
Towards an Efficient Algorithmic Framework for
Pricing Cellular Data Service

MohammadHossein Bateni∗ MohammadTaghi Hajiaghayi† Sina Jafarpour∗ Dan Pei‡

∗ Princeton University † University of Maryland, College Park ‡ IEEE Member

Abstract—As wireless service providers move from flat-fee
unlimited data plans to tiered usage-based ones, there has
been little published research on how such tiered plans should
be designed. In this paper, we tackle this problem from an
algorithmic perspective: formulating the problem of tiered data
pricing plans for a wireless provider, and proposing an efficient
algorithmic framework to compute the plans. Our algorithmic
framework can be applied to the usage and cost data of any
provider to obtain the pricing functions specific to that provider.

I. INTRODUCTION

As bandwidth-heavy mobile phones and applications be-
come more and more popular, cellular providers are investing
heavily on bandwidth increase and technology upgrade, and
encouraging WiFi and Femtocell traffic offloading. Another
important method to deal with this trend is to price the plans
to better reflect the cost to carry individual user’s traffic,
just like for other commodities such as electricity and water
where users are charged with higher rate for their heavy usage.
Some major U.S. wireless providers already started offering
usage-based tiered plans. Each of these plans has a monthly
allowance for a flat-fee and then a linear charge rate for the
extra usage beyond the allowance.

While this trend seems inevitable (with the assumption of
continuing wireless data usage explosion and the fundamen-
tal limitation of wireless spectrum capacity), there is little
published research regarding how tiered data plans should be
designed for wireless providers, The challenges include (1)
a trade-off between revenue increase and plan complexity as
previous studies such as [1] show that typical customers prefer
simpler plan structure, and are willing to pay more for flat-rate
unlimited pricing in general; (2) a trade-off between charging
heavy users more and offering them cheaper price per unit
traffic (economies of scale), reflected in convex vs. concave
pricing functions; (3) a trade-off between revenue increase and
customer’s tendency to switch to other providers; and (4) a
model framework and corresponding algorithms that output
the pricing plan based on empirical usage and cost data from
any given provider.

We tackle this problem by studying it algorithmically: we
formulate the problem of tiered data pricing for a wireless
provider, and propose an efficient algorithmic framework to
compute the plans. It consists of (1) a nonparametric Gaussian
mixture model for user usage; (2) a service cost function
for carrying a certain amount of usage of a customer; (3) a

general pricing function for improving the provider’s revenue
with the consideration of potential cutomer churn, and an
approach to simplify the general pricing function; and (4)
an efficient dynamic programming algorithm to compute the
pricing policies.

Based on a few months of anonymized actual user us-
age from a major US wireless provider, our nonparametric
Gaussian mixture model decomposes the actual data usage
into four lognormal distributions. We observe that the data
download usage strongly correlates with phone models. When
applied to the empirical usage data and synthetic cost data, our
proposed dynamic-programming algorithm finds the solutions
in a couple of minutes, fast enough to allow the providers to
experiment with different parameters.

To the best of our knowledge, this is the first paper propos-
ing an efficient algorithmic framework for studying wireless
data pricing policies. For wired Internet data pricing, there
are only a few explanatory and survey papers by Odlyzko [2],
[3], [4], [5], Reichl et al. [6], Wang and Li [7], and others [8].
We are not aware of any computationally efficient algorithmic
study to maximize the revenue of a provider; a recent work
of Iyengar et al. [9] proposes a probabilistic method for
inferring the cost function, though their algorithms are not
efficient. Furthermore, voice and data usage distributions are
quite different, and our framework considers heavy data user’s
impact on the network and other users, since data traffic
typically has much higher bit rate than voice and is more likely
to cause network congestion due to the fundamentally limited
wireless spectrum capacity.

II. USAGE MODEL

We start by analyzing the current customer usage, which is
an important factor for pricing. In addition to data usage, we
also study voice usage for comparison purposes. Let U denote
the set of different usage values. In general it may be simply
R+, but in most practical applications one can assume U to be
the set of nonnegative integers less than a large limit Umax. We
define a usage function σ : U 7→ N that specifies the number
of customers having a particular usage. The anonymized usage
data were collected for a few months during which customers
had unlimited flat-rate data plan.

A. Mixture models

We gather the usage data of several million users over sev-
eral months in 2010. For purposes of analyzing large datasets,
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it is useful and intuitive to understand the mathematical model
behind them. Here we use a generative probabilistic approach.

