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Abstract—Recent research efforts have shown that the popular
BitTorrent protocol does not provide fair resource reciprocation
and may allow free-riding. In this paper, we propose a BitTorrent-
like protocol that replaces the peer selection mechanisms in the
regular BitTorrent protocol with a novel reinforcement learning
based mechanism.

Due to the inherent opration of P2P systems, which involves
repeated interactions among peers over a long period of time,
the peers can efficiently identify free-riders as well as desirable
collaborators by learning the behavior of their associatedpeers.
Thus, it can help peers improve their download rates and
discourage free-riding, while improving fairness in the system.

We model the peers’ interactions in the BitTorrent-like net-
work as a repeated interaction game, where we explicitly consider
the strategic behavior of the peers. A peer, which applies the rein-
forcement learning based mechanism, uses a partial historyof the
observations on associated peers’ statistical reciprocalbehaviors
to determine its best responses and estimate the corresponding
impact on its expected utility. The policy determines the peer’s
resource reciprocations with other peers, which would maximize
the peer’s long-term performance, thereby making foresighted
decisions.

We have implemented the proposed reinforcement-learning
based mechanism and incorporated it into an existing BitTorrent
client. We have performed extensive experiments on a controlled
Planetlab test bed. Our results confirm that our proposed
protocol (1) promotes fairness in terms of incentives to each peer’s
contribution e.g. high capacity peers improve their download
completion time by up to 33%, (2) improves the system stability
and robustness e.g. reducing the peer selection fluctuations
by 57%, and (3) discourages free-riding e.g. peers reduce by
64% their upload to free-rider, in comparison to the regular
BitTorrent protocol.
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I. I NTRODUCTION

Peer-to-peer (P2P) content sharing protocols dominate the
traffic on the Internet, and thus, have become an important
part in building scalable Internet applications [1]. The P2P
protocols are used by a variety of Internet applications such
as content distribution [2], voice over IP [3], and streaming
multimedia P2P applications [4], [5].

In P2P content distribution systems, fairness among peers is
an important factor, as it encourages peers to actively collabo-
rate in disseminating content, which can lead to an improved
system performance. However, even BitTorrent [6], one of the
most popular protocols used in P2P content distribution, does
not provide fair resource reciprocation, particularly fornode
populations having heterogeneous upload bandwidths [7]–
[10]. This is because the tit-for-tat strategy implementedin

1* This work was done while Dr. Izhak-Ratzin and Dr.Park were at UCLA

BitTorrent only exploits a short-term history for making upload
decisions. More specifically, upload decisions are made based
on the most recent observations of the resource reciprocation.
This also implies that the upload decisions are short backward-
looking and not forward-looking, i.e., the decisions are not
foresighted. Thus, a peer can keep following the tit-for-tat
policy only if it continuously uploads pieces of a particular
file to its associated peers and as long as it receives pieces
of interest in return. However, this is not always feasible as
irrespective of peers’ willingness to cooperate, they may not
always have pieces in which the other peers are interested
in [11]. However, such behavior is still perceived as a lack
of cooperation for interacting peers. In addition, it has been
shown that BitTorrent systems do not effectively cope with
selfish peers’ behaviors such as free-riding [12]–[14], because
of their built-in optimistic unchoke mechanism. While the
optimistic unchoke mechanism enables peers to continuously
discover better peers (or leechers) to reciprocate resources, it
can provide a major opportunity for selfish peers to obtain data
without uploading in return. This mechanism may also lead
to unfairness in the system, as it forces high-capacity peers to
interact with low-capacity peers.

Unlike the approaches that are using short-term observa-
tion history, reputation-based schemes have been proposedto
overcome the limitations of tit-for-tat and optimistic unchoke
mechanisms by exploiting global histories (e.g., [15]–[17]).
However, in order to maintain such a global history across
peers, these approaches require significant communication
overhead. Moreover, the reliability of global history can be
unclear as peers may exhibit different reciprocation behaviors
with different peers. Alternatively, the long-term local (or
private) history of upload behaviors with associated peers’
is used in several other reputation-based approaches such
as [11], [18]–[20]. While these approaches can reduce the
communication overheads, the focus of these systems is still on
maximizing theimmediateutility, which may be less desirable
than maximizing thelong-termutility, as peers can repeatedly
interact with each other over a long period of time.

In this paper, we model the peer interactions in the
BitTorrent-like network as a repeated interaction game –
repeated interactions (i.e., reciprocating resources) among
several participants (i.e., peers) in which a participant takes
actions (i.e. unchoke peers) so as to maximize long term
reward (i.e., cumulative download rates). The underlying state
of the environment changes stochastically, and is contingent
upon the decisions of the participants. In our model, peers can
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apply reinforcement-learning (RL) to make upload decisions.
We explicitly consider the strategic behaviors of peers, where
the peers can observe partial historical information aboutthe
reciprocation behaviors of their associated peers. Based on this
information, the peers that apply the RL-based strategy can
estimate their future expected rewards, and then, can determine
accordingly their best responses. The future expected rewards
can be determined using various types of interactive learning
techniques. We use reinforcement learning, since it enables the
peers to improve their peer selection strategies based solely
on the knowledge of their past interactions, but not on the
knowledge of the complete reciprocation behaviors of the
peers in the entire network. The reinforcement learning enables
each peer to forecast the impact of the current peer selection
on the future expected utility and to maximize it. Therefore,
the RL-based peer selection mechanism replaces both the tit-
for-tat and the optimistic unchoke mechanisms in the regular
BitTorrent protocol.

Note that our protocol supports a non real-time media
transmission scenario, which has received less attention in
the multimedia research community compared to the on-
demand media streaming scenario. In this type of protocols,
the requested content needs to be completely downloaded
before it is displayed. Thus, the ordering of which pieces are
downloaded first is not important, but the overall time required
for completely downloading the content is important. Note
that, however, the proposed protocol can be easily adapted
to on-demand media streaming applications using existing
techniques such as [21]–[23].

The proposed protocol consists of three main processes:

• Learning Process, which provides updated information
about statistical behaviors of the associated peers’ re-
source reciprocation,

• Policy Finding Process, which computes the peer selec-
tion policy based on the reinforcement learning, and

• Decision Process, which determines the associated peers
that will be unchoked and choked during every rechoke
period based on the peer selection policy.

