) € S, into an action, while downloading content from its associated peers.

i.e., A;(t) = m;(S;(t)), such that each action maximizes The learning process consists of two main methods that

ij. (S;(te)). compute the estimated reward and state transition pratyabil
The policy can be deployed as a peer selection algorithmhich is depicted in Fid.12.

which enables each peer to maximize its own long-term1) Computing Reward:The reward of peer represents

utility. While the policyr; can be obtained using well-knownits total download rates from its associated peers estiirtage

methods such as value iteration and policy iteration [28, t peer;. In the rewards calculation method, the associated peers



Learning Process Policy Finding Process
Reward
) . . Peer Set .
Associated Peers’ Calculation Reciprocation Remprocgtlon / Reduction Optlmal
Upload Rate to State Transition Informa}ion: R Informatvlon.) lC'v Policy
Ly \ Transition / Table Py (8,:8)). R, Py (8;.8)).R; J ﬂ-;
Unchoked peers | ¥ Probability ! MDP Solver
A, 7| Calculation
Fig. 2. The learning process. Fig. 3. A policy finding process.
are classified into two types based on the available infaomat A; (t) = (a;1(t), ..., a;n(t)) can be expressed as

about their resource reciprocation history. N
For assqciated peers that have_reciprpcated_their_resnurquj(t)(sj (t),S;(t +1)) = Hpr(sij (t +1)|s55(t), aji(t)).

with peer j, referred to agpeers with reciprocation history =1

peer j estimates their upload rates based on the weighted

average of the past upload rate samples. This can reduce th

fluctuation induced by the protocol and network dynamics in The policy finding process runs in parallel with the learning

the sampled upload rates of the associated peers. Spégificarocess, while using the information obtained from therlear

peer; estimates the upload ratégj of peeri € C; based on ing process. This process is depicted in [ig. 3. Finding the

recently observed resource reciprocatiog as policy based on the reinforcement learning frequently may
. . result in high computational complexity requirement, ieth
Lij(t+1) <o - Lij(t+ 1) + (1 — a;)Lij(t)  (9) number of the associated peers becomes large. Hence, in

rder to practically implement the proposed algorithm,sit i

ritical to reduce the number of peers that a peer considers f

reciprocation (see Sectidnllll). Therefore, this processds

to begin with reducing the set of associated peers, and then,

resources with peef, which are referred to ageers without _ : S . .
resource reci ropcaefjir(,)n histonoeer i initializezpthe informa- finds the policyr; that maximizes the cumulative discounted
P fpeer expected reward (i.e., in EQl 8) in the reduced peer set.

tion about such peers by optimistically estimating thatythe . . . ) .
. . e " : 1) Reducing Associated Peer Sets discussed in Section
te th th high probabilit d high / ! -
reciprocate eir resources with nigh probabliity an I[ﬂ] in order to find 7; efficiently, it is important for peey

load rate. This enables pegto efficiently discover additiona q th t of ated hil lecting ths
peers, and bootstrap newly joining peers, which is impmrtaﬁhfcgﬁieci) rsoia(t)e astjicr)(r::aasgurgss\r;itvr\: hlighseer gf&ggmm pee
for the efficiency of the system. Whenever pg¢emploads to a with higher upload rate in the reduced peer set. Specifically

peer without resource reciprocation history and the peesdo ) tes th ted d q load rat
not upload toj in return, peerj reduces the peer’s presumecfeerj computes the expected rewards (or download rafigs)

upload rate, as this providgswith more confidence that the rom each peet € C;, defined as
particular peer may not actively reciproc_:ate its data. His® i/ij(t +1) = Lij(t) x Pr(i ~ j), (10)
prevents the associated peers from taking advantage ofra pee
through optimistic initialization and possible free-ridi Note wherePr(i ~~ j) denotes the probability of resource recipro-
that white-washing[[29] is not possible in our design eithecation with peeii. Based on the computed ;, peer; reduces
since peers are identified by their IP addresses. its associated peer set by iteratively eliminating the peeth

