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Abstract—Cognitive Radio Networks allow unlicensed users to main disadvantage is its decreased accuracy in face ofgadin
opportunistically access the licensed spectrum without esing shadowing, and unknown noise power profiles. For instance,
disruptive interference to the primary users (PUs). One of e it 9 g suffers from shadowing or heavy fading, the sensed
main challenges in CRNSs is the ability to detect PU transmisens. . . . - .
Recent works have suggested the use of secondary user (SU Ig.nal tends to be weak while the PU is transmlttlng,_leadlng
cooperation over individual sensing to improve sensing accacy. O incorrect decisions. To address these problems whil@-mai
In this paper, we consider a CRN consisting of a single PU taining sensing simplicity, cooperative sensing scherhes t

and multiple SUs to study the problem of maximizing the total fyse the sensing results of multiple SUs have been proposed
expected system throughput. We propose a Bayesian decisiorie [B[L3][L4].

based algorithm to solve the problem optimally with a constat C fi . hort . f individual
time complexity. To prioritize PU transmissions, we re-fomulate ooperauve sensing overcomes shortcomings or individua

the throughput maximization problem by adding a constraint S€Nsing results by jointly processing observations. SUa in
on the PU throughput. The constrained optimization problemis locality report their individual sensing results, whicledahen
shown to be NP-hard and solved via a greedy algorithm with ysed in a predefined decision rule to optimize an objective
pseudo-polynomial time complexity that achieves strictlygreater function. Examples of such functions include maximizing

than 1/2 of the optimal solution. We also investigate the case for - I functi f fal | b
which a constraint is put on the sensing time overhead, which sensing accuracy (generally, a function of false alarm @ro

limits the number of SUs that can participate in cooperative Dbility and mis-detection probability) or maximizing thestgm
sensing. We reveal that the system throughput is monotonicver  throughput. Aside from maximizing sensing accuracy relate

the number of SUs chosen for sensing. We illustrate the efficg of metrics, cooperative sensing schemes are also designed to
the performance of our algorithms via a numerical investigaion. estimate the maximum transmit power for SUs so that they
do not cause disruptive interference to PUS [11]. On therothe
hand, cooperative sensing incurs additional sensing defay

a viz individual sensing.

Cognitive radio networks (CRNs) have been proposed toThree main categories of decision rules have been identified
address the spectrum scarcity problem by allowing unlieeénsin [8]: Soft Combining, Quantized Soft Combiniagd Hard
users (secondary users, SUs) to access licensed spectrunc@mbining In the first two categories, the sensing results are
the condition of not disrupting the communication of liceds sent to the fusion center with little or no processing, while
users (primary users, PUs). To this end, SUs sense licengedhe last one, binary local decisions are usually reported
channels to detect the primary user (PU) activities and figlmilar to sensor networks, linear fusion rules are widely
the underutilized “white spaces”. FCC has opened the Tapplied to achieve a cooperative decision, such as AND, OR
bands for unlicensed accedsf{2hnd IEEE has formed aand majority rules[Z4]. In addition, a more advanced fusion
working group (IEEE 802.22[7]) to regulate the unlicenseg@chnique that utilizes statistical knowledde ][20] has rbee
access without interference. Many other organizations afevised to capture the correlation between SUs in cooperati
also making efforts on the spectrum access policy in tRensing. However, the resulting algorithm is suboptimal an
CRN environment, e.g., DARPAs ‘Next Generation’ (XG)its approximation factor is unknown. None of the above-
program [17] mandates cognitive radios to sense signals afiéntioned works identify optimal decision rules for getera
prevent interference to existing military and civilian m@d decision structures and they require decision rules torassu
systems. To avoid the interference to PUs, sensing becomgsticular forms (e.g., linear) for optimality analysis.
an indispensable part of CRN design. In this paper, we design an optimal data fusion rule to (hard)

Sensing can be performed via several methods, includis@mbining of the reported sensing result. More specifically
energy detection, cyclostationary feature detection, @rd- aim to maximize the system throughput in a CRN composed
pressed sensind |[8]. Energy detection is a simple methefla single PU (i.e., single channel) and several SUs. Whie t
and requires no a priori knowledge of PU signals! [21]. Itgrget system is a simplified one, it is helpful in revealihg t

challenges associated with the design of optimal fusioestul

1The recent FCC ruling requires the use of central TV Bandeisagpbases Moreover, the resulting algorithms can eas”y be geneHdIiz
to verify spectral availability. While respecting this ind, our work explores

local cooperative methods to improve sensing accuracy thi¢éh potential to more complex sygtems comprlsed of muItlpIe Channelsj
outcome of relieving this burdensome requirement. where sensing decisions are made per channel. Our main
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contributions can be summarized as follows:

o In contrast to previous works that restrict the class of
fusion rules, we propose a Bayesian decision rule based
algorithm to solve the throughput maximization problem
optimally with constant time complexity.