In the Gaussian mixture model, each data point di is sam-
pled i.i.d. from a collection (also called mixture) of Gaussian
distributions: ∀i ∈ {1, . . . , N} : di ∼

∑n
j=1 ωjN (νj , σj),

where
∑n

j=1 ωj = 1 and ωj ≥ 0 for 1 ≤ j ≤ n. In case n is
not known a priori, this parameter can also be learned from
the data set. The nonparametric distribution models [10] are as
follows: ∀i ∈ {1, . . . , N} : di ∼

∑
j≥1 ωjN (νj , σj), where∑

j≥1 ωj = 1 and ωj ≥ 0 for j ≥ 1.
Nonparametric mixture models have the advantage that the

number of mixture components n does not need to be known
a priori. However, unless some prior restriction is imposed on
the component weights (ωj)j≥1, the learned weight vector can
be dense, causing the overfitting problem1. Latent Dirichlet
Allocation (LDA) [11] is the simplest nonparametric approach
that learns the most probable weight vector (ωj)j≥1 under
the prior assumption that the sequence is sampled from a
Dirichlet distribution. A Dirichlet distribution is a distribution
over distributions such that sparser distributions have higher
probability density.

After gathering the data for the usage of the customers,
we learn the parameters n and ωj , νj , σj for j = 1, . . . , n.
This can be done efficiently via the Expectation Maximization
Algorithm (EM) [12], empowered by variational inference
methods [13]. We use the “lda” variational inference pack-
age [14] to infer the mixture model. Moreover, we only
consider the Gaussian components with ωj ≥ 0.05.

B. Experimental data
Our experimental analysis illustrates that the usage data,

when considered in logarithmic scale, can be modeled with
a good precision by a few Gaussian distributions. Different
Gaussian distributions suggest that the users belong to different
categories: e.g., those who watch movies on their cell-phones,
those who browse the web, and those who only read emails.
We analyze and compare the distributions of the download,
upload, and voice usages separately:

Download usage: Here the provided download usage of
the users (in logarithmic scale) is used to learn a nonpara-
metric mixture model. Moreover, motivated by the empirical
frequency statistics of the data, we also include an explicit
constraint, requiring that the learning algorithm has to learn at
least one component in each interval [0, 4), [4, 7), and [7, 11).

Fig. 1 illustrates the learned model. The decomposition
of the mixture model into its four components provides the
following clustering of the users:

• Light users: The Gaussian components concentrated at
2.63 represents light users, e.g., those who only read
emails.

• Medium users: The overlapping Gaussian components
centered at 4.53 and 6.28 correspond to medium users,
e.g., those who browse the web. These two components
have heavy tails, and form the majority of the users.

1In the extreme case, every data point di can be learned as an individual
Gaussian cluster.

2.63 4.35 6.28 8.22

Fig. 1: Distribution of the logarithm of download usage data
is modeled as a mixture of four Gaussian distributions. The
numbers on the x-axis do not correspond to any natural usage
value.

• Heavy users: The largest Gaussian component, centered
at 8.22, represents heavy users, e.g., those who watch
movies on their smart phones.

We also found that the data download usage, not surpris-
ingly, strongly correlates with phone models.

Upload and voice usage: A similar analysis for upload us-
age leads to four lognormal components, although these com-
ponents are closer to each other. Voice usage is a completely
different story: it has only one lognormal distribution since
typical customers do not belong to different behavioral groups
according to their voice usage. Furthermore, we observe no
correlation between voice usage and phone models.

III. COST MODEL

Our basic cost model is that the wireless service provider
spends φ(x) dollars to serve x amount of data usage to a
customer. We assume that the service cost function, φ, is
an increasing function. In this section, we first present our
conjecture on how the cost function might look purely based
on the public plan information and some networking intuition.
Obtaining an accurate cost function is often impossible due to
its proprietary and sensitive nature, and is beyond the scope
of this paper. In addition, the cost fucntion is affected in
reality by so many parameters that the existence of a closed
mathematical form for it is unlikely.

We then show that the cost function can be approximated
and be specified by a small collection of threshold functions
with very small error.

A. Model for Cost Function

This section presents our conjectured service cost function,
which is an input to our pricing algorithm. The output of
our algorithm changes as the cost function changes, but
the algorithm itself remains the same. A wireless provider,
equipped with its own actual cost function, can apply our
algorithm to compute its pricing plans.

