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Abstract—While virtual machine (VM) migration is allowing
data centers to rebalance workloads across physical machines,
the promise of a maximally utilized infrastructure is yet to be
realized. Part of the challenge is due to the inherent dependencies
between VMs comprising a multi-tier application, which intro-
duce complex load interactions between the underlying physical
servers. For example, simply moving an overloaded VM to a (ran-
dom) underloaded physical machine can inadvertently overload
the network. We introduce AppAware—a novel, computationally
efficient scheme for incorporating (1) inter-VM dependencies
and (2) the underlying network topology into VM migration
decisions. Using simulations, we show that our proposed method
decreases network traffic by up to 81% compared to a well known
alternative VM migration method that is not application-aware.

I. INTRODUCTION

Virtualization has become an indispensable practice in the
design and operation of modern data centers. By packaging
applications into virtual machines (VMs), virtualization de-
couples the deployed applications from the physical servers—
allowing administrators to migrate or reshuffle VMs to accom-
modate workload spikes and/or resource shortages [1]. When
deploying multi-tier enterprise applications, straightforward
reshuffling can introduce undesirable effects on the underlying
infrastructure, due to the inherent coupling between VMs that
comprise the multi-tier application. For example, migrating a
database VM that communicates with an application server
VM may increase traffic on certain links of the underlying
data center network.

Most current approaches (e.g. [2], [3], [4], [5]) to VM
migration primarily consider only server-side constraints (such
as CPU, memory, and storage capacity) when choosing the
new physical location for an overloaded VM, while interde-
pendencies and inter-communication patterns among VMs are
overlooked. A recent proposal [6] for VM placement considers
network traffic among virtual machines but it does not attempt
to simultaneously accommodate server resource constraints.

In this paper, we propose application-aware virtual machine
migration, where the complete application context running
on top of the VM is considered when choosing the most
appropriate physical server to host that virtual machine. Our
novel VM migration algorithm—called AppAware— takes into
account the measured (real-time) communication dependencies
among VMs of a multi-tier enterprise application, the under-
lying data center network topology, as well as the capacity

limits of the physical servers of the data center. The goal is
to minimize the data center network traffic while satisfying all
of the server-side constraints. Our preliminary performance
evaluation results show that the proposed method decreases
network traffic by up to 81%, when compared to existing
approaches.

This paper is organized as follows: in Section II, we describe
a formalization of the joint network- and server-aware VM
migration problem. In Section III, we propose efficient mecha-
nisms to determine the mapping between virtual machines and
physical servers while accounting for the application context
of VMs. We evaluate our mechanisms using simulations in
Section IV. We finally describe related work and our conclu-
sions in Sections V and VI, respectively.

II. PROBLEM FORMULATION

Let the set of virtual machines in the data center be
represented by V = {V1, V2, V3, . . . , Vn} and the set of
physical machines by P = {P1, P2, P3, . . . , Pm}. The
set of overloaded virtual machines is defined as O =
{V1, V2, V3, . . . , Vk}, such that O ⊂ V .

Assume that the data center administrator can obtain a
dependency graph, G = (V,E), where V is the set of
virtual machines and E is the set of edges defined as E =
(Vi, Vj) : Vi, Vj ∈ V c, such that Vi and Vj are dependent with
each other if any communication takes places between them.
We further define traffic demand for each edge W (Vi, Vj),
which is directly proportional to the traffic transferred between
Vi, Vj .

Next, we define Load(Vi) as the vector of CPU, memory
and storage load requirements of virtual machine Vi.
Further, Capacity(Pi) is defined as the available server-
side capacity on physical machine Pi regarding its CPU,
memory and storage. We define the cost of migrating
virtual machines Vi, Vj to physical machines Pk, Pl as
Cost(Vi, Pk, Vj , Pl) = Distance(Pk, Pl) × W (Vi, Vj).
Distance(Pk, Pl) is defined as the latency, delay or number
of hops between physical machine Pk, Pl. Finally, we define

Xik =

{

1 if Vi is assigned to Pk

0 otherwise

}

(1)

