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Abstract—Receiving Internet streaming services on various
mobile devices is getting more and more popular. To understand
and better support Internet streaming delivery to mobile devices,
a number of studies have been conducted. However, existing stud-
ies have mainly focused on the client side resource consumption
and streaming quality. So far, little is known about the server
side, which is the key for providing successful mobile streaming
services.

In this work, we set to investigate the Internet mobile stream-
ing service at the server side. For this purpose, we have collected
a one-month server log (with 212 TB delivered video traffic)
from a top Internet mobile streaming service provider serving
worldwide mobile users. Through trace analysis, we find that
(1) a major challenge for providing Internet mobile streaming
services is rooted from the mobile device hardware and software
heterogeneity. In this workload, we find over 2800 different
hardware models with about 100 different screen resolutions
running 14 different mobile OS and 3 audio codecs and 4 video
codecs. (2) To deal with the device heterogeneity, transcoding
is used to customize the video to the appropriate versions at
runtime for different devices. A video clip could be transcoded
into more than 40 different versions in order to serve requests
from different devices. (3) Compared to videos in traditional
Internet streaming, mobile streaming videos are typically of much
smaller size (a median of 1.68 MBytes) and shorter duration
(a median of 2.7 minutes). Furthermore, the daily mobile user
accesses are more skewed following a Zipf-like distribution but
users’ interests also quickly shift. Considering the huge demand
of CPU cycles for online transcoding, we further examine server-
side caching in order to reduce CPU cycle demand. We show
that a policy considering different versions of a video altogether
outperforms other intuitive ones when the cache size is limited.

I. INTRODUCTION

Recently, mobile devices are getting increasing popularity.

For example, according to International Data Corporation, the

total number of smartphones sold worldwide in 2010 is 302.6

million [1], which is a 74.4% increase from the previous year

(173.5 million). By September 2010, over 58.7 million people

in the US owned smartphones [2].

Besides general web surfing on the Internet, these days more

and more accesses from mobile devices are directed to all

kinds of Internet streaming services. For example, YouTube [3]

is the among the earliest to provide streaming services to

mobile devices such as iPhone. Today both iOS and Android

have native support for YouTube. Other popular streaming

service providers, including Netflix [4] and Hulu [5], also

provide streaming services to subscribed mobile users via

APPs built in various mobile operating systems. Placeshifting

services like Orb [6] and AirVideo [7] allow mobile users to

access media content stored on their home computers. Qik [8]

allows users to upload from mobile devices and then broadcast

the video content to their friends. Different from the above

services, Vuclip [9] lets users search and play all kinds of

Internet videos on their mobile devices regardless of their

mobile device types.

To understand the key challenges of Internet mobile stream-

ing and the difference from traditional Internet streaming, a

number of studies have been performed. As today the majority

of Internet mobile streaming services are delivered in a client-

server architecture, many studies have focused on the resource

consumption and streaming quality received on the mobile de-

vice. For example, Xiao et al. [10] studied energy consumption

when watching YouTube on mobile devices. Huang et al. [11]

investigated fetching policies of different mobile video players,

and Finamore et al. [12] examined the potential causes for

inferior streaming quality of mobile YouTube accesses.

However, these studies mainly focus on the client side

by examining specific devices [10], [11] or via local ex-

periments [12]. As the key to the current Internet mobile

streaming services, the server side plays a critical role in the

entire streaming delivery process. Unfortunately, so far, little

is known about the server side, possibly due to the limited

availability of data from the server side.

To provide in-depth understanding of the current Internet

mobile streaming services, in this study, we set to investigate

the server side in streaming delivery to mobile devices. For

this purpose, we have collected a 30-day server log from a

top Internet mobile streaming service provider. In 30 days,

about 105 million video sessions were served with about 212

TB video traffic delivered. Through our analysis, we have a

number of findings. While the details are presented later in

the paper, some highlights are as follows:

• A unique challenge for Internet streaming delivery to

mobile devices is rooted from the fact that mobile devices

are very heterogeneous. In this workload, we find over

2800 different hardware models with 92 different screen

resolutions running 14 different mobile OSes, using 3

audio codecs and 4 video codecs. This greatly challenges

the traditional Internet streaming delivery infrastructure

where the bottleneck often lies in the limited bandwidth.