Our conjectured cost function model has two basic un-
derlying assumptions: (1) the more total monthly usage a
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Fig. 2: Conjectured Service Cost Function Model

user has, the more likely the user can cause the network
congestion since its average traffic rate is higher; and (2)
when the network is congested, the cost to carry an additional
byte is higher than that for lightly-loaded condition. When the
network load is light (e.g., only a few light users connected
to a wireless base station), a small number of additional
bytes will not cause other user performance to degrade. In a
congested network, additional bytes (especially a large number
of bytes) are more likely to cause the network to reach its
capacity limit (fundametally limited by wireless spectrum),
and thus degrade other users’ performance. This may lead
to the provider’s revenue loss both in the long term (e.g.
reputation) and in the short term (e.g., more operational cost
to deal with congestion). Therefore, in the context of avoiding
an extremely heavy user to degrade the network performance,
maximizing a provider’s revenue is to some extent aligned
with improving the performance of the majority of the users.

With the above assumptions, we thus postulate that cost
function has a concave part followed by a convex portion
with four linear segments, illustrated in Figure 2. (1) Each
user has an upfront cost regardless of his usage, to pay for
maintaining his account. (2) There is a control plane cost for
setting up and maintaining the data or voice sessions regardless
of traffic rate and session duration. (3) Therefore, the cost per
byte for low total usage is relatively high. The data plane
cost per byte is lower than that of the control plane when
the network is not congested. (4) Some extremely heavy users
whose traffic is beyond a large threshold tend to constantly
have their data sessions on to upload and download data and
cause the network and other user’s experience to significantly
degrade, and with the two assumptions we have above, the
cost to carry their additional traffic beyond the threshold is
higher than the middle part.

B. Simplifying the cost function

We say that a function f : U 7→ R is approximated by
g : U 7→ R to a factor 1+ε if f(x) ≤ g(x) ≤ (1+ε)f(x) for all
x ∈ U . For the following two reasons, we try to approximate
the usage cost, as well as the price function (to be introduced
later), using a collection of simple functions.

1) As a pricing function, for instance, such functions are
easier to describe. As shown in previous studies such

as [1], customers look for plans that they can easily
understand. Giving them a continuous function for de-
termining the price is neither feasible nor reliable.

2) It is simpler to work on discrete functions. Later in
the paper, we use the dynamic programming technique
to find the pricing function. Although most of the
discussion applies equally well to continuous functions,
it is more convenient to approximate the usage function
with small error, and use the simpler function in the
algorithm.

We consider threshold functions as the primitives for this
approximation. Let us define τ(u,p) : U 7→ R such that
τ(u,p)(x) = p if x ≤ u and it takes value ∞ otherwise. In
terms of pricing functions, threshold functions correspond to
simple plans in which a customer pays a fixed price after which
he may use up to a fixed amount from the service.

The following theorem shows how to approximate any
increasing function via a small number of threshold functions.

Theorem 1. Any increasing function f : U 7→ [L,R] (where
0 < L < R) can be approximated to a factor 1+ε by f∗(x) =
mink

l=1 τ(ui,pi)(x), where k =
⌈
log R

L / log(1 + ε)
⌉
.

In the rest of the paper, we assume that the service cost
function φ is approximated by a small collection of threshold
functions. The error parameter ε is less than 0.01.

IV. PRICING ALGORITHMS

In this section, we first formulate the pricing problem as
a revenue optimization problem with the consideration of
potential customer churn. Note that our problem formulation
is based on a variety of assumptions, which may not reflect
the actual experience of service providers. As a result, the
theoretical solutions provided in this paper may not be the
right choices in practice. Thus, we do not claim any optimality
of our algorithms. We then consider user behavior changes in
the face of new pricing plans. Finally, we present the dynamic
programming algorithm to compute the threshold functions
for pricing and further approximate the pricing function with
a few quasi-linear pricing policies.

A. Formulating Pricing Problem

The service provider announces a price function π : U 7→ R
to its customers. A customer with usage x then pays π(x)
to the service provider. In general, the price function can be
any increasing nonnegative function. However, we look for
functions that

• are increasing and nonnegative;
• can be easily explained to the customers; and
• are within a tolerance factor of the service cost function

φ.
The tolerance parameter α ≥ 1 is a hypothetical factor to

model potential customer churn. We assume that a customer
switches to another provider if and only if his charge is more
than α times the service cost in the current provider. This is
merely a conjecture of customer behavior, and is not based on
any real data.
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Theorem 1 ensures that any price function can be approx-
imated by a series of threshold functions. Thus we assume
the solution is described in this form. In fact, we first propose
an algorithm that finds the best such pricing that consists of a
relatively small number of threshold functions. Later, we show
how to make the pricing even more compact without losing
much in the revenue. Each of these threshold functions can
be thought of as one available voice/data plan. A fixed usage
may be charged differently in different plans since some plans
are suitable for heavy users, and some plans are good for light
users. Each customer selects a plan that suits his needs best.
If it turns out that his need was more than his estimate, as
discussed above, it is usually possible to go to the higher plans
without paying a penalty. A customer does not have complete
flexibility to change his plan every month, but he will move to
the right plan pretty soon, hence we assume that each customer
is paying the minimum possible price in the long term.