We implemented our proposed protocol on top of an actual
BitTorrent client, and performed extensive experiments ina
controlled Planetlab test bed. The new proposed algorithm
is executed simply through policy modifications to existing
clients with no changes to the BitTorrent protocol. Our pro-
tocol does not demand full adoption or sparse adoption of
the RL-based peer selection mechanism (as in [7]) and can
be run by any number of peers in a BitTorrent-like network.
We evaluated and quantified the performance of the proposed
protocol, and compared its performance with the regular
BitTorrent protocol. Based on the experimental results, the
proposed protocol provides the following advantages against
the regular BitTorrent protocol:

1) It discourages free-riding by limiting the upload to non-
cooperative peers.

2) It promotes cooperation among high-capacity peers.
3) It improves fairness; the peers that contribute more re-

sources (i.e., higher upload capacities) can achieve higher
download rates. While, the peers that contribute fewer
resources may achieve lower download rates.

4) It improves the system robustness by minimizing the
impact of free-riding on the contributing peers’ perfor-
mance.

5) It improves the stability of the peer selection mechanism,
which affects directly the performance of the system.

The rest of the paper is organized as follows. In Section II,
we briefly describe the BitTorrent systems. In Section III,
we briefly define the game and the adopted reinforcement
learning solution and describe the RL-based peer selection
mechanism. Section IV presents the design of the proposed
protocol. Details of our protocol implementation are discussed
in Section V. The experimental results are presented in Sec-
tion VI. Finally, we discuss related work in Section VII, and
the conclusions are drawn in Section VIII.

II. B ITTORRENT OVERVIEW

In this section we briefly overview the BitTorrent proto-
col [6]. The BitTorrent protocol is often adopted for P2P
content distribution, because it can efficiently scale witha large
number of participating clients.

Before the content distribution process begins, the content
provider divides the possessed data content into multiple
pieces, or chunks. Then, the provider creates ametainfo file,
which contains information necessary to initiate the content
downloading process. The metainfo file includes the addressof
the tracker, which plays the role of coordinator that facilitates
peer discovery. A client downloads the metainfo file before
joining a torrent (or swarm) – a group of peers interested in
a particular content. Then, it connects the tracker to receive a
peer set, which consists of randomly selected peers currently
exchanging the same content. The peer set may include both
leechers, peers that are still downloading content pieces, and
seeds, peers that have the entire content and upload it to
other peers. The client can then connect and exchange (or,
reciprocate) its content pieces with itsassociated peers– the
peers in its peer set.

While reciprocating content pieces, each leecher determines
a set of peers among its peer set from where it can down-
load its content pieces. The peer selection is determined by
choking mechanismswhich determined thechoking decisions.
BitTorrent leechers adopt two choking mechanisms: thetit-
for-tat resource reciprocation mechanism and theoptimistic
unchokemechanism. The tit-for-tat mechanism prefers the
peers that upload their pieces at the highest rate among the
associated peers. Specifically, every 10 seconds (orrechoke
period), a leecher checks the current download rates from its
associated peers and selects the peers that are uploading their
pieces at the highest rates. Then, the leecher uploads only
to the selected associated peers, while choking (i.e., blocking
download) the rest of them during the rechoke period.

The available upload bandwidth is equally divided into the
unchoked peers. The optimistic unchoke mechanism reserves
a portion of the available upload bandwidth to provide pieces
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to peers that are randomly selected. The purpose of this mech-
anism is to enable the leechers to continuously discover better
peers to associate itself with, and bootstrap newly joining
leechers into the tit-for-tat mechanism. Optimistic unchokes
are randomly rotated among the associated peers, typically
once every three rechoke periods, allowing enough time for
leechers to demonstrate their cooperative behaviors.

The number of unchoked peers (slots) may vary depending
on specific implementation, and it can be fixed or dynamically
changed as a function of the available upload bandwidth.

Seeds deploy different choking mechanism as they already
completed to download content. The most common implemen-
tation is based on round-robin schedule, aiming to distribute
data uniformly. This implementation is also deployed in our
implementation.

III. R EINFORCEMENTLEARNING FORRESOURCE

RECIPROCATION INP2P NETWORKS

Peers in BitTorrent-like systems often make repeated de-
cisions to select unchoked peers given their dynamically
changing environment. The evolution of the peers’ interactions
across the various rechoke periods is modeled as a repeated
interaction game. We assume that this stochastic game is
played over a long period of time, in order to support several
popular applications such as video streaming or large-sizefile
delivery.

In each time slot (i.e., rechoke period), every peer is in
a state and needs to select its optimal action. The peers
choose their own actions independently and simultaneously
in each rechoke period. After that, the peers are rewarded for
taking their actions and transit into the next states. The reward
(received by each peer) and the state transition are contingent
upon other peers’ states and actions.

During the repeated multiple peers’ interactions, the peers
can only observe a partial history of their associated peers’
reciprocation behaviors. Based on these observations, thepeers
that adopt the RL-based peer selection policy can estimate
their future expected rewards and can identify their best
responses. The estimation of the future expected reward can
be computed using different types of learning schemes. In
this paper, we use reinforcement learning [24], as it allows
the peers to improve their peer selection strategy using only
knowledge of their own past reciprocation, without knowing
the complete knowledge of reciprocation behavior of the
associated peers in the network.

Formally, a reinforcement learning environment can be
represented by a tuple,〈I,S,A, P,R〉. I is a set of peers
in the game. If there areM peers in the game,I can be
denoted byI = {1, . . . ,M}. S is the set of state profiles
of all peers in the game, i.e.,S = S1 × · · · × SM , where
Sj is the state space of peerj. A is the joint action space
A = A1× · · · ×AM , whereAj is the action (peer selection)
space for peerj. P : S ×A× S → [0, 1] is a state transition
probability function that maps from state profileS(t) ∈ S at
time t into the next state profileS(t + 1) ∈ S at time t + 1
given corresponding joint actionsA(t) ∈ A. Note thatt here is

discrete and measured in time slots. Finally,R : S×A → R
M
+

is a reward vector function defined as a mapping from the state
profile S(t) ∈ S at time t, and corresponding joint actions
A(t) ∈ A, to a vector with each element being the reward to
a particular peer.