Hence, Xik is 1, iff virtual machine Vi is placed on physical
machine Pk . Similarly, we define Xjl

ik = Xik ∗ Xjl. This
way, Xjl

ik is 1, iff virtual machines Vi, Vj are located on
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physical machines Pk, Pl, respectively. Now the optimization
framework is defined as:

minimize
∑

A

Cost(Vi, Pk, Vj , Pl)×Xjl
ik, (2)

where A is defined as A = {(i, j, k, l)|i < j, k < l, j <
|V |, l < |P |}. Equation 2 tries to minimize the overhead
of virtual machine migration, which will try to place the
dependent virtual machines close to each other in the data
center topology. Additionally the following constraints must
be satisfied:

|P |
∑

k

Xik = 1, ∀i , Vi ∈ O (3)

This equation dictates that each overloaded virtual machine
Vi must be placed on at least one physical machine Pk . As
a sanity check to force the variable Xjl

ik to take a value of
1 when both virtual machine Vi, Vj are placed on physical
machines Pk, Pl; thus, the following must be satisfied:

Xik+Xjl ≤ 1+Xjl
ik, ∀(i, j, k, l) , Vi, Vj ∈ O,Pk, Pl ∈ P (4)

Furthermore, we need to force the indicator variables to take
binary values. This is important as virtual machine migration is
itself binary in nature, meaning that any given virtual machine
can only reside on one physical machine at a time. Thus,

Xjl
ik, Xik ∈ 0, 1 (5)

To ensure that the total load on any physical machine is
greater than or equal to its capacity, the following must hold:

|V |
∑

i

Loadi ×Xik ≤ Capacityk, ∀k , Pk ∈ P (6)

Finally, the following must also hold:

Xik = xik, (7)

where xik are existing assignments of non-overloaded VMs.
This constraint states that the virtual machine to physical
machine assignment is already fixed for those virtual machines
that are not overloaded. Removing this constraint will reduce
this optimization problem into an initial virtual machine place-
ment problem.

III. APPLICATION-AWARE VM MIGRATION

The problem of migrating VMs as formulated in Section II
is a variant of the multiple knapsack problem, which is NP-
complete [7]. Due to space considerations, we omit the proof
in this paper. However, a simpler formulation that does not
consider server-side constraints has been shown to be NP-
complete in [6].

We propose AppAware, an approximate solution to this
NP-complete problem. AppAware is a greedy algorithm with
heuristics for assigning VMs to physical machines one at a

time, while trying to minimize the cost that results from the
mapping at each step. It takes into account both application
dependencies and network topology. We describe AppAware
over four stages: (1) the base algorithm, (2) the incorporation
of application dependencies, (3) the extension with topological
information and server load, (4) two extensions that further
refine the selection process.

Base Algorithm. The base procedure for AppAware is shown
in Algorithm 1. It accepts as input the dependency graph
G , W (Vi, Vj) as defined in Section II. The weights, W ,
are obtained from measuring the volume of traffic transferred
between any two VMs. The algorithm also takes as input the
network diameter Distancemax of the network topology of
physical machines, and an existing mapping C : V → P ,
where C(Vi) is the physical machine where the virtual ma-
chine Vi currently resides. Also, the migration set M =
(Vi, Pk) indicates that VM Vi should be migrated to physical
machine Pk; it is initialized to ∅.

For each overloaded virtual machine, the total communica-
tion weight TW (Vi) of all its incoming edges is computed
as TW (Vi) =

∑

∀Vj∈V W (Vj , Vi), ∀Vi ∈ O, where O
denotes the set of overloaded VMs. The overloaded virtual
machines are then sorted in descending order of their TW (Vi).
Moreover, for each overloaded virtual machine Vi, we define
the set of its dependent VMs1 as D(Vi) = {Vj : (Vj , Vi) ∈
E, Vj )∈ O}, which is derived from the dependency graph G.

