
Decompression-Free Inspection: DPI for
Shared Dictionary Compression over HTTP

Anat Bremler-Barr
The Interdisciplinary Center

Hertzelia, Israel
bremler@idc.ac.il

Shimrit Tzur David
The Interdisciplinary Center

Hertzelia, Israel
shimritd@cs.huji.ac.il

David Hay
The Hebrew University

Jerusalem, Israel
dhay@cs.huji.ac.il

Yaron Koral
Tel Aviv University

Tel Aviv, Israel
yaronkor@post.tau.ac.il

Abstract— Deep Packet Inspection (DPI) is the most time
and resource consuming procedure in contemporary security
tools such as Network Intrusion Detection/Prevention System
(NIDS/IPS), Web Application Firewall (WAF), or Content Fil-
tering Proxy. DPI consists of inspecting both the packet header
and payload and alerting when signatures of malicious software
appear in the traffic. These signatures are identified through
pattern matching algorithms.

The portion of compressed traffic of overall Internet traffic is
constantly increasing. This paper focuses on traffic compressed
using shared dictionary. Unlike traditional compression algo-
rithms, this compression method takes advantage of the inter-
response redundancy (e.g., almost the same data is sent over and
over again) as in nowadays dynamic Data. Shared Dictionary
Compression over HTTP (SDCH), introduced by Google in 2008,
is the first algorithm of this type. SDCH works well with other
compression algorithm (as Gzip), making it even more appealing.
Performing DPI on any compressed traffic is considered hard,
therefore today’s security tools either do not inspect compressed
data, alter HTTP headers to avoid compression, or decompress
the traffic before inspecting it.

We present a novel pattern matching algorithm that inspects
SDCH-compressed traffic without decompressing it first. Our
algorithm relies on offline inspection of the shared dictionary,
which is common to all compressed traffic, and marking auxiliary
information on it to speed up the online DPI inspection. We
show that our algorithm works near the rate of the compressed
traffic, implying a speed gain of SDCH’s compression ratio
(which is around 40%). We also discuss how to deal with SDCH
compression over Gzip compression, and show how to perform
regular expression matching with about the same speed gain.

I. INTRODUCTION

Many networking devices inspect the content of packets for
security hazards and balancing decisions. These devices reside
between the server and the client and perform Deep Packet
Inspection (DPI). Using DPI, a device can examine the payload
(and possibly also the header) of a packet, searching for
protocol non-compliance, viruses, spam, intrusions, or other
predefined criteria to decide whether the packet can pass, if it
needs to be dropped or be routed to a different destination.

One of the challenges in performing DPI is traffic compres-
sion. In order to save bandwidth and to speed up web brows-
ing, most major sites use compression. W3Techs published on
July 2011 a ranking breakdown report [1] which shows that
38% of the websites compress their traffic; when focusing on
the top 1,000 sites, a remarkable 78% of the sites compress
their traffic. As the majority of this information is dynamic,

it does not lend itself to conventional caching technologies.
Therefore, compression is a top issue in the Web community.

The first generation of compression is intra-file compres-
sion, i.e. the file has references to back addresses. Two very
common compression methods of the first generation are
Gzip [2] and Deflate [3] which have been both developed
in the 90’s and are very common in HTTP compression.
Both methods use combination of the LZ77 algorithm and the
Huffman coding. LZ77 Compression [4] reduces the string
presentation size by spotting repeated strings within a sliding
window of the uncompressed data. The algorithm replaces
the repeated strings by (distance, length) pair, where distance
indicates the distance in bytes of the repeated string and length
indicates the string’s length. Huffman Coding [5] receives the
LZ77 symbols as input and reduces the symbol coding size by
encoding frequent symbols with fewer bits. Gzip or Deflate
work well as the compression for each individual response,
but in many cases there is a lot of common data shared by a
group of pages, namely inter-response redundancy. Therefore,
compression methods of the next generation are inter-file,
where there is one dictionary that can be referenced by several
files. An example of a compression method that uses a shared
dictionary is SDCH.

Shared Dictionary Compression over HTTP (SDCH) [6]
was proposed by Google Inc, thus, Google Chrome (Google’s
browser) supports it by default. The forecasts, by a report
from Sure Start [7], are that Chrome will most likely surpass
Firefox by the end of 2011 and Microsoft Internet Explorer in
2012. Thus, the spread of SDCH compression should increase
to the same degree. Android is a software stack for mobile
devices that includes an operating system, middleware and
key applications. The Android operating system, was also in-
troduced by Google and it is currently the world’s best-selling
Smartphone platform with 38.1% market share in the USA [8],
[9]. SDCH code appears also in the Android platform and it
is likely to be used in the near future. Therefore, a solution
for pattern matching on shared dictionary compressed data is
essential for this platform as well. SDCH is complement to
Gzip or Deflate, i.e. it could be used before applying Gzip.
On webpages containing Google search results, the data size
reduction when adding SDCH compression before Gzip is
about 40% better than Gzip alone.