To find the optimal policy in the game (e.g., a stochastic
game model [25], [26]), peers may require the entire history
of the interactions among peers in the networks. However,
this may be infeasible for real P2P networks. Unlike such
games, finding a RL-based policy only requires the peers’
own histories of observations through their experiences (or
interactions). Therefore we expect the RL-based peer selection
policy to be suboptimal.

The history of observations in the network up to timet− 1
is defined as
H(t) =

{S(0),A(0),R(0), . . . ,S(t− 1),A(t− 1),R(t − 1)} ∈ H(t)
(1)

Which summarizes all previous states, actions and rewards of
the peers in the network up to timet−1, whereH(t) is the set
of all possible histories up to timet−1. Since a peerj cannot
access the entire history of observations, i.e.,H(t), but rather
a portion ofH(t), a set of observations that peerj can access
is expressed asOj(t) ∈ Oj andOj(t) ⊆ H(t). Note that the
current stateSj(t) is always observable, i.e.,Sj(t) ∈ Oj(t).
The state transition probability is calculated fromOj(t).

1) State Space of Peerj –Sj : The state of peerj represents
the set of resources received from the peers inCj , whereCj

denotes the set of peers associating with peerj. Thus, it may
represent the uploading behavior of its associated peers, or
equivalently, it can capture peerj’s download rates from its
associated peers. The upload rates from peeri ∈ Cj to peerj
at time t are denoted byLij(t). In our proposed protocol, an
uploading behavior of peeri observed by peerj is denoted
by sij , and defined as

sij =

{

1, if Lij > θj
0, otherwise

(2)

whereθj is a pre-determined threshold of peerj.2 Thus,sij
can be expressed with one bit and the state space of peerj
can be expressed as

Sj = { (s1j , . . . , sNj)| sij ∈ {0, 1} for all i ∈ Cj} (3)

whereN denotes the number of peerj’s associated peers in
Cj , i.e., |Cj | = N . Therefore, a stateSj(t) ∈ Sj can capture
the uploading behavior of the associated peers at timet.

2) Action Space of Peerj – Aj : The action of peerj
represents the set of its peer selection decisions. The peer
selection decision of peerj to peer i at time t is denoted
by aji, and is defined as

aji(t) =

{

0, if peer j chokes peeri
1, otherwise.

(4)

2In order to minimize the computational complexity, we consider sij ∈
{0, 1} in this paper. However, the granularity of state can be easily extended.
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Thus,aji can also be expressed with one bit. The action space
of peerj can be expressed as

Aj = { (aj1, . . . , ajN )| aji ∈ {0, 1} for all i ∈ Cj} , (5)

Hence, an actionAj(t) ∈ Aj is of vector that consists of
peerj’s peer selection decisions to its associated peers at time
t. In the proposed protocol, we assume that peerj is able
to unchokeNu(≤ N) peers. Note that peerj allocates the
same amount of upload bandwidths to all unchoked peers,
the variable case can be future explored. Thus, the bandwidth
allocated to an unchoked peeri by peer j at time t is
determined byLji(t) = Bj/Nu, whereBj is the maximum
upload bandwidth available to peerj.

3) State Transition Probability of Peerj: A state transition
probability represents the probability that an actionAj(t) ∈
Aj of peerj in stateSj(t) ∈ Sj at timet will lead to another
stateSj(t+ 1) ∈ Sj at time t+ 1. This can be expressed as

PAj(t)(Sj(t),Sj(t+ 1)) = Pr(Sj(t+ 1)|Sj(t),Aj(t)). (6)

A peerj can estimate the state transition probability functions
based on its history interactions ofSj(t

′), Aj(t
′) andSj(t

′+
1) for t′ < t, which may be stored in a transition table. While
we deploy an empirical frequency based algorithm to estimate
the state transition probability function in this paper, which
is presented in Section IV-A, other algorithms (e.g., [27])can
also be used.

4) The Reward of Peerj – Rj : The reward of a peer in a
state is its total estimated download rate in that state. Thus, a
reward of a peer in a state is the sum of the estimated download
rates from all of its associated peers. More specifically, a
reward of peerj from stateSj(t) ∈ Sj can be expressed
as

Rj(Sj(t)) =
〈

Sj , [Lij ]i∈Cj

〉

=
∑

i∈Cj

Lij (7)

where〈X,Y〉 denotes the inner-product between two vectors
of X andY. A set of rewards for all peers in the system is
denoted byR = {R1, . . . , RN}.

5) RL-based Policyπj : The policy πj , which can be
obtained from the reinforcement learning, can provide a spe-
cific action Aj(t) for peer j in stateSj(t) at time t, i.e.,
πj : Sj → Aj . Thus,Aj(t) = πj (Sj(t)).

The actions that the policy provides to peerj are deter-
mined such that they can maximize the cumulative discounted
expected reward, which is defined for a peerj in stateSj(t)
at time t = tc given a discount factorγj as

Rf
j (Sj(tc)) ,

∞
∑

t=tc+1

γ
(t−(tc+1))
j · Rj(Sj(t)). (8)

Thus, the policyπj maps each stateSj(t) ∈ Sj into an action,
i.e., Aj(t) = πj(Sj(t)), such that each action maximizes
Rf

j (Sj(tc)).
The policy can be deployed as a peer selection algorithm,

which enables each peer to maximize its own long-term
utility. While the policyπj can be obtained using well-known
methods such as value iteration and policy iteration [28], the
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Fig. 1. Main processes in the proposed protocol design.

environment dynamics keeps changing in practice, and thus,
the policy needs to be updated frequently. This may require
a high computational complexity. Hence, it is important to
reduce the complexity for finding the policy, such that the
proposed algorithm can be efficiently deployed.

IV. T HE PROTOCOL DESIGN

In this section, we describe the proposed protocol design
that replaces the tit-for-tat and optimistic unchoke peer selec-
tion mechanisms, which are deployed in the regular BitTorrent
systems, with the RL-based peer selection mechanism.