• To deal with the device heterogeneity, runtime transcod-

ing is used to customize a video to the appropriate



versions on the fly for different devices. A video clip

could be transcoded into more than 40 different versions

in order to serve requests from different devices.

• Compared to videos in traditional Internet streaming,

mobile streaming video clips are typically of much

smaller size (with a median of 1.68 MBytes) and the

video duration is shorter as well (with a median of 2.7

minutes). Furthermore, the daily mobile user accesses

are more skewed following a Zipf-like distribution but

users’ interests also shift quickly, resulting in a stretched-

exponential distribution in the long term.

To reduce the huge CPU cycles demanded for transcoding

on the fly, we further explore caching at the server side by

trading off storage for CPU cycles. Our study shows that a

policy that considers different versions of a video altogether

outperforms other intuitive ones (e.g., a file based one) when

the cache size is limited. As far as we know, we are the

first to provide a server-side analysis on a Vuclip-like Internet

mobile streaming service. Our findings provide new insights

and lay some foundations to improve the current Internet

mobile streaming delivery.

The rest of the paper is organized as follows. We describe

some background and the workload overview in section II

and study the device hardware and software heterogeneity in

section III. We examine various mobile video properties in sec-

tion IV and further explore the trade-off between the storage

and the CPU at the server side in section V. Some related work

is described in section VI and we make concluding remarks

in section VII.

II. BACKGROUND AND WORKLOAD OVERVIEW

To investigate how current Internet streaming services are

delivered to mobile devices, we have collected a 30-day server

log from one of the largest Internet mobile streaming service

providers, Vuclip [9]. Vuclip provides mobile users with the

search-and-delivery services. It allows users to search for and

watch any videos on any video-enabled mobile phones and

devices.

Different from many existing services that only provide

streaming services to specific mobile devices, Vuclip can

serve any type of mobile devices that are capable of stream-

ing playback. Vuclip allows any mobile user to search for

interested video available on the Internet, and transcodes

them on-demand and on-the-fly based on the type of the

mobile device. To serve different types of mobile devices,

Vuclip employs on-demand transcoding at the server side.

Transcoding is a process to convert the requested video clip

to the appropriate codecs, format, and size at runtime upon

a request so that the video can be properly rendered and

played on the requesting mobile device. Vuclip transcodes a

video into different versions by choosing the best audio/video

codecs, frame size, frame rate, and quality level combination

for the mobile device. According to our analysis, each video

was accessed in more than 2 versions on average (as shown

in Table I), and the most popular video was accessed in 41

different transcoded versions (as shown later in Figure 7).

To deliver video content, Vuclip uses the traditional

client/server (C/S) architecture. The video file is delivered via

pseudo streaming over HTTP. That is, when the requested

content is available on the server, the client would issue an

HTTP GET request to download the content. A video may

be downloaded via several HTTP GET requests with different

partial ranges specified (i.e., range requests). To differentiate

video requests from HTTP requests, we define a request as a

single HTTP transfer between the client and the server, and a

session as the set of requests that are involved in downloading

an entire video clip.

TABLE I
SUMMARY OF WORKLOAD

Workload Length 30 Days

# of Sessions 105,389,370

# of Requests 192,255,173

# of Requests from Mobile Devices 181,556,344

# of Unique Videos Accessed 4,052,740

AVG. # of Formats Per Video 2.31

Total Traffic Volume 212 TB

The data we collected is from Nov. 1st to Nov. 30th, 2010.

In this one-month server log, there are about 105 million

sessions watching more than 4 million different videos. There

are a total of about 192 million HTTP requests. The total

traffic delivered from the server in these 30 days is about

212 TB. Table I gives a summary of this workload. Note

that among all these requests, some are from desktop/laptop

computers instead of mobile devices. In order to focus on

the requests from mobile users, we differentiate them in the

server log through the User-Agent strings specified in each

HTTP request. By analyzing the User-Agent, we find there is

a total of 150,072 unique User-Agent strings. Among them,

84,281 (56%) represent mobile devices. However, examining

the received requests, we find most of them come from User-

Agent strings representing mobile users: more than 94% (181

million out of 192 million) requests are from mobile devices.