o To guarantee resources for the PU, we re-formulate the
problem by adding a constraint on the PU throughput.
This constrained problem is shown to be NP-hard by
reducing the classical partition probler] [6] to it. A Fig. 1. System model of an SU network overlayed with a PU netwo

greedy algorithm is obtained with pseudo-polynomialith more complicated forms have not been considered in [25]
time complexity. This approximation algorithm is anaBased on these observations, a fast spectrum sensingthatgori
lytically shown to achieve strictly greater thap2 of the s proposed for a large network where not all SUs are required
optimal solution. for sensing while satisfying a given error bound. Howeues, t
« We investigate systems where limited sensing overheggtimal number of sensing nodes and the complexity of this
is allowed, i.e., the number of sensing SUs is restrictegroblem have not been discussed.[In| [14], the SU throughput
Our theoretical results show that the performance @ maximized subject to sufficient protection provided tosPU
cooperative sensing is monotonic over the number of S¥e optimal k-out-of-N' fusion rule is determined and the
used for sensing. However, the characterization of tRensing/throughput trade-off is also analyzed. As [25],
upper bound on the required number of sensing nodgs fusion rules of general forms are considered. Thus, the
remains elusive. optimization is restricted to a small fusion rule domainasia
The paper is organized as follows: Related work is presented al. [18] consider the spatial variation of SUs and théofus
in Section). In Sectiof 1ll, the system model is introducedule is a weighted combination of SU observations. The weigh
The system throughput maximization problem is formulatedkpends on the received power and path loss at each SU.
in Section[1V, and solved optimally via Bayesian decisioithough more advanced than AND, OR, and majority rules,
rule. In Section[V, the constrained maximization problerthe weighted form is restricted to the linear function damai
is formulated, which is shown to be NP-hard. A pseuddn [4], optimal multi-channel cooperative sensing alguris
polynomial time greedy algorithm is proposed with an amre considered to maximize the SU throughput subject to per
proximation factor strictly greater thary2. Another direction channel detection probability constraints. The resultiog-
is considered in Section VI where the system throughput éenvex problem is solved by an iterative algorithm. Comgare
maximized subject to a constraint on the number of sensitm [4], our work focuses on the maximization of the system
SUs used. In Sectidn_V1I, numerical results are presented tbroughput, including the PUs and SUs. Although we only
the performance of our algorithms. The paper is concludedéonsider a single-channel network, which is a simplifiaatio
Section V1. made on the model, our decision algorithms can be applied
for each channel individually. Moreover, a soft decisioferu
is considered in[4], which requires significant amount afda
Cooperative sensing solutions have been investigated#pe transmitted to the coordinator while our hard decision

recent years. They rely on multiple SUs to exchange sensifge requires only one bit sent from each SU.
results or a central controller to collect the sensing testbm

SUs. The network is usually divided into clusters and each 1. SYSTEM MODEL
cluster head makes the decision on the channel occupancyVe consider a time-slotted cognitive radio network in which
Collaborations among SUs have been shown to improve théPU network, consisting of a PU base station (PU-BS) and
efficiency of spectrum access and allow the relaxation BU receivers, co-exists in the same area with an SU base
constraints at individual SUE][3][24]. One branch of thegrap station (SU-BS) and\/ SUs (Figurd 1l). We focus on the PU
in cooperative sensing assume that the length of sensirgy timansmissions over a particular channel. We consider kiplin
at individual SUs is proportional to the sensing accuracyart for the SU system, i.e., only one SU can be active and
However, longer sensing time decreases the transmissien titransmit to the SU-BS at any given time. Some PU receivers
The trade-off is called thesensing efficiencyproblem and may lie in the interference range of SUs such as Plih
is discussed in[110] and[12]. In our work, we assume theigure[1. Any transmission from these SUs such as $Us
observation time at each SU is fixed so that the individua) and 3 in Figure[1 may cause interference to those PU
sensing accuracy does not depend on it. We focus on tieeeivers. We denote the set of SUs whose uplink transmissio
optimal decision rule based on the sensing results cotlectecauses interference to PU receivers Byand |[S| = N
Decision rules so far mainly focus on AND, OR, majorityM > N). They are indexed from to N. SUs outsideS can
rules and other linear rules. Zhang et. all[25] show thabfite use the channel to transmit at any time slot without causing
timal fusion rule to minimize the cooperative sensing erade interference to the PUs.
is the half-voting rule in most cases. They show that AND or SUs inS are close to the PU network and they may sense the
OR rules are optimal only in rare cases. However, other rulesannel cooperatively to reduce the sensing errors. Trgrggn
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SU-BS TABLE |
NOTATION LIST

| Symbol| Meaning

PR S

@ @ @ M Total number of SUs in the secondary network
) ) ) ) S Set of SUs which cause interference to PU receivers
I‘Collection of i;r'ocessf;wg o N IS
sensing results _and notification N So Set of SUs that are chosen to sense the charshelc S
¢ - 5 = > - o
Fig. 2. Control slotT. and data slof;. P False alarm probability of SU
results of individual SUs are assumed to be independenf3Let P, | Mis-detection probability of SU
represent the PU activity such th&t= 1 if PU is active, and by False alarm probability of cooperative sensing
B = 0 otherwise. LetP} denote theprobability of a false Py, | Mis-detection probability of cooperative sensing
alarm for SU 4, which is the probability that SU senses Te Control slot
the PU to be active given that the PU is actually idi&, T4 | Dataslot
represents th@robability of mis-detection for SU 4, which ™o Probability that the PU is idle
is the probability that SU senses the PU to be idle given that ¥ Average throughput of PUs in the interference range of a [SU

the PU is actually active.