The protocol design is summarized in Fig. 1. The protocol
consists of three main processes running in parallel:

1) The learning process, which provides updated informa-
tion about statistical behaviors of the associated peers’
resource reciprocationOj(t)(⊆ H(t)). This process is
necessary since the peers’ reciprocation behaviors are
not foretold. Therefore, peers are required to act in the
environment in order to gain observation of the transition
function and the rewards of the associated peers.

2) The policy finding process, which computes the policy
using reinforcement learning. This process needs to be
running in the entire downloading process as the changes
of peers’ reciprocation behaviors (identified by the learn-
ing process) can result in the policies obtained in the
previous time slots being outdated.

3) The decision process, which determines the decisions on
peer selection in each rechoke period based on the policy
and the observed state.

More details about these processes are discussed next.

A. The Learning Process

It is difficult to estimate (orlearn) the other peers’ states,
rewards and state transition probabilities due to the unan-
nounced information, network scalability constraints, time-
varying network dynamics, etc. In our proposed protocol, a
RL-based peer learns the other peers’ states, rewards, state
transition probability, etc., using the observations of its com-
peting peers from the past. Thus, each peer needs to update
the above information regularly through the learning process,
while downloading content from its associated peers.

The learning process consists of two main methods that
compute the estimated reward and state transition probability,
which is depicted in Fig. 2.

1) Computing Reward:The reward of peerj represents
its total download rates from its associated peers estimated by
peerj. In the rewards calculation method, the associated peers
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are classified into two types based on the available information
about their resource reciprocation history.

For associated peers that have reciprocated their resources
with peer j, referred to aspeers with reciprocation history,
peer j estimates their upload rates based on the weighted
average of the past upload rate samples. This can reduce the
fluctuation induced by the protocol and network dynamics in
the sampled upload rates of the associated peers. Specifically,
peerj estimates the upload rateŝLij of peeri ∈ Cj based on
recently observed resource reciprocationLij as

L̂ij(t+ 1)← αj · Lij(t+ 1) + (1 − αj)L̂ij(t) (9)

whereαj denotes the weight for most recent resource recip-
rocation.

For associated peers who havenot yet reciprocated their
resources with peerj, which are referred to aspeers without
resource reciprocation history, peerj initializes the informa-
tion about such peers by optimistically estimating that they
reciprocate their resources with high probability and highup-
load rate. This enables peerj to efficiently discover additional
peers, and bootstrap newly joining peers, which is important
for the efficiency of the system. Whenever peerj uploads to a
peer without resource reciprocation history and the peer does
not upload toj in return, peerj reduces the peer’s presumed
upload rate, as this providesj with more confidence that the
particular peer may not actively reciprocate its data. Thisalso
prevents the associated peers from taking advantage of a peer
through optimistic initialization and possible free-riding. Note
that white-washing [29] is not possible in our design either,
since peers are identified by their IP addresses.

2) Finding State Transition Probability:The state transition
probabilities are updated every rechoke period, and thus,
each peer can capture the time-varying resource reciprocation
behaviors of its associated peers. Every rechoke period at
t + 1, peer j stores 3-bit triplets for its associated peeri,
(sij(t), aji(t), sij(t+ 1)). Peer j stores the triplets for its
associated peers that are in itsreduce peer set, which will
be discussed later in this section, or peers that uploaded to
peer j at time t or t + 1. In our design, we compute the
state transition probability functions based on the empiri-
cal frequency, and assume that the state transition of each
peer is independent. Thus, the state transition probability
PAj(t)(Sj(t),Sj(t + 1)) from Sj(t) = (s1j(t), . . . , sNj(t))
to Sj(t + 1) = (s1j(t + 1), . . . , sNj(t + 1)) given an action
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Peer Set 
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MDP Solver

Reciprocation 

Information:

',( ),
j j j jP R
A
S S *

jπ

'
jC

Fig. 3. A policy finding process.

Aj(t) = (aj1(t), . . . , ajN (t)) can be expressed as

PAj(t)(Sj(t),Sj(t+ 1)) =
N
∏

i=1

Pr(sij(t+ 1)|sij(t), aji(t)).

B. The Policy Finding Process

The policy finding process runs in parallel with the learning
process, while using the information obtained from the learn-
ing process. This process is depicted in Fig. 3. Finding the
policy based on the reinforcement learning frequently may
result in high computational complexity requirement, if the
number of the associated peers becomes large. Hence, in
order to practically implement the proposed algorithm, it is
critical to reduce the number of peers that a peer considers for
reciprocation (see Section III). Therefore, this process needs
to begin with reducing the set of associated peers, and then,
finds the policyπj that maximizes the cumulative discounted
expected reward (i.e., in Eq. 8) in the reduced peer set.

1) Reducing Associated Peer Set:As discussed in Section
III, in order to find πj efficiently, it is important for peerj
to reduce the set of associated peers while selecting the peers
who can reciprocate their resources with higher probability and
with higher upload rate in the reduced peer set. Specifically,
peerj computes the expected rewards (or download rates)L̂ij

from each peeri ∈ Cj , defined as

L̂ij(t+ 1) = Lij(t)× Pr(i j), (10)

wherePr(i j) denotes the probability of resource recipro-
cation with peeri. Based on the computed̂Lij , peerj reduces
its associated peer set by iteratively eliminating the peers with
the smallest̂Lij in its associated peer set. The algorithm for
peer set reduction is presented in Algorithm 1.