With the exclusion of desktop/laptop traffic, Figure 1 gives

an overview of the server side traffic in 30 days. Note that

the left y-axis represents the total number of requests per day,

while the right y-axis represents the total traffic volume per

day. During this one-month period, despite a small decrease in

the middle, the number of the requests and the delivered traffic

amount kept increasing, indicating the popularity of Vuclip.

Figure 2 shows the hourly mobile streaming access patterns

in a day. The figure indicates that hourly accesses peak around

17:00 GMT. Furthermore, the total number of requests and the

traffic volume served during peak hours almost double these

in non-peak hours. Figure 3 further depicts the hourly pattern

from Nov. 8th to Nov. 15th (a week). The figure shows clear

peak and off-peak hourly patterns for each day. The figure

shows some drop after Nov. 12th. It is likely due to the fact

that Nov. 13th was a Saturday and Nov. 14th was a Sunday.

We can observe the increase of accesses again on Monday.
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Fig. 1. Daily Accesses in Nov. 2010
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Fig. 2. Hourly Accesses On Nov. 1st 2010

8 9 10 11 12 13 14 15
1

2

3

4
x 10

5

T
o
ta

l 
#
 o

f 
R

e
q
u
e
s
ts

 P
e
r 

H
o
u
r

Day

 

 

200

250

300

350

T
o
ta

l 
T

ra
ff
ic

 V
o
lu

m
e
 P

e
r 

H
o
u
r 

(G
B

)

 

 

Total Requests

Total Traffic

Fig. 3. Weekly Accesses from Nov. 8 to Nov.
15 2010

III. CHARACTERIZATION OF MOBILE DEVICE

HETEROGENEITY

A. Mobile System Heterogeneity

To provide Internet streaming services to all kinds of mobile

devices like Vuclip, a unique challenge is the heterogeneity

among mobile devices. Different from the pre-coding approach

that was taken by many other service providers to serve

specific types of mobile devices, transcoding has to be used

to customize the video into a proper format for the requesting

mobile device. Although transcoding is very flexible and

desirable to serve heterogeneous mobile devices, transcoding

demands huge CPU cycles on the fly.

To get a realistic picture of the mobile device heterogeneity,

we retrieve detailed device information from WURFL [13]

based on the User-Agents information we have extracted from

the server log. Among the 84,281 User-Agents that represent

mobile devices, we are able to get the brand and model

information from more than 74,708 (88.64%) distinct User-

Agent strings. The rest only have browser information.

TABLE II
SYSTEM HETEROGENEITY OF MOBILE DEVICES

Models 2864

Resolution 92

Mobile OSes 14

As shown in Table II, accesses to Vuclip in these 30

days came from 2864 different device models. These devices

have different screen sizes that can support video playback

with different resolution rates. Delving into this, we find that

these devices have 92 different resolutions (width and height

combinations), ranging from 84× 48 to 1600× 1200. Figure

4 shows the most popular resolutions, including 320 × 240,

480 × 360, and 480 × 320. They also run on 14 different

mobile operating systems.

B. Audio/Video Codec Heterogeneity

To play video on a mobile device, both audio and video

codecs are required. On different devices, the supported codecs

may be different as well. Such heterogeneity would further in-

crease the load for the server if the server conducts transcoding

for the mobile device. Note that if such transcoding is done

at the client side, it would lead to excessive battery power

consumption.

To examine the codec heterogeneity, we further look into the

supported audio/video codecs on these 2864 hardware models.

We find that typically there are 3 audio codecs being used,

namely AAC, AMR, and WMA, and there are 4 video codecs

being used, namely H.263, H.264, MPEG-4, WMV. Figures 5

and 6 show the popularity of these codecs. As shown in these

figures, AMR is the most popular audio codec, as more than

59% devices support it, and H.263 and MPEG-4 are the most

popular video codecs.

TABLE III
VIDEO CODECS

Type Video Audio #Videos Sessions

ASF WMV WMA 293,025 2,031,161

3GP H.264 AAC 692,004 12,636,639

3GP H.263 AMR 2,805,494 46,790,565

3GP MPEG-4 AMR 138,022 1,213,319

3GP MPEG-4 AAC 1,762,132 36,552,760

3GP in Total 3,746,548 97,193,283

With 3 audio codecs and 4 video codecs, we expect a total of

12 combinations of different audio/video codecs. In practice,

however, not all these combination of the audio and video

codec are used. In the workload, we only find 5 combinations.