2) Finding State Transition ProbabilityThe state transition the smallestZ;; in its associated peer set. The algorithm for
probabilities are updated every rechoke period, and thyser set reduction is presented in Algorithim 1.
each peer can capture the time-varying resource recipoocat The algorithm compute:éij in (@Q) fori € C; (lines[33).
behaviors of its associated peers. Every rechoke periodTdten, the associated peers are ordered based on the computed
t + 1, peer;j stores 3-bit triplets for its associated peer f;ij (line[H). The peer set reduction is performed in the "while
(sij(t),aji(t),s;j(t +1)). Peerj stores the triplets for its loop” (lines[4E18) that reduces the peer setbyeers in every
associated peers that are in feduce peer setwhich will iteration. In the loop, the algorithm selects peers with the
be discussed later in this section, or peers that uploadedsmallestﬁij values denoted by (line[8), from the reduced
peerj at timet or ¢ + 1. In our design, we compute thegroup of peer<’. It then obtains policyr; ¢ for the peers in
state transition probability functions based on the empiriy (line[d). Based onr, ¢, it calculates the probabilities for
cal frequency, and assume that the state transition of edleh peers to be unchoked (lings|[10-14). Given the calculated
peer is independent. Thus, the state transition probgbilitrobability, it removes the, peers with the lowest probability
Pa,1y(S;(t),S;(t + 1)) from S;(t) = (s1;(t),...,sn;(t)) to be unchoked (line_18). The algorithm runs un@l| = T
to S;(t+1) = (s1;(¢t+1),...,snj(t+ 1)) given an action (line[7).

eThe Policy Finding Process

where«; denotes the weight for most recent resource reci§
rocation.
For associated peers who hamet yet reciprocated their



Algorithm 1 Peer-set Reduction Algorithm for Pegr probabilities with respect to its associated peers. Dutirig

1: INPUT : phase,j discovers new peers, i.e., downloads from peers for
- C; - set of associated peers of pger the first time. Oncej’'s peer discovery is slowed down (see
- T - targeted size of reduced peer set (constant) Section Y for more details), it replaces the regular Bit€otr
- L;; - rewards (or download rates) from peer RL-based peer selection mechanisms, and operates in the RL
- Pr(sy;) - probability to be insy; phase.
- Pr(i ~ j) - the resource reciprocation probability of 2) RL Phase:In this phase, peer determines the decisions
peeri on peer selection based on the policy obtained from theyolic
- c1, 2 - constants such that > ¢; > ¢ finding process in every rechoke period. Pgeletermines its
2: OUTPUT : current stateS; and the corresponding actio; based on
A reduced set of peer§; C C; where|C}| =T the policy ;, i.e., A; = m;(S;). Note thatA; is a set of
3 for all i € C; do decE,lcl)(ns on peer selection of pegii.e. either to choke or to
4: Lij = Lij X PI‘(Z ~ j), unchoke.
5: orderC}; in a non-decreasing order of thg;; V. IMPLEMENTATION
. / .
6: Cj Y ¢ . In this section, we discuss our proposed protocol prototype
7. while |C%| > T do . .
o ) and study how to determine several design parameters.
8: G = {le, G } Our RL-based client is implemented on top of fehanced
o: calculater;  //policy for set G; CTorrent client, version 3.2[[30]. We enhance the original
10: forall k such thatC;, € G do . ~ client such that our client can operateRi-enhanced mode
1 Pr(j k) < 0//estinate probability that j \here it reciprocates its resources using the proposed RL-
unchokes k based on 77, . . . . .
12: for all sy; € S, do 7 based mechanism, or iegular modewhere it reciprocates its
13: if W;,G(Sk?) =1 then ' resources based on the regular BitTorrent peer selectich-me
14: . Pr(j k) « Pr(j ~ k) + Pr(si;); anism. We add the functionality for the RL-enhanced mode to
15: orderG in a non-decreasing order of tier(j ~ k) values; o
16 if s > C] — T then support the proposed protocol requests. More specifidally,
17: ca + |C| =T the RL-enhanced mode we implemented the three different
18: Cf + Ch—{G1,...,Gey }; processes that are discussed in Sedfidn IV.
10: return C )
A. The Learning Process
The learning process consists of two methods, the reward
e (PRReEes calculation method and the state transition probabilitgula-
tion method. In Sectioh IV-A2 we discussed how to estimate
Associated Peersr Initialization Phase | the state transition probability, and in this section wel wil
Upload Rate to jI_ RL-Phase . describe the reward calculation method.
L, ‘ State H Action || 4 Actions The reward calculation method can be applied differently
, , Monitor ['§| Finder | A depending on the associated peer types: peers with or vithou
Optimal Policy f . ! .
- i reciprocation history.
™

i 1) Peers with Reciprocation HistoryWhile calculating

the reward of a peer with resource reciprocation historg, th

samples ofL;; will obviously fluctuate over the rechoke time

period due to the experienced P2P network dynamics. Because
2) Scaling: Scaling of the rewards can be considered in tHf this fluctuation, L;; samples may be atypical. Thus, a

cases where the number of reciprocation samples is smalftyRical upload rate of a peer with reciprocation history can

comparison to the difference between the lowest to the bigh&e estimated based on a weighted average of the samples as