The idea of the shared dictionary approach is to transmit the
data that is common to each response once and after that send

only the parts of the response that differ. In SDCH notations,
the common data is called the dictionary and the differences
are stored in a delta file. Specifically, a dictionary is composed
of the data used by the compression algorithm, as well as
metadata describing its scope and lifetime. The scope is
specified by the domain and path attributes, thus, a user can
download several dictionaries, even from the same server.

Multi-patterns matching on compressed traffic requires two
time-consuming phases: traffic decompression and pattern
matching. Currently most security tools either do not scan
compressed traffic, or they ensure that there will not be
compressed traffic by re-writing the HTTP header between
the original client and server. The first method harms security
and may be the cause to miss-detection of malicious activity,
while the second one harms the performance and bandwidth
of both client and server. The few security tools that handle
HTTP compressed traffic, first construct the full page by
decompressing it, and then perform signatures scan. Since
security tools should operate in the network speed, this option
is usually not feasible.

In this paper we present a novel pattern matching algorithm
on SDCH. Our algorithm operates in two phases, the offline
phase and the online phase. The offline phase starts when the
device gets the dictionary. In this phase the algorithm uses
Aho-Corasick [10] pattern matching algorithm (see details in
Section II-C) to scan the dictionary for patterns and marks
auxiliary information to facilitate the scan of the delta files.
Upon receiving the delta file, it is scanned online using Aho-
Corasick algorithm. Since the delta file eliminates repetitions
of strings using references to the common strings in the
dictionary, our algorithm tries to skip these reference, so each
plain-text byte is scanned only once (either in the offline
or the online phases). We show that we skip up to 99%
of the referenced data and gain up to 56% improvement in
the performance of the multi-patterns matching algorithm,
compared with scanning the plain-text directly.

A. Related Work

String matching algorithm is an essential building block
for numerous applications, therefore, it has been extensively
studied [11]. Some of the fundamental algorithms are Boyer-
Moore [12], which solve the problem for a single pattern and
Aho-Corasick [10] and Wu-Manber [13] for multi-patterns.
The basic idea of the Boyer-Moore algorithm is that more
information is gained by matching patterns from the right than
from the left. This allows to heuristically reduce the number
of the required comparisons. The Wu-Manber algorithm uses
the same observation; however, it provides a solution for the
multi-pattern matching problem. The Aho-Corasick algorithm
builds a Deterministic Finite Automaton (DFA) based on the
patterns. Thereafter, while scanning an input text, the DFA is
processed in a single pass.

There are also several works that target the problem of
pattern matching on Lempel-Ziv compressed data [14], [15],
[16], [17]. Specifically, a solution for Gzip HTTP traffic,
called ACCH, was presented in [18]. This solution utilizes

the fact that the Gzip compression algorithm works by elim-
inating repetitions of strings using back-references (pointers)
to the repeated strings. ACCH stores information produced
by the pattern matching algorithm, for the already scanned
uncompressed traffic, and then in case of pointers, it uses
this data in order to determine if there is a possibility of
finding a match or it can skip scanning this area. This solution
shows that pattern matching on Gzip compressed HTTP traffic
with the overhead of decompression is faster than performing
pattern matching on regular traffic. A similar conclusion
regards files (as opposed to traffic) was previously presented in
papers [19]–[21]. However, all these algorithms are geared for
first-generation compression methods, while there is no pattern
matching algorithms for inter-file compression schemes, such
as the rapidly-spreading SDCH.

B. Our Contributions

We are the first to address the problem of pattern matching
algorithm for shared dictionary compressed traffic. As men-
tioned, the spread of this approach increases rapidly, thus, a
dedicated solution is essential. In addition, we have designed
a novel algorithm that scans only a negligible amount of bytes
more than once, as our evaluations confirm (see Section V).
This is a remarkable result considering the fact that bytes in
the dictionary can be referenced multiple times by different
positions in one delta file and moreover, by different delta
files. SDCH compression ratio is about 44%, implying that
56% of the data is copied from the dictionary. Thus, our single
scan implies that our algorithm achieves 56% improvement in
performance compared to scanning the plain-text file.

Our algorithm also has low memory consumption. Our
algorithm stores only the dictionary being used (along with
some auxiliary information per dictionary). In the case of
SDCH, since it was developed for web traffic, one dictionary
usually supports many connections. In other words, the mem-
ory consumption depends on the number of the dictionaries
and their sizes and not in the number of connections, which
is the case in intra-file compression methods.