The provider knows the usage function σ : U 7→ N,
the service cost function φ : U 7→ R, and the tolerance
parameter α ≥ 1. It also fixes a parameter M of how many
threshold price functions is desirable. The goal is to find such a
pricing that maximizes its revenue. In the simplest case (called
“passive customers” case), after the price function is fixed, a
customer with usage x picks the best plan for herself, and thus
pays π(x). The revenue is then

∑
x∈U σ(x)[π(x) − φ∗(x)],

where φ∗ denotes the actual service cost for the provider.
This function is hard to compute although we will provide
a conjecture in the next section. For the passive customers
setting, φ∗ is irrelevant in the maximization objective since
its total contribution is constant if we require not to lose any
customers. Then, we can only try to optimize the first portion
of the objective, i.e.,

∑
x∈U σ(x)π(x). However, in the more

realistic model described below, we need to consider a more
general revenue function, and we cannot just focus on the first
term.

B. Considering Customers’ Response

We have an estimate of the customers’ usages based on
historical data, denoted by the frequency function σ : U 7→ N.
However, common sense has it that customers’ usage behavior
changes in the face of new pricing plans. In our formulation,
σ and the price function π result in a modified usage function,
denoted by σπ : U 7→ N. In what follows we devise a model
for this behavior based on our conjecture (not based on actual
data), in the responding customers setting. Suppose a customer
originally has usage x, and the two closest threshold functions
to x in price function π are τ(u1,p1) and τ(u2,p2) such that
u1 < x ≤ u2. We say that τ(u2,p2) is the “normal” plan the
customer should join. Yet, either of the following situations
may occur in practice.

• Frugality: If x � u2, the customer may feel that his
“normal” allowance is more than his needs, he may opt
to join the lower plan, τ(u1,p1), and reduce his usage to
u1.

• Expansiveness: In case the customer does not switch to
the lower plan, though, he may feel that he is paying

for a usage u2 rather than x. As a result he may have a
tendency to use more service, say x′ ≤ u2.

We postulate that a customer with usage x, regardless of her
identity, when given two pricing plans with allowances u1, u2,
behaves like a probability distribution δ(x,u1,u2) over {u1} ∪
[x, u2]. We conjecture that

• the distribution has a spike at u1 and is smooth on the
rest of the support;

• δ(x,u1,u2)(u1) decreases as x increases;
• δ(x,u1,u2)(u1) increases as u2 increases; and
• δ(x,u1,u2)(x

′) decreases as x′ ≥ x increases.
The general revenue function is thus

∑
x∈U σπ(x)[π(x) −

φ∗(x)], for which the second term depends on π, and cannot
be removed from the optimization problem. The algorithms
in the next section can be extended to work for any polyno-
mially computable class of probability distributions δ(x,u1,u2),
however, for simplicity in the rest of the paper we focus on
one in which each customer joins the lower plan with a fixed
probability q. A more extensive analysis of the customers’
behavior is deferred to future work.

C. Pricing via dynamic programming

We use a dynamic-programming (DP) technique to find
the pricing with only M threshold function components. For
x, x′ ∈ U and 0 ≤ µ ≤ M , define A[x, x′, µ] as the
maximum revenue we can obtain with µ price threshold
functions from customers with usage less than x such that
the last threshold is p′ = αφ(x′); notice that this function has
the potential of attracting customers with usage from [x′, x).
We give a recursive formula to compute this quantity for all
possible values. Then, the final solution to the instance can
be found from maxx′ A[∞, x′,M ]. We assume for simplicity
that ∞ ∈ U , and σ(∞) = 0.