The algorithm computeŝLij in (10) for i ∈ Cj (lines 3,4).
Then, the associated peers are ordered based on the computed
L̂ij (line 5). The peer set reduction is performed in the ”while
loop” (lines 7-18) that reduces the peer set byc2 peers in every
iteration. In the loop, the algorithm selectsc1 peers with the
smallestL̂ij values denoted byG (line 8), from the reduced
group of peersC′

j . It then obtains policyπj,G for the peers in
G (line 9). Based onπj,G, it calculates the probabilities for
the peers to be unchoked (lines 10-14). Given the calculated
probability, it removes thec2 peers with the lowest probability
to be unchoked (line 18). The algorithm runs until|C′

j | = T
(line 7).
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Algorithm 1 Peer-set Reduction Algorithm for Peerj
1: INPUT :
· Cj - set of associated peers of peerj
· T - targeted size of reduced peer set (constant)
· Lij - rewards (or download rates) from peeri
· Pr(skj) - probability to be inskj
· Pr(i  j) - the resource reciprocation probability of
peeri
· c1, c2 - constants such thatT ≫ c1 > c2

2: OUTPUT :
A reduced set of peersC′

j ⊆ Cj where|C′

j | = T

3: for all i ∈ Cj do
4: L̂ij = Lij × Pr(i j);
5: orderCj in a non-decreasing order of thêLij;
6: C′

j ← Cj ;
7: while |C′

j | > T do

8: G =
{

C′

j1
, . . . , C ′

jc1

}

;
9: calculateπ∗

j,G //policy for set G;
10: for all k such thatC′

jk
∈ G do

11: Pr(j  k)← 0 //estimate probability that j
unchokes k based on π∗

j,G
12: for all skj ∈ Sj do
13: if π∗

j,G
(skj) = 1 then

14: Pr(j  k)← Pr(j  k) + Pr(skj);
15: orderG in a non-decreasing order of thePr(j  k) values;
16: if c2 > |C′

j | − T then
17: c2 ← |C′

j | − T ;
18: C′

j ← C′

j − {G1, . . . , Gc2};

19: return C′

j
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Fig. 4. A decision process.

2) Scaling:Scaling of the rewards can be considered in the
cases where the number of reciprocation samples is small in
comparison to the difference between the lowest to the highest
upload rates that are expressed in the P2P network.

C. The Decision Process

The decision process includes two phases: the initialization
phase and the RL (Reinforcement Learning) phase, which is
depicted in Fig. 4.

1) Initialization Phase:Since no information about asso-
ciated peers is available for a newly joining peerj, peer
j begins with adopting the regular BitTorrent mechanisms
(i.e., the tit-for-tat mechanism and the optimistic unchoke
mechanism) in the initialization phase. This enables the peer
to collect information such as the rewards and state transition

probabilities with respect to its associated peers. Duringthis
phase,j discovers new peers, i.e., downloads from peers for
the first time. Oncej’s peer discovery is slowed down (see
Section V for more details), it replaces the regular BitTorrent
RL-based peer selection mechanisms, and operates in the RL
phase.

2) RL Phase:In this phase, peerj determines the decisions
on peer selection based on the policy obtained from the policy
finding process in every rechoke period. Peerj determines its
current stateSj and the corresponding actionAj based on
the policy πj , i.e., Aj = πj(Sj). Note thatAj is a set of
decisions on peer selection of peerj, i.e. either to choke or to
unchoke.

V. I MPLEMENTATION

In this section, we discuss our proposed protocol prototype
and study how to determine several design parameters.

Our RL-based client is implemented on top of theEnhanced
CTorrent client, version 3.2 [30]. We enhance the original
client such that our client can operate inRL-enhanced mode,
where it reciprocates its resources using the proposed RL-
based mechanism, or inregular mode, where it reciprocates its
resources based on the regular BitTorrent peer selection mech-
anism. We add the functionality for the RL-enhanced mode to
support the proposed protocol requests. More specifically,in
the RL-enhanced mode we implemented the three different
processes that are discussed in Section IV.

A. The Learning Process

The learning process consists of two methods, the reward
calculation method and the state transition probability calcula-
tion method. In Section IV-A2 we discussed how to estimate
the state transition probability, and in this section we will
describe the reward calculation method.

The reward calculation method can be applied differently
depending on the associated peer types: peers with or without
reciprocation history.

1) Peers with Reciprocation History:While calculating
the reward of a peer with resource reciprocation history, the
samples ofLij will obviously fluctuate over the rechoke time
period due to the experienced P2P network dynamics. Because
of this fluctuation,Lij samples may be atypical. Thus, a
typical upload rate of a peer with reciprocation history can
be estimated based on a weighted average of the samples as
in (9). This is the estimated reward of peerj obtained from
peeri. As recent resource reciprocations are considered more
important than the past reciprocations, we setαj ≥ 0.5. Based
on several trials forαj such that0.5+ǫ ≤ αj ≤ 1−ǫ for small
ǫ ≥ 0 on various sets of our experiments (see more details
in Section VI), we can verify that a smallerαj achieves less
fluctuation of the reward. Thus, we setαj as0.5. Fig. 5 shows
an example for sampled upload ratesLij of a peeri in our
network and the correspondingly estimated upload ratesL̂ij

measured by another associated peer in the network. We can
clearly observe less variations of theLij in the computation
of the L̂ij.
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2) Peers without Reciprocation History:If there is no
resource reciprocation history for peeri, a leecherj opti-
mistically initializes the information about the rewards and the
reciprocation probabilities of its associated peers. Specifically,
the initial estimated upload rate is set to be the highest upload
rate Lmax

ij that is pre-determined in the P2P network, i.e.,
Lij ← Lmax

ij , and the probability of reciprocation withj is
initiated to 1, i.e., Pr(i  j) ← 1. This optimistic initial-
ization enables newly joining leechers to download almost
immediately. Peerj needs to continue updating the initially
assumed reward in every non-reciprocated event (i.e., peer
j uploads resources to peeri while peeri does not upload
resources to peerj). When peerj estimates the reward for
peeri, peerj can assume that

(i) L̂ij satisfies

L̂ij(n− 1)

L̂ij(n)
<

L̂ij(n)

L̂ij(n+ 1)
(11)

wheren denotes the number of non-reciprocated events,
(ii) L̂ij(n) decreases exponentially such that it approaches 0

after several attempts.

The assumption (i) means that the ratio of the estimated rate
of two consecutive events is an increasing function ofn.
This also implies that the increasing uncertainty about peer
i’s reciprocation behavior. Moreover, the assumption (ii) is
required to prevent the non-reciprocated behavior including
free-riding. Thus, a function satisfying (i) and (ii) can have a
form, such as

f(n) = βg(n) × Lmax
ij (12)

whereβ(< 1) is a constant andg(n) > 1, ∀n ≥ 1 is a function
that grows faster than a linear function. In our implementation,
we use functionf(n) = 0.952

n

× Lmax
ij because the function

satisfies properties (i) and (ii), as shown in Fig. 6.