Finally, an important contribution is a mechanism to
deal with matching regular-expression signatures in SDCH-
compressed traffic. Regular expression signatures gain an
increasing popularity due to their superior expressibility [22].
We show how to use our algorithm as a building block for
regular expression matching. Our experiments show that our
regular expression matching mechanism gains a similar 56%
boost in performance.

II. BACKGROUND

A. The SDCH Framework

SDCH is a new compression mechanism proposed by
Google Inc. In SDCH, a dictionary is downloaded (as a file) by
the user agent from the server. The dictionary contains strings
which are likely to appear in subsequent HTTP responses. If,
for example, the header, footer, JavaScript and CSS are stored
in a dictionary possessed by both user agent and server, the
server can construct a delta file by substituting these elements

2

with references to the dictionary, and the user agent can
reconstruct the original page from the delta file using these
references. By substituting dictionary references for repeated
elements in HTTP responses, the payload size is reduced and
we can save the cross-payload redundancy. In order to use
SDCH, the user agent adds the label SDCH in the Accept-
Encoding field of the HTTP header. The scope of a dictionary
is specified by the domain and path attributes, thus, one
server may have several dictionaries and the user agent has to
have a specific dictionary in order to decompress the server’s
compressed traffic. If the user agent already has a dictionary
from the negotiated server, it adds the dictionary id as a value
to the header Avail-Dictionary. If the user agent does not have
the specific dictionary that was used by the server, the server
sends an HTTP response with the header Get-Dictionary and
the dictionary path; now, the user agent can construct a request
to get the dictionary.

We note that our pattern matching can run in a different
machine than the server and the client (e.g., in a a security tool
that operates as a proxy between them). Since our algorithm
needs the correct dictionary, it can force the server to send a
response with the Get-Dictionary header by deleting the Avail-
Dictionary field in the client’s request.

B. The VCDIFF Compression Algorithm
SDCH encoding is built upon the VCDIFF compression

data format. VCDIFF encoding process uses three types of
instructions, called delta instructions: ADD, RUN and COPY.
ADD(i,str) means to append to the output i bytes, which
are specified in parameter str. RUN(i,b) means to append i
times the byte b. Finally, COPY(p,x) means that the interval
[p, p + x) should be copied from the dictionary (that is, x
bytes starting at position p). The delta file contains the list
of instructions with their arguments and the dictionary is one
long string composed of the characters that can be referenced
by the COPY instructions in the delta file. In the rest of the
paper, we ignore the RUN instruction since it is barely used
and can be replaced with an equivalent ADD for our purposes.

For example, suppose that the dictionary is DBEAACDBCABC,
and the delta file is given by the following commands:

1. ADD (3,ABD)
2. COPY (0,5)
3. ADD (1,A)
4. COPY (4,5)
5. ADD (2,AB)
6. COPY (9,3)
7. ADD (4,AACB)
8. COPY (5,3)
9. ADD (1,A)
10. COPY (6,3)

Thus, the plain-text that should be considered is therefore
(bolded bytes were copied from the dictionary):

ABDDBEAAAACDBCABABCAACBCDBADBC

C. The Aho-Corasick Algorithm and Automaton
Any networking device that is based on DPI uses some

sort of a pattern matching algorithm. One of the fundamental

approaches is the Aho-Corasick [10] algorithm, which our
algorithm uses. The Aho-Corasick algorithm matches multiple
patterns simultaneously, by first constructing a Deterministic
Finite Automaton (DFA) representing the patterns set, and
then, with this DFA on its disposal, processing the text in
a single pass.

Specifically, the DFA construction is done in two phases.
First, the algorithm builds a trie of the pattern set: All the
patterns are added from the root as chains, where each state
corresponds to one symbol. When patterns share a common
prefix, they also share the corresponding set of states in the
trie. The edges of the first phase are called forward transitions.
In the second phase, failure transitions are added to the trie.
These edges deal with situations where, given an input symbol
b and a state s, there is no forward transition from s using b.
In such a case, the DFA should follow the failure transition
to some state s′ and take a forward transition from there. This
process is repeated until a forward transition is found or until
the root is reached, leading to possible failure paths.

The DFA in Fig. 1 was constructed for patterns set
{E,BE,BD,BCD,BCAA,CDBCAB}. Solid black edges are forward
transitions while red scattered edges are failure transitions. Let
the label of a state s, denoted by L(s), be the concatenation of
symbols along the path from the root to s. Furthermore, let the
depth of a state s be the length of the label L(s). The failure
transition from s is always to a state s′, whose label L(s′) is
the longest suffix of L(s) among all other DFA states. This
implies the following property of the Aho-Corasick DFA:

Property 1 If L(s′) is a suffix of L(s) then there is a failure
path (namely, a path comprised only of failure transitions)
from state s to state s′.