Table III shows the 5 video+audio encoding schemes used.

While more than 4 million (4,052,740) unique videos were

accessed, we are able to extract about 3.7 million (3,789,229)

that are accessed as videos. The rest were only accessed as

audio. Table III shows that H.263+AMR and MPEG4+AAC

are the most popular encoding schemes, accounting for 84%

of total viewing sessions. This is not surprising as H.263 and

MPEG4 are the most widely supported video codecs on the

2864 models of mobile devices.

In addition to different codecs, video files are also encoded

into two different formats, i.e, two types of containers, 3GP

and ASF. 3GP is the 3GPP file format, which is a multimedia

container format defined by the Third Generation Partnership

Project (3GPP) for 3G UMTS multimedia services. 3GP is

often used on 3G mobile phones. On the other hand, ASF
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Fig. 6. Video Codecs

(Advanced Systems/Streaming Format) belongs to Microsoft

Media framework and it is a proprietary digital audio/digital

video container format. Apparently, 3GP is much more widely

used in practice than ASF for mobile videos.

TABLE IV
VIDEO RESOLUTION AND ENCODING RATE

Quality Frame Width Encoding Rate (Kbps)

Low 176 51 - 55

Low 320, 360 71 - 187

High 176 81 - 147

High 320, 360 172 - 335

WiFi 320, 360 358 - 423

Besides the above hardware and software heterogeneity,

mobile devices may have different network speed, due to

various reasons, such as accessing through cellular network

or WiFi. To support different mobile Internet access speed,

Vuclip also transcodes video clips into 3 different quality

levels: Low Quality, High Quality and WiFi Quality. Table IV

shows the corresponding range of object encoding rate for

different quality levels. Consider the variety of resolutions,

videos are also customized into 3 different frame widths: 176,

320, and 360. As we can observe from the table that a larger

resolution (width) video does not necessarily come with a high

encoding rate. On the other hand, a video with a high encoding

rate typically comes with a larger resolution.

TABLE V
VIDEO QUALITY

Quality # of Videos # of Sessions

Low 1,694,108 26,365,900

High 3,323,211 72,392,729

WiFi 91,761 465,815

Table V further shows the number of videos that are of

Low, High, and WiFi Quality as well as the number of their

requested sessions. The videos in High Quality are mostly

requested: 73% viewing sessions are for videos encoded

with High Quality. Consider that Vuclip transcodes the video

content on-demand, it is not surprising that 87% of video

contents have at least one version encoded with High Quality.

WiFi Quality, however, is the least requested quality level. This

is likely due to the relatively slow mobile accessing speed and

tiered data plan billing model today.

Since Vuclip transcodes the original video to accommodate

mobile devices with different codecs, frame width, and quality

level, for the ease of presentation, we use versions to refer to

different transcoded video files for each video in the rest of

the paper. On the other hand, we use videos to refer to a set

of video clips that correspond to the same content. Figure 7

shows the CDF of number of versions each video has. As

shown in the figure, in this workload, about 59% videos have

only one version, and about 3% videos are accessed in 10 or

more versions. The largest version number is 41.

IV. CHARACTERIZATION OF MOBILE STREAMING VIDEOS

The previous section has shown that mobile device hetero-

geneity is a great challenge to the service provider. With such

a level of heterogeneity, what kind of video clips are being

served is of our great interest. In this section, we further

analyze the mobile video clips that we have collected from the

server log in order to reveal the commons with and differences

from the traditional Internet streaming content.

A. Video Playback Duration and File Size

Figure 8 depicts the distribution of video playback duration

in seconds. In this figure, videos are sorted in decreasing order

of the playback duration, and the y-axis is in log scale. As

shown in the figure, video clips accessed by mobile users are

mostly short in terms of playback duration: more than 97%

videos are less than 10 minutes long, and the median playback

duration is 162 seconds (less than 3 minutes). Compared to the

longer duration of traditional Internet streaming video clips,

such a shorter duration makes it more feasible for mobile

devices because video streaming consumes a lot of limited

resources on mobile devices, including the network for data

receiving, the CPU for decoding, and the display for rendering.

Such resource consumption can drain the limited battery power

supply at a very high rate.