Cooperative SensingMultiple SUs are chosen to sense th@ote that we do not restrict the PU activity to any specific
channel and the SU-BS predicts the PU activity by collectingistribution except that it does not change within one titoe s
the sensing results from these SUs. We denote the set of Se average throughput of PUs whose transmission would be

that participate in the cooperative sensingSaswhere|Sy| = interfered by SUs inS is denoted asy. Table[] summarizes
k. Note thatS, C S. In the cooperative sensing model, wehe notations used in the paper.
assume the SU-BS collects sensing results from SUsin The SU communication follows a protocol with the follow-

Cooperative Sensing Indicator The observation of the ing outline:
PU activity by SUi is denoted byo;. o; = 1 indicates that 1) SUs reportP/,’s and P}’s to SU-BS;
SU i observes the PU to be active, while = 0 indicates 2) SU-BS determines the sensing st and the decision
that SU i observes the PU to be idle. In this paper, ouule f based onP;,, P}l’s and the optimization metric;
objective is to characteriz8, and estimate the PU activity ~3) SU-BS notifies SUs i$; with an ACK and also assigns
based on observations frofy (called the decision rule). The each one of them &E£Q number for reporting sensing results;
decision rule is denoted as a functigh: QF — Q where  4) SUs receiving aMlC K sense the channel and report the
Q = {0,1}. The observations form a vector whereo € Q*  results to SU-BS in the order FEQ;
while the decision is denoted by where O € Q. The  5) SU-BS makes the decision of the PU activity based on
false alarm probability of cooperative sensing is denoted lhe sensing results anfdand schedules an SU for transmission
P¢ = P(O = 1|B = 0). The mis-detection probability of if the decision is0 (PU idle).
cooperative sensing is denoted By}, = P(O = 0|B = 1).
One time slot is divided into a control sl@t, and a data slot IV. SYSTEM THROUGHPUTMAXIMIZATION
T, whereT. + Ty = 1 (Figure[2). In the control slot, the |n this section, we formulate the cooperative sensing prob-
SU-BS collects sensing results froffy and notifies an SU |em with the assumption thas, = S, that is, the sensing
in S if the cooperative sensing result is “idleO(= 0). If  results from all SUs inS are reported to SU-BS withiff..
the PU is active (mis-detection), the PU transmission wéll bSUs outsideS' can transmit without causing interference to the
collided with the transmission from the SU. The length PuUs. Thus, their performance is independent of the choice of
of the control slot is regarded as the sensing overhead ané sensing set or the decision rule. Our goal is to maximize
assumed to be constant throughout the paper. It means thg@i@sum of the expected throughput of SUsSirand that of
fixed time period is allocated for cooperative sensing irheaghe PUs whose transmission may be interfered by the SUs.
slot. It is equivalent to maximizing the expected throughput & th
The uplinks of SUs inS are assumed to have the sameystem with PU-SU co-existence.
capacity which is normalized ta. If the decision of the _
cooperative sensing at the SU-BS is “idle”, the SU-BS natifi- Problem Formulation
one of the SUs inS (not limited to Sy, the sensing set) to  Given B = 0 (the PU is idle), the probability of a particular
transmit. We assume SUs ifi are always backlogged. Theobservation vectoo occurring is
scheduling of the transmitting SUs is beyond the scope of P(o|B =0) = H p}' H (1— P?)_ (1)
this paper. However, any work-conserving scheduling golic i€5.0i=1  j€S,0,=0 '
operating on idle slots can be used together with the deTisio The sum of allP(o|B = 0)'s with f(o) = 0 is given as
rule to maximize the total system throughput. Werdgtdenote
the probability that the PU is idle and we assume that the prio P(O=0/B=0)= Z P(o|B =0). (2)
distribution of PU activity is acquired over time accurgtel F(0)=0



Algorithm 1 Bayesian Decision Rule Based Algorithm for maximizing

the system throughput (given, decideO) In?x L(B=0,0=1) |m Z P(o|B=0)
Lif (1=Tgm 1 P I1 (1=P}) >~y 1 (1—PL) I1 Ph )=t
o0;=1 Oj:O 0;=1 oj:O
then
2 00 +L(B=1,0=0) [(1-m) Y Plo|B=1)|, (9)
3: else F(0)=0
4: O+1

whereL(B, O) is the loss of decisio) based on observation
o, which is a negative numbek(B = 0,0 = 1) = —(1-T)
o . o = = 0) = ———. Thus Equation[{9) is the
Then, the false alarm probability of cooperative sensing is and L(.B 1,0 =0) L—mo =d

P e peratlv ng ! posterior expected loss decisionO (Definition 8 of Chapter

Pf=1-PO=0B=0)=1- Z P(o|B=0). ) 44 in [1]). Using the Bayesian decision rule, Probldmh (9)

o , f(0)=0 _ can be solved optimally [1]: givew, the decisionO = 1
L|keW|§e, givenB = 1 (the PU is actlye),_the probability ;¢ IL(B = 0,0 = 1)|mP(o|B = 0) < |L(B = 1,0 =
of a particular observation vecter occurring is 0)|(1 — 7o) P(0|B = 1) andO = 0 otherwise. AlgorithniIL is

PloB=1)= [[ «-p, ][] P, (4 designed accordingly.
i€S,0;=1 j€S,0;=0
The sum of allP(o| B = 1)'s with f(0) = 1 is given as V. GUARANTEEING A TARGET PU THROUGHPUT