The DFA is traversed starting from root. When the traversal
goes through an accepting state, it indicates that some pat-
terns are a suffix of the input; one of these patterns always
corresponds to the label of the accepting state. Formally,
we denote by s.out put the set of patterns matched by state
s; if s is not an accepting state then s.out put = /0. Finally,
we denote by scan(s,b), the AC procedure when reading
input symbol b while in state s; namely, transiting to a
new state s′ after traversing failure transitions and a forward
transition as necessary, and reporting matched patterns in case
s′.out put 6= /0. scan(s,b) returns the new state s′ as an output.
The correctness of the AC algorithm essentially stems from
the following simple property:

Property 2 Let b1, . . .bn be the input, and let s1, . . . ,sn be
the sequence of states the AC algorithm goes through, after
scanning the symbols one by one (starting from the root of
the DFA). For any i ∈ {0, . . . ,n}, L(si) is a suffix of b1, . . . ,bi;
furthermore, it is the longest such suffix among all other states
of the DFA.

III. OUR DECOMPRESSION-FREE ALGORITHM

A. Motivating Example
We demonstrate the insights behind our algorithm using the

following motivating example.

3

Fig. 1. The Aho-Corasick Automaton corresponding to the pattern set
{E,BE,BD,BCD,BCAA,CDBCAB}. Solid black edges correspond to forward
transitions, while scattered red edges correspond to failure transitions.

Assume that the patterns set is
{E,BE,BD,BCD,BCAA,CDBCAB}, whose corresponding
Aho-Corasick automaton is depicted in Fig. 1. In addition,
assume the same dictionary and delta file as in the example
of Section II-B. The plain-text that should be considered is:
ABDDBEAAAACDBCABABCAACBCDBADBC, where we marked
in bold the symbols that were copied from the dictionary, and
in underline patterns that should be matched.

We notice four kinds of matches:
1) Patterns that are fully contained within an ADD instruc-

tion. For example, the pattern BD is fully contained
within the first instruction.

2) Patterns that are fully contained within a COPY instruc-
tion. For example, the pattern BE is fully contained
within the second instruction.

3) Patterns whose prefix is within a COPY instruction. For
example, the prefix of the pattern CDBCAB is within the
fourth instruction.

4) Patterns whose suffix is within a COPY instruction. For
example, the suffix of the pattern BCD is within the eighth
instruction.

Notice that there might be pattern which fall both in
the third and in the fourth category (that is, their prefix is
within one COPY instruction, and their suffix is within another
COPY instruction).

Our algorithm works in two phases. First, we preprocess
the dictionary. Since the dictionary is common to many delta
files, this phase runs offline. Then, we process the delta file
online. We next describe the two phases, motivating by our
example.

The Offline Phase: In the offline phase (Pseudo code in
Algorithm 1), the dictionary is scanned from the first symbol
using the Aho-Corasick algorithm. For each symbol of the
dictionary we store the state in which the algorithm was while
scanning that symbol. In addition, we keep an ordered list of
indices in which a match was found. We will show later that
this information is sufficient to skip almost all the symbols

of COPY instructions in the delta file. Essentially, this follows
from the fact that any scan that starts in the middle of the
dictionary will reach states whose labels are suffixes of the
states we store (recall Property 2). This, in turn, implies that
there is a failure path between the states we store to the
corresponding states had the scan was started in the middle of
the dictionary (Property 1).

The results of the scan on the above-mentioned example
are as follow:

(0) D (1) B (2) E (3) A (4) A (5) C (6) D (7) B (8) C
s0 s2 s3 s0 s0 s7 s8 s9 s10

(9) A (10) B (11) C
s11 s12 s5

Next we denote by State[j] the state corresponding to the
j-th symbol of the dictionary. If the scan reaches an accepting
state (that is, a pattern was found within the dictionary),
we save it in a list called Matched. In that list, we store
the index of the last symbol of the matched pattern along
with the pattern itself (or, equivalently, a pointer to the
pattern). The list is sorted by the index of the symbol. In
our example, there are two matches, implying that Matched =
[〈2,{E,BE}〉,〈10,{CDBCAB}〉].

The Online Phase: In the online phase (Pseudo code in
Algorithm 2), we are scanning the delta file, using the Aho-
Corasick algorithm. Since the data in the ADD instruction is
new (that is, it was not scanned in the offline phase), we simply
scan it by traversing the automaton.