Fig. 4. A decision process.

upload rates that are expressed in the P2P network. in @). This is the estimated reward of pegiobtained from
o peeri. As recent resource reciprocations are considered more
C. The Decision Process important than the past reciprocations, wesgt> 0.5. Based

The decision process includes two phases: the initiatination several trials fot; such thad.5+¢ < «; < 1—¢ for small
phase and the RL (Reinforcement Learning) phase, whicheis> 0 on various sets of our experiments (see more details
depicted in Fig[H4. in SectionV]), we can verify that a smaller; achieves less

1) Initialization Phase: Since no information about asso-fluctuation of the reward. Thus, we sef as0.5. Fig.[8 shows
ciated peers is available for a newly joining pegrpeer an example for sampled upload rates of a peer: in our
j begins with adopting the regular BitTorrent mechanismeetwork and the correspondingly estimated upload ratgs
(i.e., the tit-for-tat mechanism and the optimistic unobhokmeasured by another associated peer in the network. We can
mechanism) in the initialization phase. This enables ther pelearly observe less variations of tiig; in the computation
to collect information such as the rewards and state tiansit of the L;.
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2) Peers without Reciprocation Historylf there is no on our experiments, we observe that when the reduced size
resource reciprocation history for peéra leecherj opti- of peer set is more than 7 peers, finding the RL-based policy
mistically initializes the information about the rewardslghe slows down the RL-enhanced client performance. Thus, in our
reciprocation probabilities of its associated peers. Bipally, implementation, we set the size of the reduced peer set as
the initial estimated upload rate is set to be the highesiagl seven, i.e.T = 7 in Algorithm[Il.
rate L7}** that is pre-determined in the P2P network, i.e., The computed policy holds for up to additional three
Lij + L7}**, and the probability of reciprocation witi is rechoke periods, which is determined considering the tfide
initiated to 1, i.e., Pr(¢ ~» j) < 1. This optimistic initial- between the time for enough reciprocation and the time for
ization enables newly joining leechers to download almosapturing the network dynamics.
immediately. Peeyj needs to continue updating the initially
assumed reward in every non-reciprocated event (i.e., péer The Decision Process

J uploads resources to peewhile peeri does not upload  The injtialization phase and the RL phase in the decision
resources to peef). When peer;j estimates the reward forprocess are implemented as follows.

peeri, peer;j can assume that 1) Initialization Phase:In the initialization phase, peer
(i) Li; satisfies makes its decisions on peer selection based on the regular
A - BitTorrent mechanisms, as it does not have enough infoamati
Lij (n — 1) Lij (TL) .
A < = (11) to calculate the policy.
Lij(n) Lij(n+1) In order to determine the duration of the initialization paa

wheren denotes the number of non-reciprocated event§e study extensive experiment results, which include both

(ii) j;ij(n) decreases exponentially such that it approachedl@sh crowd scenarios as well as steady state scenarios. In
after several attempts. these experiments, the number of peers that have not ugloade

The assumption (i) means that the ratio of the estimated rifePeers from the beglnnlng of the downloading Process 1S
of two consecutive events is an increasing functionnof counted every rechoke period. Hig. 7 shows the median of the

This also implies that the increasing uncertainty aboutr pe%ountetlj numbt_ars of pe(ra]rskcollec_te(;j frcf)m all the Iltaechemnt
i’s reciprocation behavior. Moreover, the assumption @) i"étwork over time (rechoke periods) for several experiment

required to prevent the non-reciprocated behavior inagdi ©' flash-crowd scenarios. _ _
free-riding. Thus, a function satisfying (i) and (i) canveaa Fig.[4 shows that the peer counted value is exponentially
form. such as decreasing and stabilized quickly. Then, pgecan switch

f(n) = 3907 Les (12) from the _initialization phase to the RL phase. In our im-
plementation, a peef counts the number of peers without
wheref(< 1) is a constant ang(n) > 1,¥n > 1is a function reciprocation history within every rechoke period. Once th
that grows faster than a linear function. In our implemedatgt count reduces by one in duration of three rechoke periods and
we use functionf(n) = 0.95%" x L% because the function for two consecutive durations (i.e., six rechoke periopegr;

satisfies properties (i) and (ii), as shown in Hij. 6. switches to the continuous phase and begins to adopt the RL-
i o based strategy. Based on our experiments, peers switch from
B. The Policy Finding Process the initialization phase to the continuous phase approitya