P(O=1B=1)= Z P(o|B=1). (5) In this section, we investigate the maximum throughput
Flo)=1 problem with a PU throughput constraint. With higher pitigri
Then, the mis-detection probability of cooperative segsir@ Minimum PU throughput is guaranteed in the problem
formulation. We first show that this constrained problem is
NP-hard by reducing the classical partition problém [6] to
Pl it. Then a greedy approximation algorithm is proposed to
arflchieve strictly greater thah/2 of the optimal solution. The

Note that Equation[{2) is the conditional probability th ; : . .
SU-BS correctly identifies the PU activity when it is idle S(gomplexny of the algorithm is shown to be pseudo-polyndmia

that one SU could transmit successfully; Equatioh (5) is the solving a two-dimensional dynamic programming problem.
conditional probability that SU-BS correctly detects tHe B A, Problem Formulation and Properties

active so that no SU would transmit and the PU could transmit
successfully. Accordingly, the expected throughput of $ius

is
P, =1-P(O=1B=1)=1- Y P(o|B=1). (6)

We formulate the constrained optimization problem as fol-

can be represented by lows:
(1-T,)P(B=0,0=0)=(1—T.)mP(O = 0|B = 0) Problem (B):
max (1—T,)mo f(z):op(ow =0)+ 7j’(z):1p(o|3 =1)
=(1-T, P(o|B = 0), 7 7 =
( o f(oX):—O (o ) " st. Y Plo|B=1)>ua. (10)

flo)=1
; . quation [(ID) is the constraint we put on Problem (B)
}rf?gi;n;)c/:tggir?rgre? ctoufltihbe;Lthedulsd in each t|tm(;a t?l here the expected PU throughput must be no less than a
P ghput ot the can be represente ypreset system-dependent threshold. It is equivalent te
YP(O=1B=1)=v > P(o|B=1) ® > I a-P,) Il Pj<1l-a wherel—ais
flo)=1 flo)=11i€85,0;=1 j€S,0;=0
since~ is the average throughput of the PU whose transmie collision factor. This can be interpreted as the prdigabi
sion would be interfered by SUs if. The problem is then thataPU transmission colliding with an SU transmissiomgei
formulated as follows: no greater than — a. Problem (B) maximizes the expected
Problem (A): system throughput given that the lowest PU throughput can be
met considering the high priority of the PU in cognitive radi
mJ;&X(l ~T)my » P(0|B=0)+~ Y Plo|B=1) networks.
f(o)=0 flo)=1 By observing the structure of Problem (B), we state
Lemmd5.1 that shows the optimal assignment of observations
with G(o) < H (o) whereG(o) = (1-T,)myP(o|B = 0) and
We show that Problem (A) can be converted to a Bayesidi(o) = vP(o|B = 1). We definef* as the optimal solution
Decision problem. Algorithni]l is then proposed based do Problem (B).
Bayesian decision rule to minimize the posterior expeated | Lemma 5.1:In the optimal solution to Problem (B), we
[1] and it is of constant time complexity. have f*(0) =1 for all G(o) < H(o).
Problem (A) is equivalent to Probleil (9) in terms of optimal ~ Proof: (Prove by contradiction) Assume tht (o) = 0
f. for someo whereG(o) < H(o). Moving it from O = 0 to

since the uplinks of SUs it% are assumed to have capacit

B. Optimal Solution with Bayesian Decision Rule



Algorithm 2 Greedy Approximation Algorithm for Problem (B)
Input: N, T, o, v, o, P, P} for all i
Ve } Output: f or “infeasible”
a

c A L Go)« (1-Tym [I P; I (1-Pjforallo

0=0 0=1 i€S,0;,=1 jES,oJ-:Q

2. Ho)+~ [I @-=P.) T[I Phforalo
i€S,0,=1 Jj€S,0;=0

3. U+« Y H(o)

4. if U <oa x v then

Fig. 3. Assignment of observations with no constraint anel dptimal
assignment for Problem (B)A + B + C' is the optimal assignment with
no constraint whileA + B’ 4 C is the optimal solution to Problem (B).

O =1lincreases >, P(o|B =1) so that this operation still 5:  output “infeasible” and return
flo)=1 6: f(o) + 1 for all o, suml <+ > H(o)
makes a feasible solution. Furthermore, the expected rayste. 0:G(0)<H (o)
throughput increases consideriigo) < H (o), which makes g: (o) = 0 for all o with G(0) > H(o) and return
a better solution than the current optimal one. It causes & Sorto’s with G(o) > H(o) in non-increasing order ((z)) and label
contradiction. Hence, we hayé& (o) = 1 for all G(o) < H (o) them from1 to [
in the optimal solution to Problem (B). m Doewm2e 0
With the property of Lemm&35.1, we only need to decid@2: it sum2 + H(0;) > U — a x v then break
which observations withG(o) > H(o) should be put in 131  sum2 <« sum2+ H(o;), f(0i) <~ 0
O = 1 to solve Problem (B) optimally. We defing =
{o : G(o) > H(o) and f*(o) = 1}, which is the set of v v
observations that need to be movedQo= 1 in the optimal ]og 1;3} = _1Og% =y, for all i, we havelog gg‘;g =
solution; ¢ = {o : G(o) > H(o) and f*(0) = 0}, which o+ 'Y —y;. Now the instance be-
is the set of observations that stay @h= 0 in the optimal o;=0,i=1,--,N 0;=1,j=1,,N
solution. Moreover, we defind = > H(o), which comes: givenN pairs of integery:, —y1), -, (yn, —yn),
0:G(0)<H (o) exactly one number should be chosen from each pair; with this
is the contribution of observations witfi(o) < H(o) in the constraint, what is the minimum non-negative sum? The re-
optimal solution; B = EG: G(o), which is the contribution duction from the partition problem to this instance of Peshl
o . . .
of observations iny when put inO = 0; B' = 3 H(o), (B)can be done in polynomial time. ,
o0Ex To verify the correctness of the reduction, we can check:
which is the contribution of observations in when put in if the minimum non-negativé:(o) — H (o) is 0, that is, the