B. The Policy Finding Process

As shown in Section IV, in every iteration of the policy
finding process, the associated peer set is first reduced. Based
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Fig. 6. Guessing reduction function

on our experiments, we observe that when the reduced size
of peer set is more than 7 peers, finding the RL-based policy
slows down the RL-enhanced client performance. Thus, in our
implementation, we set the size of the reduced peer set as
seven, i.e.,T = 7 in Algorithm 1.

The computed policy holds for up to additional three
rechoke periods, which is determined considering the tradeoff
between the time for enough reciprocation and the time for
capturing the network dynamics.

C. The Decision Process

The initialization phase and the RL phase in the decision
process are implemented as follows.

1) Initialization Phase: In the initialization phase, peerj
makes its decisions on peer selection based on the regular
BitTorrent mechanisms, as it does not have enough information
to calculate the policy.

In order to determine the duration of the initialization phase
we study extensive experiment results, which include both
flash crowd scenarios as well as steady state scenarios. In
these experiments, the number of peers that have not uploaded
to peerj from the beginning of the downloading process is
counted every rechoke period. Fig. 7 shows the median of the
counted numbers of peers collected from all the leechers in the
network over time (rechoke periods) for several experiments
of flash-crowd scenarios.

Fig. 7 shows that the peer counted value is exponentially
decreasing and stabilized quickly. Then, peerj can switch
from the initialization phase to the RL phase. In our im-
plementation, a peerj counts the number of peers without
reciprocation history within every rechoke period. Once the
count reduces by one in duration of three rechoke periods and
for two consecutive durations (i.e., six rechoke periods),peerj
switches to the continuous phase and begins to adopt the RL-
based strategy. Based on our experiments, peers switch from
the initialization phase to the continuous phase approximately
60 rechoke periods later in the flash-crowd scenarios and
approximately 36 rechoke periods later in the steady-state
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scenarios. However, different network settings might leadto
different durations of the initialization phase.

2) RL Phase:In the RL phase, the peer selection decisions
are made based on the RL policy every ten seconds (as in
regular BitTorrent). The selected peers will be unchoked for
a rechoke period of ten seconds. The minimum number of
unchoked peers is four. The number of unchoked peers can
increase if

(1) The peer that makes the peer selection decision does not
saturate its upload capacity, or,

(2) The upload bandwidth of the peer that makes the peer
selection decision is higher in comparison to most of the
peers it interacts with.

We compare the performance of the proposed protocol with
that of the regular BitTorrent implemented in the Enhanced
CTorrent client. The minimum number of unchocked slots in
the regular BitTorrent implementation is also set as four. The
number of slots can increase if a peer’s upload capacity is not
saturated. In this implementation, one unchoke slot is always
reserved for optimistic unchokes that are rotated every three
rechoke periods.

VI. EXPERIMENTAL EVALUATION

We perform extensive experiments on a controlled testbed,
in order to evaluate the properties of the proposed protocol.

A. Methodology

All of our experiments are performed on the Planetlab ex-
perimental platform [31], which utilizes the nodes (machines)
located across the globe. We execute all the experiments con-
secutively in time on the same set of nodes. Unless otherwise
specified, the default implementations of leecher and seed in
regular BitTorrent systems are deployed.

The upload capacities of the nodes are artificially set ac-
cording to the bandwidth distribution of typical BitTorrent
leechers [7]. The distribution was estimated based on em-
pirical measurements of BitTorrent swarms including more
than 300,000 unique BitTorrent IPs. Since several nodes are
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Fig. 8. Leecher download time

incapable to match the target upload capacities determinedby
the bandwidth distribution, we scale the upload capacity and
other relevant experimental parameters such as file size by
1/20th. However, we have not set limitations on download
bandwidth.

All peers begin the download process simultaneously, which
emulates a flash crowd scenario. The initial seeds have stayed
connected through out the entire experiment. To provide
synthetic churn with constant capacity, leechers disconnect
immediately after completion of downloading the entire video
file, and reconnect as new comers immediately while request-
ing the entire video file again. This enables our experimentsto
have the same upload bandwidth distribution for the duration
of the experiment.

Unless otherwise specified, our experiments host 104
Planetlab nodes, 100 leechers and 4 seeds with a combined
capacity of 128 KB/s, serving a 99 MB video file.

B. Experiment Results: Single RL Leecher in a Network

We start with the experiment where only a single leecher
adopts theRL-enhancedprotocol, while the rest of the leechers
in the network run with the regular BitTorrent, and there areno
free-riders in the network (note that this is a common scenario
that was tested by other proposed protocols such as [7], [32]).
Fig. 8 compares the download time of a single leecher, while
adopting theRL-enhancedprotocol and the regular BitTorrent
protocol as a function of the leecher’s upload capacity over7
trials.

In Fig. 8, as in [33] separate boxplots are depicted for
the different scenarios. The top and the bottom of the boxes
represent the 75th and the 25th percentile sample of download
time, respectively, over all 7 runs of the experiments. The
markers inside the boxes represent the median, while the
vertical lines extending above and below the boxes represent
the maximum and minimum of samples of download time
within the ranges of 1.5 time the box height from the box
boarder. Outliers are marked individually with “+” mark.

The results in Fig. 8 provide several insights into the
operation of our RL-based proposed protocol. High and
Low capacity leechers benefit from theRL-enhancedwith
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12%-27% improvement of their download time performance
as indicated by the median. This improvement provides
leechers with an incentive to adopt the proposed protocol.
Moreover, the RL-based strategy does not simply improve
performance; it also provides more consistent performance
across multiple trials. By selecting to unchoke peers basedon
historical behavior information, our proposed protocol avoids
the randomization present in the regular BitTorrent tit-for-tat
and optimistic unchoke implementations, which cause to
unstable peer selections and results in slow convergence.

Peer Selection Mechanism Stability We further study
the peer selection mechanism stability. The stability of the
peer selection mechanism affects directly the performance
of the system since once a peer starts to upload to another
peer it takes time till the peer reaches its full capacity. In
the BitTorrent protocol [6] the author suggests allowing 30
seconds for a peer to reach its full capacity. Thus, a system
that has a high fluctuation in peer selection will have many
occurrences of peers that do not reach their full capacity.