As shown in Sectiofi_1V, in every iteration of the policy60 rechoke periods later in the flash-crowd scenarios and
finding process, the associated peer set is first reduceddBaapproximately 36 rechoke periods later in the steady-state
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incapable to match the target upload capacities deterntigied
i , , i the bandwidth distribution, we scale the upload capacity an
scenarios. However, different network settings might l&ad (e relevant experimental parameters such as file size by

different durations of the initialization phase. _ . 1/20th. However, we have not set limitations on download
2) RL Phase:ln the RL phase, the peer selection decisiong, nqwidth.
are made based on the RL policy every ten seconds (as iy peers begin the download process simultaneously, which
regular BitTorrent). The selected peers will be unchoked @ jates a flash crowd scenario. The initial seeds havedstaye
a rechoke per|0d_ of ten seconds. The minimum number Qb e teqd through out the entire experiment. To provide
_unchoked_ peers is four. The number of unchoked peers @?‘uthetic churn with constant capacity, leechers disconne
increase if immediately after completion of downloading the entireead
(1) The peer that makes the peer selection decision does figt and reconnect as new comers immediately while request-
saturate its upload capacity, or, ing the entire video file again. This enables our experiments
(2) The upload bandwidth of the peer that makes the pegive the same upload bandwidth distribution for the dumatio
selection decision is higher in comparison to most of thef the experiment.
peers it interacts with. Unless otherwise specified, our experiments host 104
We compare the performance of the proposed protocol wilanetlab nodes, 100 leechers and 4 seeds with a combined
that of the regular BitTorrent implemented in the Enhancezhpacity of 128 KB/s, serving a 99 MB video file.
CTorrent client. The minimum number of unchocked slots in , ) i
the regular BitTorrent implementation is also set as fote T B+ EXPeriment Results: Single RL Leecher in a Network
number of slots can increase if a peer's upload capacitytis noWe start with the experiment where only a single leecher
saturated. In this implementation, one unchoke slot is ydwaadopts th&kL-enhancegrotocol, while the rest of the leechers
reserved for optimistic unchokes that are rotated evergethrin the network run with the regular BitTorrent, and there rame
rechoke periods. free-riders in the network (note that this is a common sdenar
that was tested by other proposed protocols suchlas [7]).[32]
Fig.[8 compares the download time of a single leecher, while
We perform extensive experiments on a controlled testbeatjopting theRL-enhancegbrotocol and the regular BitTorrent
in order to evaluate the properties of the proposed protocoprotocol as a function of the leecher’s upload capacity aver
trials.
A. Methodology In Fig. [8, as in [[38] separate boxplots are depicted for
All of our experiments are performed on the Planetlab etie different scenarios. The top and the bottom of the boxes
perimental platform[31], which utilizes the nodes (ma&sn represent the 75th and the 25th percentile sample of do@nloa
located across the globe. We execute all the experiments cbme, respectively, over all 7 runs of the experiments. The
secutively in time on the same set of nodes. Unless otherwisarkers inside the boxes represent the median, while the
specified, the default implementations of leecher and seedvertical lines extending above and below the boxes reptesen
regular BitTorrent systems are deployed. the maximum and minimum of samples of download time
The upload capacities of the nodes are artificially set awithin the ranges of 1.5 time the box height from the box
cording to the bandwidth distribution of typical BitTorten boarder. Outliers are marked individually with-" mark.
leechers [[I7]. The distribution was estimated based on em-The results in Fig[]8 provide several insights into the
pirical measurements of BitTorrent swarms including mormperation of our RL-based proposed protocol. High and
than 300,000 unique BitTorrent IPs. Since several nodes amv capacity leechers benefit from tHeL-enhancedwith