O =1(B = B'); C = 3 G(o), which is the contribution optimal solution of the instance {5 we can answer “Yes” to
ocy Y Y S H “ ”
of observations in when put inO = 0; ¢’ = 3" H(o), the partition problem; if it is positive, we can answer “No
€

if suml > a x ~ then

° to the partition problem. If Problem (B) can be solved in
which is the contribution of observations i when put in polynomial time, then the partition problem can be solved in
O =1(C > C"). Then,A+ B+ C'is the optimal solution to polynomial time as well. The partition problem is well-know
Problem (B) without the PU throughput constraidt- B'+C  to be NP-complete[[6]. Assuming#NP, Problem (B) has
is the optimal solution to Problem (B), which is no greaterth been proven to be NP-hard. ]

A+ B+ C. The optimal assignment is illustrated in Figlie 3. It has been shown in Theordm k.2 that finding the obser-
vation with G(o) closest toH(o) from above is NP-hard.
B. Proof of NP-hardness Hence, it is unlikely to find an efficient algorithm to solve
We focus on identifying the hardness of deciding observRroblem (B) optimally. We will focus on the approximation
tions with G(o) > H /(o) that should be put i = 1 in this algorithm design in Sectidn ViC.
section. It is shown to be NP-hard by reducing the cIassiceI Greedy A imation Alqorith
partition problem[[6] to the subproblem of it in Theorém]5.27" reedy Approximation Algorthm
Theorem 5.2:Problem (B) is NP-hard. We propose a greedy algorithm (Algorith 2) that initially
Proof: We first state the classical partition problem [6RSSigns all observauogs(@: 1 and then moves observations
- Given N positive integersyy, -+, yn, is there a way to With G(o) > H (o) by HEZ)) from the highest to lowest t6 =
have them partitioned into two equal-sized subsets tha¢ hayuntil the feasibility constraint of Problem (B) is violately
the same sum? For reduction, we construct an instanceti@nsforming Problem (B) into the Knapsack Problém! [23],
Problem (B) by setting(l — T.)mo = v, P}, + P} < 1, We will show that the algonthm achieves strictly gregtearth
a = e+ > H(o) with ¢ < min ~ H(o). 1/2 of the optimal solution for Problem (B), which id +
0:G(0)<H (o) 0:G(0)2H (o) B’ 4+ C in Figure[3. Although the sum ofi(o) or H(o)
For this instance, putting any with G(o) > H(o) to in the worst case has exponential number of terms, we will
O = 1 would make a feasible solution given that observationfesign a pseudo-polynomial time algorithm in Section1v-D
with G(o) < H(o) have all been put inD = 1. Obvi- considering its combinatorial nature. Ignoring roundinges,
ously, choosing the observation with minimum non-negatitRe implementation calculates these sums accurately.
G(o) — H(o) would be the optimal solution. Note that |n Algorithm[2, observations are chosen 42 from the

G(o) — H(o) = 0 is equivalent tolog SEZ; = 0. By setting highest to the lowest and assigned@o= 0 after those with




G(o) < H(o) are assigned t® = 1. Ties are broken by Algorithm 3 Pseudo-Polynomial Algorithm to Find the Joint Distributio
putting observations with smalléf (o) in the front. In Line3, of (log %,log H(o))

U is assigned to be the sum of contributions of all observatioRput: v, P}, P}, for all i

if putin O =1 (A+B’+C"). In Lines4-5, whether a feasible output:c(n, j, ;') for all 5, 5/
solution exists for the given input is checked by comparing,. v  round(log 1P}
the extreme case where all observations are assign@d-ta ’jjv; ’
with the thresholdy x v. In Line 6, observations are initialized 2: zi < round(log 1,}35177") x 10" for all 4

to O = 1. Lines6-8 checks whether the feasibility constraintin 3: Ai < round(log Py,,r) x 10" forall i
Problem (B) has been satisfied under the initial assignntient, 4 #¢ < rqund(los (1 = Py,),r) x 107 for all &
yes, observations witti(o) > H (o) are assigned t® = 0 by 5 M« 3 max{yi,zi}, m 3, min{y;, 2}
Bayesian decision rule. Lines13 searches for observations

r) x 10" for all ¢

N

. / . . ! 3 . .

with G(o) > H(o) from the highestggz)) to lowest until & M max{max A, maxph, m’ e 3 min A, i}
. . . . e ) Y
sum2 + H(o;) < U —a x v is violated (Line12). Note [ fcor(léjg1)t:)_z$?r1ﬂlol']'] Oy M) < 1L O 21, ) 1
that > H(o) <U-ax~yand 3} H(o)>ax 9: for j=mto M do
0:f(0)=0 ) ~of(o)=1 10: for 5/ = m/ to M’ do C(i + 1,5,5") = C(4,j — Yit+1,7" —