Correspondingly, Figure 9 shows the file size (bytes) distri-

bution. Again, we sort the video files (versions) based on their

sizes in decreasing order. As shown in Figure 9, the video

file distribution is similar to that of the duration as shown

in Figure 8. Note that, here in this figure, each video may

have been accessed in several versions in different formats

and file sizes. As we can see, most video files accessed by

mobile devices are smaller than 8 MBytes, with a mean file

size of 2.78 MBytes and the median file size 1.68 MBytes.

This shows that videos accessed by mobile devices are mostly

small in terms of bytes. This can reduce the total network
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transmission for downloading the video file. Note the network

interface card could consume 30% to 40% of the total battery

power consumed during a streaming session to a mobile

device [14], [15].

Moreover, compared to the size of the traditional Internet

video files [16], [17], the size distribution we find in this server

log is much smaller. This provides a great opportunity for

reducing the transcoding cost as we discuss later in section V.

B. Popularity of Mobile Videos

Figure 10 shows the popularity pattern of videos accessed

site-wide on Nov. 1st. In this figure, the x-axis represents

videos ranked by the number of requested sessions in decreas-

ing order, plotted in log-scale, while the y-axis represents the

number of viewing sessions of this video, also plotted in log

scale. This figure shows that, in log-log scale, the popularity

distribution of videos accessed can be well fitted with a Zipf-

like distribution

yi ∝
1

iα
,

where i is the popularity rank of the video, yi is the number

of requested sessions for the video, and α is the skewness

parameter. Moreover, we find α = 0.955 fits our data very well

with the goodness of fit value R2 very close to 1, indicating

the popularity distribution is not only Zipf-like, but also very

close to the Zipf’s law where α = 1. Similar patterns have

been found for other days in the workload.

The Zipf-like distribution is known to be efficient in mod-

eling web traffic, and is the premise for efficient web caching.

Specifically, α is an indicator of request concentration, and

proxy caching can be more efficient with a larger α value.

For example, it was reported in [18] that α varies between

0.64 and 0.83 for web traffic, while it tends to be smaller

for media traffic (for example, work [17] reports 0.56 for

YouTube traffic). Different from previous measurement studies

where data were collected at edge networks, the mobile video

accesses are highly concentrated at the server side. Such

discrepancy is reasonable as collecting traffic at edge networks

can only reflect the local users’ accesses, while the server

logs can provide a complete view of the video popularity.

Furthermore, this also means caching at the server side is more

effective than caching at the edge/client side, if caching at the

server side is needed. Note for content delivery, caching at

the server side is typically not for reducing network traffic as

caching at the client side.

While Figure 10 shows short-term (one day) popularity

distribution, Figure 11 shows the corresponding distribution in

long-term, spanning over the entire 30 days of our workload.

In this figure, the left y-axis is in powered scale while the

right y-axis is in log scale. The x-axis is in log scale as well.

As shown in the figure, the monthly video popularity deviates

from a straight line in log-log scale, meaning not a Zipf-like
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distribution. Instead, it can roughly be fit with a stretched

exponential (SE) distribution as shown by the left y-axis in

powered (by a constant c) scale [19]. With SE distribution,

the rank distribution function can be expressed as

yc
i
= −a log i + b.

An SE distribution is fit by several parameters as shown

in the Figure. For example, parameter c is also called the

stretch factor, which characterizes the median file size of

workload [19]. It was reported that for media workloads with

a median file size < 5MBytes, the stretch factor is ≤ 0.2.

Our analysis confirms this with a c of 0.065 and a median

file size of 1.68 MBytes. Parameter a in an SE distribution

increases with the duration of workload as well as the ratio of

media request rate to new content birth rate, and it causes the

distribution to deviate from a straight line in log-log scale.

The stretched exponential distribution has been used to

characterize many natural and economic phenomena, as well

as the access patterns of Internet media traffic [19]. It was

shown that under an SE distribution, media caching is much

less efficient than under a Zipf distribution. This poses a new

challenge if long-term caching is needed on the server side.