The base algorithm (Algorithm 1) finds the most suitable
target physical machine and proceeds as follows: for each
overloaded virtual machine Vi from the ordered set and
for each physical machine Pk, the migration impact factor
is calculated Impact(Pk) = compute impact(Vi, Pk). The
migration impact factor represents a measure of the overhead
that will be incurred upon moving virtual machine Vi to
physical machine Pk. The algorithm selects as candidate
destination for migration the physical machine Pk that satisfies
all server constraints (CPU, memory, disk capacity limits,
software licensing constraints, pinning requirements, security
zone limitations, etc.) and for which the migration impact
is minimized. The migration decision procedure is repeated
until a mapping has been identified for all overloaded virtual
machines or no other mappings can be found.

Incorporating application dependencies. The pseudo-code
of procedure ComputeImpact Simple(Vi, Pk) incorporates
information regarding application dependencies by calculating
the Cost(Vi, Pk, Vj , C(Vj)) for every VM Vj that belongs to
the set of application dependencies D(Vi) of the overloaded
VM Vi that is being considered for migration to candidate
physical machine Pk. This cost depends on the weight of
communication between the two VMs Vi and Vj (for exam-
ple, volume of traffic exchanged between the VMs) and the
network distance (e.g., latency, number of hops, etc.) between

1We consider the dependent VMs that are not overloaded, as these will not
be relocated by the execution of the algorithm, thus the migration impact will
be independent of future relocations (mappings).
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Algorithm 1 Algorithm for virtual machine migration
INPUTS: Virtual machines (VMs) V = {V1, V2 . . . Vn},
Physical machines (PMs) P = {P1, P2 . . . Pm}

Overloaded VMs O ⊂ V , VM Load Load(Vi), PM
capacity Capacity(Pk)

Mappings C : Vi → Pk, Vi ∈ V and Pk ∈ P ,
Dependency graph G = (V,E) with weights W

Network distance Distance(Pk, Pl)
for each VM Vi in O

TW (Vi) =
∑

∀Vj∈V W (Vi, Vj)
end for
sort Vi ∈ O in decreasing order of TW (Vi)
M → ∅ // migration set
for each VM Vi in O

Impactmin = inf , Indexmin = −1
for each PM Pk in P
if check server constraints(Vi, Pk) == false

continue;
end if
Impact(Vi, Pk) = compute impact(Vi, Pk)
if Impact(Vi, Pk) < Impactmin

Impactmin = Impact(Vi, Pk)
Indexmin = k

end if
end for
if Indexmin )= −1

M = M ∪ (Vi → Pk)
Update capacities of source & destination PMs
O = O − Vi

else
No PM found for Vi; continue

end if
end for

Algorithm 2 Heuristics for estimating migration impact
Require: ComputeImpact simple(Vi, Pk):
Impact =

∑
∀Vj∈D(Vi)

Cost(Vi,Pk,Vj ,C(Vj))

Distancemax×Wmax

return Impact

Require: ComputeImpact topo load(Vi, Pk):
Impactcurrent = ComputeImpact simple(Vi, Pk)

Impacttopology =
∑

∀Pl∈P Distance(Pk ,Pl)×Load(Pl)

Distancemax×|P |
Impact = Impactcurrent + Impacttopology
return Impact

the physical machine Pk that is a candidate destination for Vi

and the current physical host C(Vj) of the dependent VM Vj .

Adding topological information and server load. So far we
do not consider the topology of the physical machines that are
candidates for migration, or their load (CPU, memory, etc.).
Such information can be useful for making migration deci-
sions, as a physical server that is “close” (in the topological

Variable Distribution Mean Var.
Demand(VM) Normal 0.4, 0.3, 0.2 0.3, 0.2, 0.1
Capacity(PM) Normal 0.8, 0.6 0.4, 0.3, 0.2

Edges(VM Normal, Exp, 0.8, 0.5, 0.4 0.2
comm. dependencies) Uniform 0.2

# of VMs 5-12, 20-240
fraction of

overloaded VMs 0.1, 0.4
# of PMs 7-10, 100

Architecture(PM) Tree, VL2
Algorithms AppAware

Sandpiper
TABLE I

PARAMETERS FOR SIMULATIONS

sense) to other lightly loaded servers would be preferred as a
destination for a VM due to its potential for accommodating its
dependent VMs to servers in close proximity. This intuition is
captured in the method ComputeImpact topo load(Vi, Pk)
of Algorithm 2, which incorporates into the estimation of
migration impact the weighted (by server load) node centrality
of the candidate destination physical machines.