We compare the peer selection fluctuations of the two
protocols. A stable peer selection mechanism should minimize
the peer selection fluctuations. We measured peer selection
fluctuations by comparing the peer selection decisions during
two consecutive rechoke periods and measuring the difference
between the two decisions, e.g., replacing an unchoked peer
by a different peer counts as one change. Fig. 9 indicates the
average number of peer selection changes as a function of
time (rechoke period units) for a single peer. It shows that the
average number of peer selection changes is lower in theRL-
enhancednetwork for the majority of the time, with an average
of 2.1 changes in the regular BitTorrent network as compared
to 0.9 average changes in theRL-enhancednetwork. Thus, the
RL-enhancedpeer selection mechanism is more stable than the
peer selection mechanism in the regular BitTorrent, reducing
the peer selection fluctuations by an average of 57%.

Note that the optimistic unchoke mechanism contributes
about 1 change every 3 rechoke periods, thus contributing
an average change of about1

3 per time unit in the regular
BitTorrent network. Therefore, the decrease in optimisticun-
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Fig. 10. Download completion time for leechers.

chokes is not the main reason for the stability improvement of
the peer selection mechanism. Instead, replacing the tit-for-tat
mechanism, which relies on short-term history of associated
peers with the RL-based mechanism that relies on a long
history and performs foresighted unchoking decisions is the
main contributor for this stability.

C. Experiment Results: Performance of Leechers in Network
without Free-Riders

We compare a system consisting of all leechers adopting
the regular BitTorrent protocol, to a system consisting of all
leechers running inRL-enhancedmode, adopting the RL-
based strategy. In this section, we assume that there are no
free-riders in the network. Note that this experiment hosted
only 50 leechers. Fig. 10 shows the download completion
time of leechers. For each group of leechers having the
same upload capacity, separate boxplots are depicted for the
different scenarios.

The results show the clear performance difference among
high-capacity leechers, which are the fastest 20% leechers,
and low-capacity leechers, which are the slowest 80% leechers.
High-capacity leechers can significantly improve their down-
load completion time – leechers having the upload capacity of
at least 18kB/sec improve their download completion time by
up to 33% in median. Unlike in the regular BitTorrent system,
where leechers determine their peer selection decisions based
on the myopic tit-for-tat that uses only the last reciprocation
history, theRL-enhancedleechers determine their peer selec-
tion decisions based on the long term history. This enables
the leechers to estimate the behaviors of their associated peers
more accurately. Moreover, since part of the peer selection
decisions is randomly determined in the regular BitTorrent,
there is a high probability that high capacity leechers needto
reciprocate with the low-capacity leechers [7]. However, the
randomly determined peer selection decisions are significantly
reduced in the proposed approach, as the random decisions are
taken only in the initialization phase or in order to collectthe
reciprocation history of newly joined peers. As a result, the
high capacity leechers increase theie probability to reciprocate
resources with other high capacity leechers.
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This is confirmed in the results of Fig. 11, which shows the
unchoking percentage among the20% high capacity leechers,
comparing the two different systems. It is clearly observedthat
the collaboration among high capacity leechers improves when
leechers adopt the RL-based strategy. Thus, we can conclude
that the RL-based strategy improves the incentive mechanisms
in BitTorrent networks: as a leecher contributes more to the
network, it achieves higher download rate.

Recent studies [7]–[9], [19] show that the regular BitTorrent
protocol suffers from unfairness particularly for high capacity
leechers. In Fig. 12, we compare the upload rates and the
average download rates of the leechers. The ratio of these
values can indicate the degree of fairness in the system.
The results in Fig. 12 show that fairness is improved in the
RL-enhancednetwork, since high-capacity leechers increased
their download rate getting closer to their upload rate, in spite
of the restriction of limited seeds’ upload rate. On the other
hand, in theRL-enhancednetwork, the download rates of
low-capacity leechers decrease, getting close to their upload
rates by at most36%, compared to the regular BitTorrent
system. However, all the peers that are slowed down by the
RL-based strategy still download faster than their upload rate.

D. Experiment Results: Performance of Leechers in Network
with Free-Riders

In this section, we investigate how effectively the proposed
protocol can prevent selfish behaviors such as free-ridings.
Note that the RL-based strategy shows a similar performance
for the leechers that upload their content in a network that
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includes free-riders (i.e., shows the improved fairness, etc.).
Hence, in this section, our focus is on studying how the free-
riders are punished due to their selfish behaviors. Fig. 13 shows
the time that the free-riders complete downloading 99MB
video file in a network consisting of 50 contributing leechers,
and increasing number of free-riders (i.e., 5, 10, and 15 free-
riders). It compares the results of theRL-enhancednetwork
to the regular BitTorrent network. Fig. 13 confirms that in
the RL-enhancednetwork the leechers are able to effectively
penalize the free-riders, as it takes longer time for the free-
riders to complete their downloads (requires 8%-20% more
time as measured by the median, in comparison to the regular
BitTorrent protocol).

TheRL-enhancedleechers can efficiently capture the selfish
behaviors of the free-riders. Thus, they unchoke the free-
riders with a significantly lower probability. Hence, the free-
riders can download their content mainly from seeds and
not from the leechers. The results shown in Fig. 14 also
confirm that the leechers in the regular BitTorrent network
upload approximately 2.8-3.7 times more data to the free-
riders compared to theRL-enhancednetwork. This also shows
that theRL-enhancednetworks are more robust to the selfish
behaviors of peers than the networks operating with the regular
BitTorrent protocol. For example, in the network with 15
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free-riders, the leechers in the regular BitTorrent systems
upload 4.5% of their total upload capacity to free-riders, while
they only upload 1.6% of their total upload capacity in the
RL-enhancednetwork. Thus reducing by 64% their upload
capacity to free-riders.

Therefore, our experiment results confirm that the RL-
based strategy provides incentives for adoption because it
improves the peer’s download rate, improves the stability of
the peer selection mechanism, improves collaboration among
high capacity peers, improves fairness in the system, and
discourages non-cooperative behaviors such as free-riding.