V1. EXPERIMENTAL EVALUATION
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12%-27% improvement of their download time performanaghokes is not the main reason for the stability improvemént o
as indicated by the median. This improvement providalse peer selection mechanism. Instead, replacing thertiiaf
leechers with an incentive to adopt the proposed protocotlechanism, which relies on short-term history of assodiate
Moreover, the RL-based strategy does not simply impropeers with the RL-based mechanism that relies on a long
performance; it also provides more consistent performaniaistory and performs foresighted unchoking decisions & th
across multiple trials. By selecting to unchoke peers based main contributor for this stability.
historical behavior information, our proposed protocabids ) )
the randomization present in the regular BitTorrent tittat C: Expenment_ Results: Performance of Leechers in Network
and optimistic unchoke implementations, which cause thout Free-Riders
unstable peer selections and results in slow convergence. We compare a system consisting of all leechers adopting
the regular BitTorrent protocol, to a system consisting lbf a
Peer Selection Mechanism Stability We further study leechers running irRL-enhancedmode, adopting the RL-
the peer selection mechanism stability. The stability af tthased strategy. In this section, we assume that there are no
peer selection mechanism affects directly the performanitee-riders in the network. Note that this experiment hoste
of the system since once a peer starts to upload to anothaly 50 leechers. Fig._10 shows the download completion
peer it takes time till the peer reaches its full capacity. ltime of leechers. For each group of leechers having the
the BitTorrent protocol[[6] the author suggests allowing 38ame upload capacity, separate boxplots are depicted dor th
seconds for a peer to reach its full capacity. Thus, a systelifferent scenarios.
that has a high fluctuation in peer selection will have many The results show the clear performance difference among
occurrences of peers that do not reach their full capacity. high-capacity leechers, which are the fastest 20% leechers
We compare the peer selection fluctuations of the twand low-capacity leechers, which are the slowest 80% lesche
protocols. A stable peer selection mechanism should mz@miHigh-capacity leechers can significantly improve their dew
the peer selection fluctuations. We measured peer selectiond completion time — leechers having the upload capadity o
fluctuations by comparing the peer selection decisionsduriat least 18kB/sec improve their download completion time by
two consecutive rechoke periods and measuring the differerup to 33% in median. Unlike in the regular BitTorrent system,
between the two decisions, e.g., replacing an unchoked pedrere leechers determine their peer selection decisiosedba
by a different peer counts as one change. Hig. 9 indicates threthe myopic tit-for-tat that uses only the last recipramat
average number of peer selection changes as a functionhitory, theRL-enhancedeechers determine their peer selec-
time (rechoke period units) for a single peer. It shows that ttion decisions based on the long term history. This enables
average number of peer selection changes is lower irRthe the leechers to estimate the behaviors of their associatexs p
enhanceahetwork for the majority of the time, with an averaganore accurately. Moreover, since part of the peer selection
of 2.1 changes in the regular BitTorrent network as comparddcisions is randomly determined in the regular BitTorrent
to 0.9 average changes in tR&-enhancedietwork. Thus, the there is a high probability that high capacity leechers rteed
RL-enhancegeer selection mechanism is more stable than theciprocate with the low-capacity leechers [7]. Howevbeg t
peer selection mechanism in the regular BitTorrent, reducirandomly determined peer selection decisions are signtfica
the peer selection fluctuations by an average of 57%. reduced in the proposed approach, as the random decis®ns ar
Note that the optimistic unchoke mechanism contributégken only in the initialization phase or in order to collédot
about 1 change every 3 rechoke periods, thus contributiregiprocation history of newly joined peers. As a resulg th
an average change of abOélt per time unit in the regular high capacity leechers increase theie probability to reciate
BitTorrent network. Therefore, the decrease in optimigtie resources with other high capacity leechers.
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This is confirmed in the results of Fig.]11, which shows the
unchoking percentage among 2@ high capacity leechers, Number of Free-Riders in the System
comparing the two different systems. It is clearly obsenyed
the collaboration among high capacity leechers improvesnwh Fig. 14. Percentage of free-riders’ downloads from contiity leechers.
leechers adopt the RL-based strategy. Thus, we can conclude
that the RL-based strategy improves the incentive mechenis
in BitTorrent networks: as a leecher contributes more to tfigcludes free-riders (i.e., shows the improved fairness,).e
network, it achieves higher download rate. Hence, in this section, our focus is on studying how the free-
Recent studie$ [7]=[9] [19] show that the regular BitTatre riders are punished due to their selfish behaviors[Fig. 6@&sh
protocol suffers from unfairness particularly for high eapty the time that the free-riders complete downloading 99MB
leechers. In Fig[d2, we compare the upload rates and tfigeo file in a network consisting of 50 contributing leecher
average download rates of the leechers. The ratio of theded increasing number of free-riders (i.e., 5, 10, and 1&-fre
values can indicate the degree of fairness in the systefiglers). It compares the results of tii-enhancechetwork
The results in Figld2 show that fairness is improved in tHe the regular BitTorrent network. Fig. 13 confirms that in
RL-enhancedhetwork, since high-capacity leechers increasdiie RL-enhancedetwork the leechers are able to effectively
their download rate getting closer to their upload rate pites penalize the free-riders, as it takes longer time for the-fre
of the restriction of limited seeds’ upload rate. On the othéiders to complete their downloads (requires 8%-20% more
hand, in theRL-enhancedhetwork, the download rates oftime as measured by the median, in comparison to the regular
low-capacity leechers decrease, getting close to theimagpl BitTorrent protocol).
rates by at mosB6%, compared to the regular BitTorrent TheRL-enhancedeechers can efficiently capture the selfish
system. However, all the peers that are slowed down by thehaviors of the free-riders. Thus, they unchoke the free-
RL-based strategy still download faster than their uplad.r riders with a significantly lower probability. Hence, theér
riders can download their content mainly from seeds and
) ) not from the leechers. The results shown in Higl 14 also