When encountering a COPY (x, p) instruction, which copies
the symbols bp, . . . ,bp+x−1 from the dictionary, we are doing
the following three steps:
Step 1: Scan the copied symbols from the dictionary one by
one, until when scanning a symbol bp+i we reach a state in
the automaton whose depth is less or equal to i. As we shall
prove later, in this scan we ensure to find all patterns whose
suffix is within this COPY instruction (the fourth category of
patterns). Notice that the depth of a state essentially indicates
the length of meaningful suffix of the input when reaching
this state. Therefore, if we reach a state whose depth is less
than the number of copied symbols scanned so far, any pattern
that ends within the COPY instruction is fully contained in it
(the second category). If we reached the end of the copied
data (that is, symbol bp+x−1) before encountering such a small
depth state, we naturally proceed to the next instruction as all
the copied symbol were scanned. Otherwise, we proceed to
the next steps.
Step 2: We check the Matched list to find any patterns in the
dictionary that ends within interval [x,x+ p). If such patterns
are found, we check by their length that they are indeed fully
contained within that interval. Hence, we are ensured to find
all the patterns of the second category.
Step 3: We obtain the state State[p+x−1]; namely, the state
corresponding to the last copied symbol. From that state, we
follow failure transitions in the automaton, until we reach a
state s whose depth is less or equal to x. (since all failure

4

TABLE I
STEP BY STEP EXECUTION OF OUR ALGORITHM ON THE EXAMPLE OF

SECTION III-A

1. ADD (3,ABD) s0
A−→ s0

B−→ s2
D−→ s4

Report pattern BD (by state s4)

2. COPY (0,5) s4
D−→ s0. Stop scanning copied bytes (depth(s0)≤ 1).

Check Matched for indices [0,5).
Report patterns E,BE (from Matched list).
Go to State[4] = s0. depth(s0)≤ 5.

3. ADD (1,A) s0
A−→ s0

4. COPY (4,5) No scanning of copied bytes (depth(s0)≤ 0).
Check Matched for indices [4,9).
Go to State[8] = s10. depth(s10) = 4≤ 5.

5. ADD (2,AB) s10
A−→ s11

B−→ s12
Report pattern CDBCAB (by state s12)

6. COPY (9,3) s12
A−→ s0. Stop scanning copied bytes (depth(s0)≤ 1).

Check Matched for indices [9,12).
Match was found, but does not fit the interval.
Go to State[11] = s5. depth(s5) = 2≤ 3.

7. ADD (4,AACB) s5
A−→ s13

A−→ s14.
Report pattern BCAA (by state s14)

s14
C−→ s7

B−→ s2.

8. COPY (5,3) s2
C−→ s5

D−→ s6
Report pattern BCD (by state s6)
s6

B−→ s9 (reached end of instruction)

9. ADD (1,A) s9
A−→ s0

10. COPY (6,3) No scanning of copied bytes (depth(s0)≤ 0).
Check Matched for indices [6,9).
Go to State[8] = s10. depth(s10) = 4 > 3.

s10
f ailure−−−−→ s5. depth(s5) = 2≤ 3.

paths in the automaton end in the root whose depth is 0, we
are guaranteed to eventually stop). Properties 1 and 2 yield
that L(s) is the longest suffix of bp, . . . ,bp+x−1 (among all
states’ labels). Since we have dealt in Step 1 with all patterns
that begin before bp, the meaningful suffix of the input starts
after bp. This implies that the Aho-Corasick algorithm would
have been also in state s, had it scanned all the symbols
bp, . . . ,bp+x−1 one by one. Therefore, when processing the
next instructions the algorithm behaves exactly the same,
guaranteeing to find all patterns of the third category. In
addition, this implies identical scans also on ADD instructions,
therefore guaranteeing to find all patterns of the first category.

Table I shows a step-by-step execution of our algorithm
on the above mentioned delta file. The algorithm reports the
same matched patterns, and reaches the same state (s5) as if
it scanned the plain-text. However, the algorithm skips most
of the symbols (14 out of 19) within the COPY instructions.
We will further investigate the portion of skipped symbol in
Section V.

B. Correctness

The pseudo-code of the offline phase is presented in Algo-
rithm 1, while Algorithm 2 depicts the online phase.