VII. R ELATED WORK

A fairly large number of P2P architectures that support
distribution of multimedia over the Internet has been proposed
in the last years within the scientific community [34]–[38].
More specifically, BitTorrent, the protocol that dominatesthe
traffic on the Internet [1], has been highly influential in the
design and development of many other modern commercial
P2P streaming systems such as [4], [5], [39].

Extensive research has focused on modeling and analyzing
the performance of the BitTorrent systems, since the main
mechanisms and the design rationale of the BitTorrent protocol
were first described [6].

Qiu and Srikant [40] studied a fluid analytical model of
BitTorrent systems. They analytically studied the choking
mechanism and how it affects the peer performance. They
showed that the optimistic unchoke mechanism may allow
free-riding. They also claimed that the system with tit-for-tat
strategy eventually converges with a Nash equilibrium where
fairness is achieved and all peers download at their upload
capacities. However, as shown in our results, which are in
consistent with other existing works such as [7], [9], [19],[32]
the choking mechanism in BitTorrent may fail to attain fairness
for realistic swarms. Fanet al. [41] characterized the design
space of BitTorrent-like protocols capturing the fundamental
tradeoff between performance and fairness. We also study such
tradeoffs and show that the RL-based strategy improves the
fairness in the system for the cost of reduced download ratesof
low-capacity leechers. This encourages leechers to contribute
more resources (i.e., maximize their upload rate). Levinet
al. [32] propose an auction base model to model the peer
selection mechanism, claiming that BitTorrent uses auction to
decide which peers to unchoke and not the tit-for-tat as widely
believed.

Other researchers have studied the feasibility of free-riding
behavior; Shneidmanet al. [42] showed that it is possible
to free-ride in BitTorrent systems. They identified forms of
strategic manipulation that are based on Sybil attacks and
uploading garbage data. Liogkaset al. [12] implemented three
exploits that allow free-riders to obtain higher download rates
under specific circumstances. Locheret al. [13] with BitThief
extended this work by showing that free-riders can achieve
higher download rate, even in the absence of seeds. Similarly,
Sirivianos et al. [14] showed that a free-rider, which can
maintain a larger-than-normal view of the system, has a much

higher probability to receive data from seeds and via optimistic
unchoke. Our protocol replaces the optimistic unchokes, the
most important vulnerability identified in these studies, with
the RL-based policy based unchokes.

Fairness in BitTorrent systems was studied as well. Geoet
al. [9] showed the lack of fairness in BitTorrent systems. Piatek
et al. [7], observed the presence of significant altruism in
BitTorrent, where peers make contributions that do not directly
improve their performance. Izhak-Ratzin in [19] identifiedthe
potential lack of fairness and proposed the Buddy protocol
that matches peers with similar bandwidth. Legoutet al. [10]
studied clustering of peers having similar upload bandwidth.
They observed that when the seed is under provisioned; all
peers tend to complete their downloads approximately at the
same time, regardless of their upload rates. Moreover, high-
capacity peers assist the seed to disseminate data to low-
capacity peers. This can happen because the tit-for-tat strategy
is based on short-term history. A peer can benefit from the tit-
for-tat strategy only if it can continuously upload pieces and
as long as it receives pieces of interest in return. Piateket
al. [11] showed that this is not always possible, as peers can
have no piece to offer. Our work also considers the unfairness
in BitTorrent systems, and shows that the proposed approach
can improve the fairness by using a long-term history based
strategy.

In order to reduce free-riding and encourage collaboration,
various reputation systems have been proposed. Payment sys-
tems (e.g., [43], [44]), which enable peers to earn credits
according to their uploads to other peers have been proposed.
However, in practice these systems require a centralized entity
to prevent cheating, and thus, have arguably scalability limi-
tations. To overcome such weaknesses in payment systems,
various designs of reputation systems have been proposed
(e.g., [11], [15]–[17], [45]). In these systems, peers can
make choking decisions bases on private history as well as
globally shared history. However, these reputation systems
require significant communication overheads to maintain the
global history. Moreover, there is no guarantee that each peer
expresses the same behavior to different peers with different
attributes.

Other researchers have also acknowledged the importance
of contribution incentives in P2P systems and have proposed
different alternatives. Anagnostakiset al. [46] suggested to
extend the BitTorrent incentives ton-way exchanges among
rings of peers, providing incentive to cooperate. Piateket
al. [7] proposed the BitTyrant client, who applies a new
peer selection mechanism that reallocates upload bandwidth
to maximize peers’ download rates. However, whereas the
appearance of a single BitTyrant client in a BitTorrent system
reveals improving performance; in the case of a widespread
adoption the system performs a severe loss of efficiency [47].
Levin et al. [32] proposed the propshare client that rewards
other peers with proportional shares of bandwidth. They show
that the propshare client improves performance in a swarm
consisting predominately of BitTorrent peers. However, when
the majority of peers run with propshare clients there is no
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clear difference in performance in comparison to the regular
BitTorrent protocol.

In addition, all these systems relay on short-term history
aim to maximize the immediate utility but not the long-term
utility, which can show only suboptimal performance. To the
best of our knowledge, we are the first to propose the RL-based
strategy that can replace the existing mechanisms deployed
in BitTorrent protocol, while maximizing long-term utility of
participating leechers.

VIII. C ONCLUSION

In this paper, we propose a BitTorrent-like protocol that re-
places the tit-for-tat and the optimistic unchoke peer selection
mechanisms in the regular BitTorrent protocol with a novel
RL-based mechanism.

In our proposed protocol the evolution of the peers’ in-
teractions across the various rechoke periods are modeled as
repeated interactions in a game. During the repeated multi-peer
interactions, the peers can observe partial historical informa-
tion of associated peers’ reciprocation behaviors. Through this
the peers can estimate the impact on their future rewards and
then adopt their best peer selection action. The estimationof
the impact on the expected future reward is performed using
reinforcement-learning, as it allows the peers to improve their
peer selection mechanism using only knowledge of their own
past interactions, without knowing the complete reciprocation
behavior of the peers in the network.

Our experiment results show that our proposed protocol
improves the stability of the peer selection mechanism, im-
proves collaboration among high capacity peers, improves
fairness in the system, enhances the robustness of the network
by effectively discouraging non-cooperative behaviors such as
free-riding, and importantly improves the downloading rates
of the peers deploying the protocol.
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