TABLE VI
SUMMARY OF VIDEO ACCESSES

Average Daily New Videos 92 K

Average Daily Accesses Videos 502 K

Percentage of Daily New Videos 18%

Average Daily Accessed Videos Difference 292 K

Percentage of Average Daily Difference 58%

Average Daily Requested Sessions 3512 K

Total Accessed Videos in 30 Days 4052 K

Percentage of New Videos in 30 Days 68%

C. Popularity of Different Video Versions

We have shown in Figure 10 that the daily video popularity

follows a Zipf-like distribution. However, as discussed before,

each video may be accessed by very diverse mobile devices,

resulting in multiple transcoded versions. We thus further

examine the popularity distribution of all versions accessed

on Nov 1st where each version is counted as a distinct object.

Figure 12 shows that when different versions are considered

as different objects, the popularity cannot be well-fitted with

the Zipf distribution. On the one hand, due to the increased

number of video versions (2.31 versions per video on average),

the skewness factor α decreases from around 0.95 to 0.7.

On the other hand, as shown in the figure, accesses to the

Top-1000 versions are much larger than what Zipf predicts,

indicating significant deviation from Zipf-like distribution.

Figure 13 further depicts the monthly version popularity.

This figure shows that although the daily version popularity

cannot fit well with either Zipf or SE distributions, the monthly

version popularity pattern can be well fitted with an SE

distribution. The goodness value of the fit is 0.998532, very

close to 1.

The version-based popularity patterns we have examined

above indicate that different from video based popularity,

accesses to different video versions are more distributive. This

means poorer caching performance if caching is needed for

these versions.

D. Popularity Evolution

We have shown that mobile users’ daily accesses for mobile

videos are highly concentrated, but monthly accesses patterns

are flatter. In this subsection, we further examine how video

popularity changes over time, aiming to shed light on such

popularity changes. We first study the commons between

accesses in consecutive days, and then, more specifically, we

consider the temporal locality characteristics of these accesses.

Table VI summarizes the daily accesses and the correspond-

ing videos that were requested in the system. According to our

analysis, 292K out of 502K (58%) unique video clips accessed

daily are not accessed in the previous day on average. Among

these 292K video clips, about 92K are new video clips. This

indicates that about 18% video clips accessed every day are

new. The rest 200K (40%) are unpopular ones that were in

the system, but were not frequently accessed. In total, new

video clips account for about 68% of total unique video clips
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Fig. 16. % of Sessions for Videos of Different
Length (minute)

accessed during 30 days. Since new video clips are generated

at a high rate of 18%, this confirms the implication of SE-

distribution that a monthly static caching scheme may not be

so efficient as a more frequently updated one.

Unlike traditional video on-demand streaming systems, Vu-

clip has a larger repository as well as a faster new content

generation rate. We next examine if temporal locality is helpful

in predicting what will be popular in the future in such a highly

dynamic system.

First, we examine the temporal locality at the server side.

We have shown in Table VI that about 18% new video clips

are added into the video repository daily. We further examine

if top accessed videos change at a similar rate. Figure 14

shows the percentages of change in Top-100, Top-500, Top-

1000, Top-2000, Top-5000 and Top-10000 accessed videos

every day in 30 days. The percentages of change in Top-

500, Top-1000, Top-2000 and Top-5000 requested video clips

are all about 20%, which is similar to the birth rate of new

video clips everyday. The Top-100 videos change at a higher

rate, fluctuating between 20% and 35%. Previous studies on a

video-on-demand (VoD) system report the daily rate of change

in Top-100 videos is less than 15% [16]. Compared to the

traditional VoD system, the result here indicates that mobile

users tend to shift their interest faster. The change rate of Top-

10000 videos is relatively stable at about 25%, higher than that

of Top-500, Top-1000, Top-2000, and Top-5000 videos. This

is likely due to the fact that the Top-10000 list also includes

videos that are less popular, e.g., new videos that were only

active for a short period of time (one-day), and the 40% old

videos that were not accessed in the previous day.

Figure 15 keeps track of the top videos on the first day

(Nov. 1st) of our workload, and examines how many of them

would remain on the top list for the next 29 days til Nov.

30th. We notice that during the first 5 days, a great percentage

of top video clips are purged out of the top list, indicating

quick user interest shift. However, such a change becomes

relatively stable beyond the first 5 days, indicating videos that

were popular during the past N days are likely to be popular in

the future. Nevertheless, despite such a quick change of user

interests in a short period, video popularity is still relatively

stable in the long term. For example, although only about 10%

video clips remain in Top-100 after 29 days, this percentage

increases to 30% for Top-500, 40% for Top-1000, 50% for

Top-2000 and about 60% for Top-5000 and Top-10000, which

indicates that with a large cache size, the cached video clips

can be flushed less frequently.