Given a dictionary and a delta-file, we denote by b1, . . . ,bn,
the plain-text string obtained by applying the instructions of
the delta-file. A symbol bi is scanned if Algorithm 2 applies
Aho-Corasick scan operation to obtain the next state after
reading bi (that is, either in Line 6, Line 9, or Line 14
of Algorithm 2); otherwise, we say that the symbol bi is

Algorithm 1 The Offline Phase
1: Patterns[]← getPatterns(PatternsFile)
2: AC← new Aho−Corasick()
3: AC.CreateTree(Patterns[])
4: Dict← loadDictionary(dictFile)
5: cur state← AC.root
6: for i = 0; i < dict.length; i++ do
7: cur state← AC.scan(cur state,dict[i])
8: State[i]← cur state
9: if cur state.out put 6= /0 then

10: Matched.addLast(〈i,cur state.out put〉)

Algorithm 2 The Online Phase
1: cur state← AC.root
2: while hasNextInstruction(deltaFile) do
3: inst← getNextInstruction(deltaFile)

.
inst is a structure containing the instruction along
with its parameters

4: if inst.type==ADD then
. inst.str is the string to append, inst.len is its length

5: for i = 0; i < inst.len; i++ do
6: cur state← AC.scan(cur state, inst.str[i])
7: else if inst.type==RUN then

.
inst.literal is the symbol to append,
inst.len is the number of times

8: for i = 0; i < len; i++ do
9: cur state← AC.scan(cur state, inst.literal)

10: else . inst.type is COPY.

.
inst.addr is the starting position;
inst.len is the length of the copied string

11: literals← Dict[inst.addr, . . . , inst.addr+inst.len−1]
12: i = 0
13: while (cur state.depth > i and i≤ inst.len) do
14: cur state← AC.scan(cur state, literals[i])
15: i++
16: if i≤ inst.len then
17: target state← State[inst.addr+ inst.len−1]
18: while target state.depth > inst.len do
19: target state← target state. f ailure

. the failure transition of traget state
20: cur state← target state
21: for all 〈x,P〉 ∈Matched do
22: if x ∈ [inst.addr, inst.addr+inst.len−1] then
23: for all p ∈ P do
24: if x− p.length≥ inst.addr then
25: report pattern p

skipped. Notice that all skipped symbols were copied from
the dictionary using a COPY instruction. We further denote by
z0,z1, . . . ,zn the states which Aho-Corasick algorithm traverses
when running on the plain text string b1, . . . ,bn (note that
z0 = s0, the initial state before reading b1). Finally, we assume,
without loss of generality and only for the ease of notations,
that the first symbol of a COPY instruction is scanned (this
holds anyway, unless the automaton is in state s0 before the
COPY instruction).

Lemma 1 Before each scanned symbol b j, Algorithm 2 is in
state z j−1.

Proof: For each scanned symbol in b j ∈ {b1, . . . ,bn},
let pos(b j) be the number of scanned symbol before b j. The
proof follows by induction on pos(b j).

5

Initially, Algorithm 2 is in state s0 = z0 and the claim
follows since the first symbol is scanned. Assume now that the
claim holds for all scanned symbols whose pos value is less
than pos(b j). We next prove it holds for b j by distinguishing
between the following two cases:

First, if b j−1 is a scanned symbol, then, by the induction
hypothesis, Algorithm 2 is in state z j−2 before reading b j−1.
Since b j−1 is a scanned symbol, Algorithm 2 applies, by
definition, Aho-Corasick scan operation to obtain the next state
after reading b j−1, and therefore transits to state z j−1, and the
claim follows.

Otherwise, the state before reading b j was set in Line 20
of Algorithm 2, which was executed while processing a
COPY instruction. Denote by a the index (in the plain text) of
the first symbol that was copied by that COPY instruction; the
copied symbols are therefore ba, . . . ,b j−1. Notice that Line 20
is reached only if the value of i in Line 16 is less than or equal
to j− a. This implies that all the symbols ba, . . . ,ba+i−1 are
scanned, and that the label of the state after scanning ba+i−1
is a proper suffix of ba, . . . ,ba+i−1 (otherwise the condition
in Line 13 does not hold). By the induction hypothesis, since
ba+i−1 is a scanned symbol that precedes b j, Algorithm 2
is in state za+i−2 before scanning ba+i−1, and in state za+i−1
after applying the scan procedure in Line 14. This implies that
L(za+i−1) is a proper suffix of ba, . . . ,ba+i−1. Notice that when
scanning the j− (i− a) symbols bi+a, . . . ,b j−1, the depth of
the state can increase by at most j− (i−a). Hence L(z j−1) is
a proper suffix of ba, . . . ,b j−1; since these symbols are a suffix
of the plain text, L(z j−1) is the longest such suffix among all
states of the automaton (recall Property 2 in Section II-C).