Further extensions: iterative refinements. We have im-
proved the above application- and network-aware algorithm
by implementing two additional extensions that produce map-
pings that further minimize the traffic that is transferred by the
data center network: the first extension involves the calculation
of multiple values of the migration impact over several itera-
tions of the algorithm. Each iteration tries to further minimize
the migration impact upon the mapping that was calculated
from the previous one and this extended algorithm stops either
when the marginal reduction in the total migration impact is
smaller than a predefined threshold, or a maximum number of
iterations has been reached. The second extension improves
upon the previous one by considering the expected migration
impact of future mappings of other VMs, for a given candidate
destination PM at each iteration.

IV. EVALUATION

We evaluate the efficacy and scalability of application- and
network-aware migration schemes on simulated data center
environments of various sizes. We focus on the following
questions: (1) How well do our proposed mechanisms select
physical servers for migration? How close do they get to
the optimal solution? (2) What is the performance of our
mechanisms under varying demand and capacity patterns?
(3) What is the impact of data center topology on different
mechanisms?

We use numerical simulations to answer the above ques-
tions. Our intention is to compare the quality of the virtual
to physical machine (VM-to-PM) mappings generated by Ap-
pAware against the one calculated with the optimal solution.
Since the ultimate goal is to minimize traffic in the data center
network, we use this metric as representative of the quality of
VM-to-PM mappings, which, at the same time, have to satisfy
all server-side constraints (i.e. total load of VMs assigned to a
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Fig. 1. Scatter plots for the final objective value achieved by (a) AppAware
and (b) Sandpiper as compared with the optimal.
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Fig. 2. Reduction in data center network traffic volume achieved using
AppAware over Sandpiper: (a) CDF over large topologies (100 physical
machines and up to 240 virtual machines) and (b) as a function of new VMs
to be migrated.

PM should be less or equal to the capacity of that PM). That
said, finding the optimal solution for large physical and virtual
topologies (i.e., topologies with a large number of physical and
virtual machines) is infeasible as the solver (CPLEX) that was
used for computing the optimal solution runs out of memory.
In the following, we report the results obtained by solving
the optimal solution only for small networks, while for large
topologies, we compare AppAware with a previously proposed
migration scheme called Sandpiper [3].

Simulation Setup. We generated a range of scenarios for
our simulations that includes varying the number of physical
machines for the data center network topologies, varying the
number of virtual machines and the interdependencies amongst
them that represents various application topologies, as well
as varying the load characteristics of the PMs and VMs.
The simulation parameters are noted in Table I. The numbers
of physical and virtual machines are limited to 10 and 12
respectively for small topologies, for which we manage to
calculate the optimal mappings. For larger topologies (for
which we only compare AppAware and Sandpiper), we fix
the number of physical machines to 100, while we vary the
number of VMs from 20 to 240, in steps of 20. In our
simulation scenarios, the parameter “fraction of overloaded
VMs” denotes the percentage of the VMs that would require

migration from their initial mapping to some other physical
machines. Two cases where investigated, 10% and 40%. The
distance between physical machines is dependent on the
architecture and is computed as shown in [6]. We use Tree
architecture [8] to compute the distances between physical
machines, unless stated otherwise. Overall, we ran simulated
experiments for 866 scenarios for small topologies and 3132
scenarios for the large ones, in various combinations of the
values of the parameters of Table I.

Comparison Metrics. As mentioned above, the metric used
for the evaluation of AppAware is the total traffic volume that
is transported by the data center network once all overloaded
VMs have been assigned to physical machines using one of
the methods. Both the absolute form of the metric (objective
value), as well as the relative reduction in traffic that is
achieved when comparing AppAware with Sandpiper are used.

Results. Figure 1 shows the performance of AppAware (in-
cludes all extensions) and Sandpiper as compared to the
optimal solution, for a large number of experiments with
various configurations. As shown in the Figure, the AppAware
algorithm manages to find mappings that are very close to
those computed optimally (the “dots” fall very close to the op-
timal y = x line in the Figure). On the other hand, Sandpiper,
which does not take into account application dependencies,
performs much worse, as evident by how far from the optimal
its mappings fall.