~ (feasibility constraint) are equivalent sinde H(o) = U. Xit1) + Civj — 2zit1,5" — pit1)

f(o) of these observations are set to (hx{Li?]e 13) in the
searching process. Next, we state Theokerh 5.3 that gives the

approximation factor of Algorithra]2. from the highest% to the lowest until [(IR) is
Theorem 5.3:Algorithm[2 achieves strictly greater thapi2 ~ violated, which is exactly what we do in Algorithi 2 since
of the optimal solution to Problem (B). G(O}}(_og(o” > G(O}Q@ﬁ(oi) if and only if flizg > %
Proof: Recall the following notations: A = Hence,APX =U + 1]/2(0 — ') holds. SinceU > 0, we
> H(o), B = Y. G(o), BB = > H(o), always haveAPX/OPT > 1/2 for Problem (B). [ |
0:G(0)<H (o) 0€X o€X So far, we have shown that the greedy approximation algo-

— [ —
- 0§¢ Glo), ¢' = 0§¢H(0)’ andW = A+ B +C. rithm (Algorithm[2) exists for Problem (B) with an approxi-
We defineU = A + B’ + ' = Y. H(o). Let APX be the mation factor strictly greater thah/2. WhenU > C — ',

solution to Problem (B) output bti/ Algorithfd 2. LEPT be this factor could be arbitrarily close th
the optimal solution to Problem (B). Then, we have

!

, orT - W,_ (B _B), (1,1) In Lines 3, 6, 9 and 12 of Algorithm [2, exponential
=A+C+B = (A+ B+ )+ (C-C)=U+(C-C). number of observations are involved in the worst case due
Equation [(TIL) holds by Figuriel 3 since moving observations its combinatorial nature. We design a pseudo-polynomial
from O =0 to O = 1 losesB — B’ in throughput compared time algorithm by means of dynamic programming for the
to the optimal solution with no constraint, whichlis. Note implementation. The running time of a pseudo-polynomial
that (C'— ") is the optimal solution to Problerh (112) and it istime algorithm is polynomial in the numeric value of the
the difference of contribution to throughput between kagpi input, which is exponential in the length of them assuming
observations witlG/(0) > H(o) andf*(0) =0in O =0 and they are rational number§ [23]. For simplicity, we assume
moving them toO = 1. (1—-T,)mp = v in Algorithm[3, which can though be extended

e Z (G(03) — H(0:))s to general cases without the assumption easily.

D. Pseudo-Polynomial Implementation

In Algorithm [3, dynamic programming is applied to cal-

culate the joint distribution ofog flg‘;g andlog H (o), which

counts the number of observations with the s g%g and
’ the samdog H (o). Note that this algorithm does not require
z; € {0,1} for all 7, future information - only the collection of all sensing résu

where observations witlG(o) > (o) are labeled in an from SUs in the _current time slot is required. Lin&s 6,
arbitrary order. Next, we will show that the constraint of and 12 of Algorithm[2 can be calculated based on these

Problem[[I2) and that of Problem (B) are equivalent. As shofuUNts-round(a, ) roundsa to r decimal places. We use
in Figure[3, we have round(a,r)_ x 10" to S(_:ale anq round a real to an integer.
The rounding error will be discussed in the simulatidi.
and m specify the maximum and minimum contribution an
observatioro can have tdog SIEZ)) respectively, whileV/’ and
SA+B +0 —axy>C" e 0" <U-axy. (13) p/ specify the maximum and minimum contribution an obser-
Problem [IR) is a Knapsack Problem [23]. By the folvationo can have tdog H (o) respective!y)C(N, j.j') records
o

lowing greedy approach, at leasf2 of (C — C’) can be the number of observations withngg—o) (after rounding)
achieved [[2B]: choosing observations witf(o;) > H(o;) equaltoj andlog H (o) (after rounding) equal t¢’. Boundary

s.t. H(o)x; <U—axvy (12)
G(Oi)zH(Oi),izl.---,l

A+B >axye A+B —axy>0




conditions are set in Ling. Lines 8-10 use iterations to  Proposition 6.1:Let F*(S;) be the optimal solution to

find C(¢,5,7/) foral ¢ = 1,--- N, m < j < M and Problem (C) withS, fixed. Then

m/ < j/ < M'. The recursive function in Lind0 matches wifi wfi s

the fact that when the observation from SU+ 1 is added to Fri, i e ) 2 F2({0, i) (16)

observations from SU to 4, log §§2§ is added byy; 1, and Proof: (sketch) By adding thé+1-th SU into the sensing

log H(o) is added by, 1; on the other hand, when the set, we can at least achieve the same system throughput as

observation from SU + 1 is added to observations from Subefore by ignoring its observation. The detailed proof can b

1to 4, log ggg; is added byz; .1 andlog H (o) is added by found in our technical report [16]. u

pi+1. Note that Linel0 may encounte€(4, j, ;') beyond the Using Propositio_ 611, we will prove it is the best choice

boundaries ofj or j/, the value of which will be treated @s to choose the full set as the sensing set in Corollary 6.2.