It is important to notice that all these bytes were copied
from the dictionary; denote by cx, . . . ,cy their corresponding
indices in the dictionary. Consider now the value of State[y],
which obtained by scanning the same DFA from the beginning.
Property 2 implies that L(State[y]) is the longest suffix, among
all DFA’s states, of the sequence c1, . . . ,cy, which implies that
L(z j−1) is a suffix of L(State[y]). Thus, by Property 1, there
is a path of failure transitions on the automaton from State[y]
to z j−1; this path is traversed in Lines 18–19. Since L(z j−1) is
the longest such suffix with length less than j−a, the traversal
is stopped exactly in z j−1. Thus, Algorithm 2 transits to state
z j−1 also in this case, concluding our proof.

Lemma 2 All matched patterns that end with a skipped
symbol are fully contained within a single COPY instruction.

Proof: Assume towards a contradiction that this is not a
case, and consider the other three possibilities.

First, for patterns that are fully contained within an ADD in-
struction, all symbols of ADD instructions are scanned and
therefore these patterns cannot end with a skipped symbol.

Similarly, for patterns whose prefix is within a COPY in-
struction and suffix is in an ADD instruction, the last symbol
of these patterns is always scanned.

Finally, we deal with patterns whose suffix is within a
COPY instruction, but are not entirely within that COPY instruc-
tion. Consider the symbols ba, . . . ,b j−1 which were copied in

that COPY instruction, and assume that bk is the last symbol of
the pattern within these symbol (a≤ k < j). Since the pattern
exceeds the copied symbols, it implies that L(zk) is longer
than k− a symbols. Since a depth of successive states can
increase only by one, it implies that the depth of all states z`
for a ≤ ` ≤ k is strictly larger than `− a. This implies that
the condition of Line 13 holds for all these states, including
bk. This, in turn, implies that bk is scanned (in Line 14),
contradicting the assumption that it was skipped.

Notice that all patterns that are fully contained within a
single COPY instruction are found using the Matched list in
Lines 21–25. Hence, Lemmas 1 and 2 along with this fact,
immediately yield the following theorem:

Theorem 3 Our algorithm reports exactly the same matched
patterns as Aho-Corasick algorithm, which runs on the plain-
text.

C. Optimizations

In this section, we will present several optimizations to our
basic algorithm to enhance its online running time. These op-
timizations trade running time with modest memory increase.

1) Efficient pattern lookups in the Matched list: Let n be
the length of the Matched list. The pattern lookups in the
Matched list is performed in Lines 21–25 of Algorithm 2
and runs in O(n). A common way to reduce this running
time is to save the Matched list as a balanced tree or as a
skip list [23]. In such a case, the running time to find the
first index which is larger than the copied address is only
O(logn); then, the elements of Matched are checked one by
one until the first element with index outsize the copied data
is encountered. Another option, that trades memory with time,
is to add an array of pointers, denoted by MatchedPointers,
of the dictionary size (that is, with the same size as the State
array). Element MatchedPointers[i] contains a pointer to an
element 〈x,P〉 ∈Matched such that x is the smallest index that
is greater or equal to i. This data structure reduces the running
time to find the first index which is larger than the copied
address to O(1) (a single lookup in the MatchedPointers
array).

Alternatively, given a COPY (x, p) instruction, one can cache
the corresponding internal matches within [p, p+ x− 1] in a
hash-table whose key is “(x, p)”. In such a case, when the
exact COPY appears again, one can obtain all the matches in
a single access to that hash-table. Since the dictionary usually
contains common phrases (e.g., HTML commands) that are
used again and again, our experiments show that such a cache
is extremely efficient. Specifically, during a search on 100 delta
files with the same dictionary, the portion of cache hits rises
very fast and becomes almost 100%. After a sharp learning
curve, the average cache hits on the last 90 files was 99.4%
and the average on the last 50 files was 99.7%.

2) Eliminating the traversal of failures paths: Failure path
traversal is done at the end of the COPY instruction processing
in Lines 18–19 of Algorithm 2.

6

Notice that the failure paths depends only on the state saved
by Algorithm 1, thus one can perform the failure path traversal
in the offline phase and save the entire path in the State array.
For example, State[8] of the example of Section III-A, which
contains the state s10 can be replaced by the entire failure
path starting at s10: (s10,s5,s7,s0). Furthermore, this path can
be saved in a tree-based structure according to the depth of the
different states. Thus, in order to find the appropriate state in
Line 20, one should only perform a logarithmic (in the failure
path length) number of operations.

In practice, failure path traversals impose almost no over-
head on the running time of Algorithm 2, as we detail in
Section V.

D. Dealing with Gzip over SDCH

SDCH delta file are usually compressed by Gzip to decrease
its size even further. In such a case, the client needs to first de-
compress (using Gzip) the file and then to decompress it using
the dictionary to get the plain-text. Our algorithm requires that
the compressed traffic has to be unzipped first; then, instead
of decompress the SDCH compression, the resulting delta file
is passed to our algorithm.