Figure 2(a) shows results with experiments with much larger
topologies and number of VMs, for which computing the
optimal solution was not feasible. It plots the cumulative
distribution function of relative reduction in traffic achieved by
AppAware over the Sandpiper algorithm, for 3132 simulated
experiments. As it can be seen from the Figure, AppAware
consistently outperformed Sandpiper in these larger config-
urations, producing mappings that decreased traffic volume
transported by the network by up to 81%.

In Figure 2(b), the mean and standard deviation of the
reduction in network traffic achieved by using AppAware over
Sandpiper is plotted as a function of the number of new
virtual machines that are assigned to the physical servers
in the data center. This number ranges from 20 to 240,
while the number of physical machines is always set to
100 for all 3132 simulations that were ran. Note that the
simulation assumes an existing load on physical machines
following the Capacity(PM) distribution and each new VM
requires resources following the distribution Demand(VM)—
both described in Table I. As it can be seen from the Figure,
the largest reduction in traffic is achieved when the number
of VMs to be mapped is small relative to the PMs in the data
center. This is due to the fact that there are more possibilities
for VM-to-PM mappings that minimize network traffic, a fact
that is exploited by the AppAware algorithm, and in contrast
to Sandpiper, which does not take this into account.

Further, we evaluate the performance of our application and
topology aware heuristic with varying data center architec-
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Fig. 3. Impact of (a) VM demand, (b) PM capacity and (c) communication
frequency on the performance of AppAware. algorithm. For all scenarios, the
number of physical machines and number of virtual machines are set to 10. (a)
Capacity of physical machines is set to 0.8 and the mean communication edge
is 0.5 (b) Demand of virtual machine is set to 0.4 and the mean communication
edge weight is fixed at 0.5 (c) Demand and physical capacity of virtual and
physical machines is set at 0.4 and 0.8 respectively.

tures. Figure 3 shows the performance of our heuristic with
the optimal solution on VL2 [9] and Tree [8] architectures.
As shown in the figure, performance gap between optimal and
AppAware is larger for VL2 than for Tree architecture, which
can be attributed to the design of VL2, in which a suboptimal
physical machine selection is more heavily penalized (many
more hops in heuristic than in optimal). Also, the performance
gap is larger for less congested demand patterns, as there are
more choices for placement.

V. RELATED WORK

Virtual machine migration and its application to data center
server farms has been a major focus of research recently [3],
[4], [10], [11]. Wood et al. propose Sandpiper that uses black-
and gray-box techniques like monitoring memory, CPU and
network utilization to detect hotspots and mitigate them by
migrating the VMs to a suitable physical server [3]. In [4],
the authors outline a scheme for distributing resources among
VMs on the same physical server. They consider the relative
priorities of different VMs and their inter-dependencies while
allocating resources to them. The work in [5] considers the
load on the communication paths that connect servers to
shared network storage. None of the these works considers
the combined effects of application dependencies and network
topology for minimizing traffic in the data center network. The
work closest to our efforts is [6], where the authors formulate
a LP for computing virtual-to-physical machine mappings
in the presence of application dependencies. However, their
work does not incorporate server-side constraints. We propose
practical heuristics for VM placement that simultaneously
satisfy server-side limitations.

Research in the area of data center network architecture
and routing seeks to maximize flexibility and efficiency of
underlying resources. Representative works include Mon-
soon [12], Fat-tree [8], VL2 [9], Portland [13], DCell [14] and
BCube [15]. Our scheme is complementary to such network
designs; as shown in our evaluation, it can provide gains for
such different architectures.

VI. CONCLUSION

Multi-tier enterprise applications that run across multiple
VMs in data centers may exhibit strong communication de-

pendencies. Such dependencies need to be taken into ac-
count during the migration process to ensure efficient net-
work resource utilization and minimize redundant cross-traffic
between switches in the data center. We propose an effi-
cient mechanism for application-aware VM migration and
demonstrate through numerical simulations that it minimizes
network traffic inside data centers. We are in the process of
implementing and evaluating our scheme on a large-scale data
center testbed.
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