In order to compute the value of A[x, x′, µ], we guess
x′′ ∈ U that is the low end of the next-to-last interval, i.e.,
the second-highest price function has value p′′ = αφ(x′′). The
last two threshold function are τ(x′,p′′), τ(x,p′). The revenue has
two components. One component, that accounts for customers
with usage less than x′, comes from A[x′, x′′, µ−1]. The other
component deals with customers with usage from [x′, x). A
customer with usage y in this range ends up with usage x′

with probability q, joins the lower plan, and pays αφ(x′′) and
incurs a cost of φ(x′) on the network. With probability 1− q,
though, this customer does not change her usage, pays αφ(x′),
and incurs a cost of φ(y) on the network. Hence, we earn∑

y∈[x′,x)

σ(y) {q [p′′ − φ(x′)] + (1− q) [p′ − φ(y)]} (1)

from the last plan, and the problem reduces to A[x′, x′′, µ−1]
as previously mentioned.

For simplicity, without loss of generality, we assume that
the usage values are nonnegative. Then, we augment U and σ,
so that {0} ∈ U , and σ(0) = 0. Let umin := minx∈U−{0} x.
Then we do the initialization for the DP at x = umin, x′ = 0.
We set A[umin, 0, µ] = 0 for all µ, and use (1) to fill the DP
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table. Standard techniques allow us to find the corresponding
pricing function.

Theorem 2. There is an algorithm that computes A[x, x′, µ]
for all x, x′ ∈ U and 0 ≤ µ ≤ M ; the algorithm runs in time
O(|U|3M).

D. Final pricing
So far we have shown that the price function can be closely

approximated using threshold functions, and then the total
revenue can be further improved if a sufficiently large number
of thresholds are selected. However, in order to present the
plans to customers, the pricing policy should be reduced to
a few simple functions. Here we approximate the threshold
price functions by a piecewise linear function, composed of
four linear pieces in the following way.

Define (x)+ := max{x, 0}. Then any piecewise smooth
function can be written as f(x) = a+ bx+

∑
i≥0 ci(x−θi)+,

where ∀i : θi ≤ θi+1. Note that the starting point of the ith

component is θi, and its slope is b+
∑

j≤i cj . In order to make
the function appropriate for pricing, we impose the following
constraints to the family of piecewise linear functions.

• Without loss of generality, we assume b = 0 by allowing
θ1 to be zero.

• We restrict ourselves to four-wise linear functions:

f(x) =a + c1(x− θ1)+ + c2(x− θ2)+
+ c3(x− θ3)+ + c4(x− θ4)+.

• The price function should be positive and increasing, i.e.,
a ≥ 0 and d1, . . . , d4 ≥ 0 where ∀j : dj =

∑j
j′=1 cj .

• In order to assure that the price function combines con-
cave and convex pricing functions, we explicitly impose
the requirement c2 ≤ 0, c3 ≤ 0, and c4 ≥ 0.2

Therefore, we define the family of valid piecewise-smooth
functions as

F :=

f(x) = a +
4∑

i=1

ci(x− θi)+ :
a, c1, c4 ≥ 0
c2, c3 ≤ 0
∀j : dj ≥ 0

 .

Let 〈(T1, Y1), . . . , (TM , YM )〉 be the M threshold and price
values output by the algorithm. For every f ∈ F , define the
square-loss of f as L(f) := 1

M

∑M
i=1 |Yi − f(Ti)|2. Here

we use regression [12] to find a function that minimizes the
square-loss:

minimizef∈FL(f). (2)

As the loss function of Eqn. (2) is nonconvex, we use the
simulated annealing [15] method to approximate its optimal
solution. Simulated annealing is an iterative local search
method that repeatedly updates the current solution by a
random solution which is sufficiently close to the current
solution. The update probability is

min
{

1, exp
[
−L(fn)− L(f0)

T

]}
,

2This condition is only for the concave-convex modeling motivated from
the existing price functions. In case a new model is proposed, the condition
needs to be modified accordingly.

where f0 is the current solution, fn is the next solution, and T
is a global (temperature) parameter, that is gradually decreased
during the process. It has been proved that the simulated
annealing algorithm converges to the global optimum of the
cost function [16]. In this paper we implemented the algorithm
with 107 iterations.

V. CONCLUSIONS AND FURTHER WORK

Finally we summarize our findings.
• The logarithm of (data and voice) usage of the customers

can be modeled via a mixture of Gaussian model with a
few components.

• The usage, especially for the data download, is highly
correlated with the phone make and model since this
specifies the type of service the customers demand:
whether they only read emails, browse the web, or watch
video clips, for instance.

• We seek price functions that are simple to describe, e.g.,
threshold functions, or piecewise linear functions.

• Customers may change their usage when faced with a
new set of plans. We propose a model for this behavior.

• The threshold price function can be found via dynamic
programming.

• From the thresholds, we can obtain a much more concise
piecewise linear price function.

For future work, we plan to conduct systematic analysis on
the impact of potential customer churn.
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