E. Correlation Between Popularity and Video Length

We have shown in section IV-A that the mobile video files

are often short and the video popularity in a short-term has a

Zipf-like distribution. Thus one may wonder whether shorter

videos get more accesses. To examine this, we group video

files into 1 minute interval based on their lengths. Figure 16

shows the total number of requested sessions decreases as

the video length increases, and videos shorter than 5 minutes

account for about 70% total requests. We further calculate the

correlation between video popularity and video length, and

examine if shorter videos tend to be more popular. Our results

show that the correlation coefficient is 0.006, which indicates

the correlation is weak. We have also conducted similar tests

based on versions, and the results are similar. This indicates

the large percentage of requests for short videos are due to

the large population of short video contents instead of user

preferences.

V. TRADE-OFF BETWEEN CPU AND STORAGE

As aforementioned, in order to conduct on-demand

transcoding to serve all kinds of heterogeneous mobile de-

vices, Vuclip has to employ a lot of computer clusters. This

challenges service providers both technically and economically

with the growing popularity of Internet mobile streaming

services and it is thus very desirable to reduce the huge

demand of CPU cycles for such transcoding.

In the previous section, we have shown that the mobile

users’ accesses are more concentrated (skewed) than those

in the traditional Internet streaming services. Thus, caching

on the server side, sometimes called reverse caching, could

be explored to temporarily cache some transcoded objects so

that on-the-fly transcoding would not be necessary if the same

type of mobile devices access the same video. Such full-object

caching is possible for mobile videos because mobile video

objects are typically smaller with a median of 1.68 MBytes

as we showed before. Note that different from the traditional

caching objectives such as web proxy caching for reducing
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Fig. 17. Cache Performance over Different Time

the network traffic, caching at the server side here is to reduce

the CPU cycles demanded for transcoding. That is, a trade-off

between the storage and the CPU.

On the other hand, we have also shown that that mobile

users’ interests shift quickly. This provides some hints for

cache replacement. Regardless whether the cache is imple-

mented via disk and/or memory, the cache replacement policy

is the key to the cache performance. Typical cache replacement

strategies (such as popularity-based policies) may work, how-

ever, the complexity added by Vuclip-like services comes from

the fact that a video often has multiple transcoded versions.

Intuitively, these different versions could be considered as

separate objects in the cache. However, if we consider video

popularity, different versions of a same video are internally

related. Therefore, we next explore different replacement

strategies via simulations for Vuclip-like systems.

A simple strategy is to ignore the internal relationship of

different versions of a video, and consider each version as

a distinct object. Under this assumption, the existing web

proxy cache replacement policies can be adopted. Since we

are dealing with video objects, we thus first consider a

version-popularity based replacement policy, in which a utility

function is defined as the ratio of the version access number

to the storage size occupied by that version. The version with

the least utility is the victim to be purged from the cache.

On the contrary, if we consider that different versions of a

video are related because along the diminishing popularity of

a video, all of its versions may get fewer and fewer accesses,

we can also consider a policy in which all different versions of

a video are bundled together as one object in the cache. Taking

the popularity of this object as the sum of popularity of all its

versions, we can design a video-popularity based replacement

policy, in which the entire object (with all versions) is replaced

once it is identified as the victim based on the utility function

defined as the ratio of the total access number to this video to

the total size of occupied storage.

With the above two strategies, naturally, one may wonder if

a hybrid policy could perform better. That is, neither consider-

ing the version independently as the version-popularity based

policy does, nor considering all versions of a video as one

object as the video-popularity based policy does. In a hybrid

strategy, a utility function can be defined for each video as in

the video-popularity based replacement policy, but the victim

is the least popular version of the least popular video.

To study the effectiveness of these different strategies, we

conduct trace-driven simulations using the collected workload

to compare their performance. With the accesses of Nov. 1st,

Figure 17(a) shows that when the cache size is smaller than

27% of the total size of accessed objects of that day, a video-

popularity based replacement policy can achieve the highest

cache hit rate, and save roughly about 55% CPU cycles,

while a version-popularity based strategy performs the worst.