The time complexity iSO(N (M — m)(M’ —m’)), which is ~ Corollary 6.2: For all D C S, we haveF*(S5) > F*(D).

pseudo-polynomial. Proof: GivenD C S, we index the elements i\ D from
After the C(N, j, ;') distribution is found, Lines3, 6, 9 the smallestto the largestas- - ,l,, wherem = [S\ D| and

and12 of Algorithm[2 can be calculated accordingly, the tim@ < m < N. By Propositior 611, we hav&™(D) < F*(D U

complexity of which is dominated bp)(N(M — m)(M’' — {li}) < F*(DU{l1,l2}) < -« < FX(DU{ly, - ,ln}) =

By Corollary(6.2, Problem (B) can be solved by first setting

V1. SENSING SET IDENTIFICATION S¢ = S and then applying Algorithri]1 to find the optimal

In this section, we formulate a new problem where the Slgtecision rule. Note that the time complexity is stil(1).

BS is free to choose any subset $fas the sensing set and )

maximizes the expected throughput of the system. We deflde Nd + d > T,

d as the homogeneous reporting delay of the sensing resultgye 5150 investigate the case where the number of S35 in

from an SU to the SU-BS, and as the miscellaneous delay,g ¢qnstrained, and state that it is unlikely to have an effici

which COVers all the processing required after the cottecti algorithm to find the optimal solution. By Propositionl6.iet
of sensing results at the SU-BS . No matter how many ?roblem can be formulated as follows:

SUs are chosen in the sensing set, we always allocate h?’roblem (D):

length of 7. as the control slot. Thus, the control overhead S

is still a constant in this section. Two cases are considered rj{}%f(l —Te)mo Z P(0™|B =0)
Nd+d < T,, where all SUs are allowed in the sensing set f(0)=0
(Section[VI-B); Nd + d > T., where at most = |L-¢| +y Y. P(0™[B=1)

SUs are allowed in the sensing set (Secfion VI-B). We show flo)=1

that the system throughput is monotonic over the number of s.t. |So| = k,

SUs chosen inSy in Proposition[6.Jl. The hardness of the .
herek = | =2 ]|.

constrained problem wittNd + d > T, is unknown and there W d _ )
is no efficient algorithm proposed for this type of problem so It has been shown i [15] that no non-exhaustive search
far. method over the subset 6f of sizek can always solve it op-

. timally when observations are correlated. For the independ
A . Nd+d<T, observation problem such as Problem (D), however, it is not
Without the constraint of the number of SUsS$p, we will  clear whether exhaustive search would be necessary as shown
show that the full set gives the most information. First, wi [22]. Many heuristics such as Sequential Forward Sedacti
define (SFS, [19]), Sequential Backward Selection (SES] [19]) and
P(0®|B =0) = H p}', H (1— P?)’ (14) their variations[[9] have been proposed to solve problems of
' this type. Although we characterize the monotonic propefty
system throughput over the number of SUs in the sensing set,
the complexity of the problem is not clear in the case when
T, is small, compared tav.

1€8Sp,0,=1 jeSo,Oj:O
which is the probability of a particular observation veatdr
where S is the sensing set occurring givéh= 0, and

P®*B=1)= [] a-pP,) ][] P, @5

i€S50,0,=1 j€50,0;=0 VIlI. SIMULATIONS

which is the probability of a particular observation veatdr

where S, is the sensing set occurring givéh= 1. Then we
formulate the problem as follows:

In this section, simulation results are presented for the
performance of solutions proposed for Problems (A), (B),
(C) and (D). We first compare the performance of Bayesian

Problem (C): decision rule (Algorithnidl), majority, AND and OR policies
r}{ng(l ~T.)m Y P(0%|B=0) [25] in Section[VII-A. Then the performance of the greedy
o f(e)=0 algorithm for Problem (B) (Algorithri]2), the random selecii
+ Z p(050|3 =1). and the optimal solution are presented in Sedfion VII-B. The

Flo)=1 performance of Sequential Forward Selection (SES| [19]) is
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3.5 - 2. [l Average
3| —=—Majority p—o——o— o —o——¢ 509 [ Iworst cas
5,*AND s — | g
£°]—OR 5 .5 0.8
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~ (PU throughput) N (number of SUs) Fig. 6. Performance comparison of greedy algorithm oveewintr’s.
(a) With differenty’s. (b) With different N'’s.
Fig. 4. Performance comparison of Bayesian decision rubgority, AND

not all observations witlz(o) > H (o) have to be moved to
_ _ _ _ O = 1. The average case and worst case performances are
compared with the optimal solution to Problem (D) in Secalculated based on the results after the exclusion.

tion VII-Cl In all simulation studies, we consider a cogveti | Figure[5(@), the approximation factors of greedy algo-
radio network withv = 10, Te = 0.2, m = 0.4, andy = 2 rithm and random selection over the optimal solution are-com
For e?‘Fh parameter §ett|ng, we generdliegroups of P;,'s _pared over different values of, the average PU throughput
andP} S fa”dom'Y' which represents the random geographiqgl e system. With a highey, the factor decreases gradually
locations of SUs in a CRN. in both average and worst cases of Algorithin 2 and it is
A. Performance of Bayesian Decision rule the same with random selection although it fluctuates a bit
. ) . . due to the random selection. Greedy algorithm outperforms
Algorithm [1, the Bayesian decision rule based algorithmanqom selection in both average and worst cases. Potgptial
has been proven to be optimal in Sectfodl IV. In Figle 44 Bayesian decision rule assigns more SUsOto= 1

we demonstrate the increase from majority, AND, OR rulggmpared to a lower case. Thus the initial assignment is
in terms of system throughput, which is the objective fumeti oger to a, the PU throughput constraint. Since we only

value of Problem (A). In majority rule, the de_c|3|on1|.spnly consider cases where Bayesian decision rule is not optimal,
when the majority of the SUs sense an active PU; in ANRqyy 5150rithms tend to have worse performance when the
rule, the decision id only when all SUs sense an active PU;