D. Experiment Results: Performance of Leechers in NetWogknfirm that the leechers in the regular BitTorrent network
with Free-Riders upload approximately 2.8-3.7 times more data to the free-
In this section, we investigate how effectively the prombseiders compared to thRL-enhancedetwork. This also shows
protocol can prevent selfish behaviors such as free-ridingisat theRL-enhancedetworks are more robust to the selfish
Note that the RL-based strategy shows a similar performaraehaviors of peers than the networks operating with thelaegu
for the leechers that upload their content in a network thBitTorrent protocol. For example, in the network with 15
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free-riders, the leechers in the regular BitTorrent systerhigher probability to receive data from seeds and via ostini
upload 4.5% of their total upload capacity to free-riderkile&x unchoke. Our protocol replaces the optimistic unchokes, th
they only upload 1.6% of their total upload capacity in thenost important vulnerability identified in these studiesthw
RL-enhancedchetwork. Thus reducing by 64% their uploadhe RL-based policy based unchokes.
capacity to free-riders. Fairness in BitTorrent systems was studied as well. &eo
Therefore, our experiment results confirm that the Rlal. [9] showed the lack of fairness in BitTorrent systems. Riate
based strategy provides incentives for adoption becauseetital. [7], observed the presence of significant altruism in
improves the peer’s download rate, improves the stability 8itTorrent, where peers make contributions that do notodiye
the peer selection mechanism, improves collaboration gmamprove their performance. I1zhak-Ratzin in [19] identifids
high capacity peers, improves fairness in the system, apdtential lack of fairness and proposed the Buddy protocol
discourages non-cooperative behaviors such as freggridin that matches peers with similar bandwidth. Legeual. [10]
studied clustering of peers having similar upload bandwidt
They observed that when the seed is under provisioned; all
A fairly large number of P2P architectures that suppopeers tend to complete their downloads approximately at the
distribution of multimedia over the Internet has been psgub same time, regardless of their upload rates. Moreover,-high
in the last years within the scientific community [34]-[38]capacity peers assist the seed to disseminate data to low-
More specifically, BitTorrent, the protocol that dominatee capacity peers. This can happen because the tit-for-tegly
traffic on the Internet[]1], has been highly influential in thés based on short-term history. A peer can benefit from the tit
design and development of many other modern commerciat-tat strategy only if it can continuously upload piecesl a
P2P streaming systems such [as [4], [E]/[39]. as long as it receives pieces of interest in return. Piatek
Extensive research has focused on modeling and analyzaig[11] showed that this is not always possible, as peers can
the performance of the BitTorrent systems, since the maiave no piece to offer. Our work also considers the unfagnes
mechanisms and the design rationale of the BitTorrent pobto in BitTorrent systems, and shows that the proposed approach
were first described [6]. can improve the fairness by using a long-term history based
Qiu and Srikant[[40] studied a fluid analytical model ostrategy.
BitTorrent systems. They analytically studied the choking In order to reduce free-riding and encourage collaboration
mechanism and how it affects the peer performance. Thegrious reputation systems have been proposed. Payment sys
showed that the optimistic unchoke mechanism may allaems (e.g., [[43], [[44]), which enable peers to earn credits
free-riding. They also claimed that the system with titfatr according to their uploads to other peers have been proposed
strategy eventually converges with a Nash equilibrium wheHowever, in practice these systems require a centralizéy en
fairness is achieved and all peers download at their uplotdprevent cheating, and thus, have arguably scalability- li
capacities. However, as shown in our results, which are tations. To overcome such weaknesses in payment systems,
consistent with other existing works such [as [[7], [O]./[1BR] various designs of reputation systems have been proposed
the choking mechanism in BitTorrent may fail to attain fass (e.g., [11], [15]H[17], [45]). In these systems, peers can
for realistic swarms. Faet al. [41] characterized the designmake choking decisions bases on private history as well as
space of BitTorrent-like protocols capturing the fundataén globally shared history. However, these reputation system
tradeoff between performance and fairness. We also stutly svequire significant communication overheads to maintaen th
tradeoffs and show that the RL-based strategy improves tijiebal history. Moreover, there is no guarantee that eaeh pe
fairness in the system for the cost of reduced download odtesexpresses the same behavior to different peers with differe
low-capacity leechers. This encourages leechers to bori attributes.
more resources (i.e., maximize their upload rate). Lestin  Other researchers have also acknowledged the importance
al. [32] propose an auction base model to model the peefr contribution incentives in P2P systems and have proposed
selection mechanism, claiming that BitTorrent uses andiio different alternatives. Anagnostaket al. [46] suggested to
decide which peers to unchoke and not the tit-for-tat as lwideextend the BitTorrent incentives to-way exchanges among
believed. rings of peers, providing incentive to cooperate. Piagtk
Other researchers have studied the feasibility of freigid al. [7] proposed the BitTyrant client, who applies a new
behavior; Shneidmaet al. [42] showed that it is possible peer selection mechanism that reallocates upload barwidt
to free-ride in BitTorrent systems. They identified forms ofo maximize peers’ download rates. However, whereas the
strategic manipulation that are based on Sybil attacks aagpearance of a single BitTyrant client in a BitTorrent syst
uploading garbage data. Liogkeasal. [12] implemented three reveals improving performance; in the case of a widespread
exploits that allow free-riders to obtain higher downloates adoption the system performs a severe loss of efficiency [47]
under specific circumstances. Loctetral. [L3] with BitThief Levin et al. [32] proposed the propshare client that rewards
extended this work by showing that free-riders can achiew¢her peers with proportional shares of bandwidth. Theysho
higher download rate, even in the absence of seeds. Similathat the propshare client improves performance in a swarm
Sirivianos et al. [14] showed that a free-rider, which canconsisting predominately of BitTorrent peers. Howevergwh
maintain a larger-than-normal view of the system, has a muttfe majority of peers run with propshare clients there is no
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clear difference in performance in comparison to the ragulge]
BitTorrent protocol.