This is likely due to the highly concentrated video access

pattern as shown in Figure 10 compared to less concentrated

version access pattern shown in Figure 12. The hybrid strategy

performs consistently worse than the video-popularity based

one, but still a little better than the version-popularity based

policy. These results are consistent with our analysis on the

video and version popularity. When the cache size increases,

the version-popularity based policy has more flexibility in

choosing the best version to cache, and thus achieves the best

cache hit ratio among the three.

Figure 17(b) further shows the results when one-week trace

from Nov. 1st to Nov. 8th was simulated. The cache size

percentage used in this simulation is based on total accessed

objects of Nov. 1st. We find that the cache performance over

one week can reach as high as that of a day. However, the

cache performance over a month as shown in Figure 17(c) is

worse. This is because with an SE distribution for monthly

video accesses, caching is much less efficient than with a Zipf

distribution for daily accesses.

VI. RELATED WORK

The Internet has witnessed the sharp increase of Internet

video traffic in the recent years with all kinds of Internet

streaming systems, such as VoD and Internet P2P-based

streaming systems. Lots of research has been conducted to

study these Internet streaming systems. For example, Yu et

al. [16] examined server logs of a traditional VoD system

with a total of over 6700 unique videos, and analyzed user

access patterns, session length, and video popularity. Yin et

al. presented the access logs of a live VoD system [20], which

shows different user and content properties compared to [16].

Krishnappa et al. collected Hulu traffic at a campus edge



network, and examined the potential benefits of performing

caching and prefetching at edge networks [21]. For P2P-

based streaming systems, Wu et al. investigated P2P streaming

topologies in UUSee [22]. Huang et al. conducted a large

scale measurement to study the PPLive-based on-demand

streaming [23].

Along the increasing popularity of user-generated content

(UGC), studies have also been conducted to characterize UGC

videos. For example, Cha et al. studied user behaviors and

video popularity of YouTube, and compared them with non-

UGC content from Netflix [24]. Work [17] examined the traffic

characteristics of YouTube at a campus edge network.

With the rapid increase of Internet-capable mobile devices

in recent years, mobile Internet video services and accesses

are surging. A few studies have been conducted to investigate

the performance of mobile streaming applications, mostly

focusing on the resource utilization for receiving streaming

data on mobile devices. For example, Xiao et al. studied the

power consumption of mobile YouTube [10]. Finamore et al.

collected traffic from several edge locations and studied the

potential reasons for the inferior streaming experience of mo-

bile YouTube users [12]. Previously, we have also conducted

measurements to study the resource utilization of different

streaming approaches to mobile devices [15]. Furthermore, in

order to save battery power, we had designed and implemented

BlueStreaming, a system that can leverage low-power of

Bluetooth to help P2P streaming to mobile devices [25].

However, to the best of our knowledge, no prior work has

examined Internet mobile streaming services from the server

side, which is the key to provide Internet mobile streaming

services. In this study, we have investigated the commons and

differences of mobile Internet streaming services with/from

the traditional Internet streaming services. Our study reveals a

critical challenge in Internet mobile streaming services is the

hardware and software heterogeneity of mobile devices. Our

analysis also shows different access patterns of mobile videos

from traditional Internet streaming videos. Furthermore, we

have also shown that caching at the server side with a proper

replacement policy can significantly reduce the resource con-

sumption for Vuclip-like Internet streaming systems in dealing

with heterogeneity.

VII. CONCLUSION

The wide adoption of mobile devices in practice has made

pervasive Internet streaming possible. While a number of

studies have been conducted to examine the streaming services

from the client’s perspective, in this work, we have studied

the Internet mobile streaming services from the server side via

one-month server log collected from one of the largest Internet

mobile streaming service providers. Through detailed analysis,

we have shown the great hardware and software heterogeneity

of mobile devices, different characteristics of mobile videos,

and different user access patterns from those in traditional

Internet streaming services. As a great challenge that Vuclip-

like system faces is the huge demand of CPU resources for

online transcoding to deal with heterogeneity, we show that

caching at the server side with a proper replacement policy

can effectively trade-off limited storage size for great savings

on CPU cycles. These results provide some basic guidelines

for building and optimizing future Internet mobile streaming

systems.
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