: Sy e initial assignment approachesbecause it gets more sensitive
in OR rule, the decision id if any of the SUs senses any, 5 wrong observation selection.

active PU. We varyy, the average PU throughput, and, . _
the number of SUs, respectively. Among all four algorithms, In Figure[S(B), we vary, the PU throughput constraint,

Bayesian decision rule strictly outperforms the other elehreand compare the perforr_nanc_e of gr_eedy algorithm and random
Among them, the OR rule is better then AND and majorit election. Greedy algorithm is obviously better than rando

rules since the PU transmission is better protected by the ection in both average and worst cases. Furthe.rmore, the
rule. OR rule is too conservative to guarantee SU transcm'ssiworSt. perfor_mance of all random runs generated_ in greedy
algorithm wins over the average performance in random
B. Performance of Greedy Algorithm selection. Approximation factors in both of them increase,
although it is minor in greedy algorithm. The increase can be

Greedy algorithm (Algorithri]2) can achieve strictly greate . o . ) .
than1/2 of the optimal solution to Problem (B), as shown inexpl@_n_ed S|m|Iar.Iy 0 the.lt.m F|gu.@a). a highermakes
me initial Bayesian decision assignment farther away from

selection. Random selection is also based on Bayesiari(xzhaciét S0 tha_t the performance is less sensitive to the ch_mce of
bservations. Due to its randomness, random selection may

rule, which means Algorithril1 is first executed; after thaﬁ . )
observations withG(o) > H(o) are randomly selected to ave poor performance with the factor as low as affodiin
put in O = 1 until the feasibility is satisfied. Thus the main®4f simulation.
difference between greedy algorithm and random seledtsn | We test the performance of greedy algorithm with different
in the selection criterion of observations with(o) > H (o) scales of the network. The number of SUs is varied frfom
after the initial assignment based on Bayesian decisian rult0 10. The approximation factors of both algorithms degrade
In addition, we setv = 0.8, andr = 2. We vary parameters with more SUs. However, the factor is always far abaye,
such asy, the average PU throughput, the PU throughput @S proved in Theorefn 8.3. The random selection drops below
constraint, NV, the number of SUs, and, the decimal places 1/2 in some cases as shown in the figure.
kept in Algorithm[3 in Figure§l5 ard 6 respectively. To show In Algorithm [3, we user as the decimal places kept for
the approximation factor of our algorithm accurately, twtéhe calculations. Although the rounding error is not slyict
boundary cases are excluded in the result presentationewhenaracterized in Section Ill, we show the improvement of
both greedy algorithm and random selection will give thperformance with higher, which means higher resolution,
optimal solution: 1) Bayesian decision rule gives the optimin Figure[6. Note that the worst case performance is always
solution; 2) It is optimal to put all observations i = 1. greater thanl/2. The average performance increases from
Hence, we only show their performance when at least one faltout0.7 to about0.95, which is promising.

and OR.
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(1]

(2]

(3]

(4]

(5]

With Nd+d < T, Problem (C) is the same as Problem (A)[B]
in that the optimal sensing set is the full set (Corollary) 6.2 7]
Thus, we focus on the performance of SFS, a heuristic fo[r
Problem (D) whose hardness is unknown so far. In SFS, wél
start from an empty sensing set. In every step, only the SU
that is not yet chosen and has the largest marginal increa& M. Kudo. Comparison of algorithms that select features pattern
to the system throughput is added to the set. The algoritiHB]
stops when the size of the set reacke#n FigurelT, we vary
k, the size of the sensing set, frointo N and show the 11]
approximation factor of SFS compared to the optimal sotutio

to Problem (D). Whenk increases, the performance of SF
degrades untik = N where all SUs are chosen in the sensing

set so that the order of selection does not matter. SFS 9
average achieves at lead8 of the optimal solution in our
simulation although the factor is lower thar6 in one of the [14]

worst cases.

VIII.

CONCLUSION

[15]

In this paper, we propose a series of algorithms to maximiﬁ%]
the system throughput by cooperative sensing in cognitive
radio networks. Bayesian decision rule is applied to solve
the unconstrained optimization problem optimally. Witke th[17]

PU throughput constraint, the new problem is shown to
NP-hard and a greedy approximation algorithm with pseudo-

polynomial time complexity is proposed. More importantly1°]

the approximation factor is strictly greater thdn2. By

[20]

restricting the number of SUs chosen for sensing, a new
constrained optimization problem is formulated. We présen 4
structural property that more SUs lead to better perforrmanc
o ; : [22
However, the characterization of the combinatorial proble
remains elusive, which is our future work. Moreover, we aie3]

also interested in investigating cases where the obsensti

of SUs are correlated.

[24]
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