In addition, all these systems relay on short-term historyﬂ
aim to maximize the immediate utility but not the long-term
utility, which can show only suboptimal performance. To thE?8l
best of our knowledge, we are the first to propose the RL—baéé%J
strategy that can replace the existing mechanisms deployex
in BitTorrent protocol, while maximizing long-term utitof

participating leechers. [21]

VIII. CONCLUSION [22]

In this paper, we propose a BitTorrent-like protocol that r?23]
places the tit-for-tat and the optimistic unchoke peercile
mechanisms in the regular BitTorrent protocol with a novel
RL-based mechanism. (24]

In our proposed protocol the evolution of the peers’ irl25]
teractions across the various rechoke periods are modsled a
repeated interactions in a game. During the repeated medti- [26]
interactions, the peers can observe partial historicalrmé- |57
tion of associated peers’ reciprocation behaviors. Thinchgs
the peers can estimate the impact on their future rewards Efzns
then adopt their best peer selection action. The estimation
the impact on the expected future reward is performed usifzg]
reinforcement-learning, as it allows the peers to imprdwesrt
peer selection mechanism using only knowledge of their ov@ﬂ
past interactions, without knowing the complete reciptiota
behavior of the peers in the network.

Our experiment results show that our proposed protoc%f]
improves the stability of the peer selection mechanism, im-
proves collaboration among high capacity peers, improvisl
fairness in the system, enhances the robustness of the nketvygy
by effectively discouraging non-cooperative behaviorshsas
free-riding, and importantly improves the downloadingesat

of the peers deploying the protocol. [35]
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