We note that Gzip decompression is a cheap operation
compared to pattern matching. Furthermore, as mentioned
above, SDCH compression ratio is around 44%, i.e. 56% of
the data is copied from the dictionary. This numbers imply
that even if the algorithm has to unzip the delta file before it
scans it, we still improve the performance by around 56%.

IV. REGULAR EXPRESSIONS INSPECTION

Regular expressions become an integral part of patterns
that are used for security purposes. In Snort, an open source
network intrusion prevention and detection system [24], 55%
of the rules contain regular expression. Each regular expression
pattern contains one or more string tokens along with one or
more regular expression tokens. For example the regular ex-
pression \d{6}ABCDE\s+123456\d*XYZ$ has the string tokens
ABCDE, 123456, XYZ, and the regular expression tokens \d{6},
\s+ and \d*.

Like Snort, we treat the string tokens as anchors and insert
them to the DFA. Only when all the anchors of a single
regular expression pattern are matched, the regular expression
tokens are examined (e.g., using a regular expressions engine).
Furthermore, in most cases, we can limit the pattern search in
at least one direction; namely, if before the first (resp., after
the last) anchor, all tokens have a limited size (i.e., do not
contain ’+’ or ’*’), there is a bounded number of characters
we should examine before (resp., after) the matched position
of the anchor. In the above example, if we matched the anchor
ABCDE at position x1 and the anchor XYZ at position x2, the
left bound, lbound is x1−10 and the right bound, rbound , is x2.
Thus, the interval [x1−10,x2] should be passed to the regular
expressions engine for re-examination. Note that lbound can be
0 and rbound can be the size of the file if there is an unlimited
length token before the first anchor or after the last anchor.

To conclude, our regular expression inspection works as
follows: First, constant strings (a.k.a anchors) are extracted
from the regular expression offline. Then, our algorithm is
applied on the SDCH-compressed traffic with the anchors as
the patterns set. The anchors have to be matched in the same
order of there appearances in the pattern. We save all the
possible lbound values (derived by the matched positions of
the first anchor) and the maximal value of rbound . Finally, we
check if there is a regular expression which all its anchors
were matched. If there is, for each lbound value, we run an off-
the-shelf regular expression engine from this value until, either
we scan a character that yields a mismatch, or we have a full
pattern match. In most of the cases, as we detail in Section V,
we are scanning a few bytes for each lbound value, and the
total number of scanned bytes in the interval is significantly
less than its size. Note that since we match the anchors at the
correct order, the last scan is guaranteed to end before rbound .

V. EXPERIMENTAL RESULTS

Data Sets: Nowadays, Google‘s servers are the most
prominent web servers that use shared dictionary compressed
traffic. Furthermore, Google search is a fertile ground for
popups, banners or any objectionable content. Thus, we eval-
uate our algorithm with Google search result files. We first
downloaded the dictionary from google.com and used the
1000 most popular Google search queries (for each such query,
we constructed an HTTP request and got a SDCH-compressed
webpage, which we use as an input file).

The signatures data sets are drawn from a snapshot of Snort
rules as of October 2010 [24]. We note that shared dictionary
compressed traffic is mainly used on the traffic from the server
side to the client side, which is not the case supported by most
of the underlying rules within Snort. Still, in order to perform
experiments using regular expressions we have extracted all
Perl Compatible Regular Expressions (PCREs) from rules
matching two header groups differing in the destination port
(any and $HTTP PORTS). There are 40 rules from the former
group and 423 rules from the latter.

Since the input files do not contain many matches, specif-
ically long matches are rare, we also constructed for each
input file a synthetic patterns file, in the following manner:
We calculated the length distribution of Snort’s patterns and
we randomly pick lengths from this distribution. For each
length value `, we took a sequence of ` characters from the
uncompressed version of the input file and add them as a
pattern to the patterns file for the specific input file. We stop
when the total length of the selected patterns is equal to the
input file size. As a result, we have 1000 input files, each with
its own patterns file, such that each pattern in that file has at
least one match in the corresponding input file. We call this
case the synthetic case.

Time Reduction: We compared the execution time of
our algorithm to an execution time of a naı̈ve algorithm that
first decompresses the file and then applies the Aho-Corasick
algorithm on the plain-text. Our experiments show a significant
improvement: on average, the execution time of our algorithm

7

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

State Depth/Copy−Value Length

%
 o

f
F

ile
s

States Depth
Depth after One Failure Transition
Depth after Two Failure Transition
Copy−Value Length

Fig. 2. The depth of first three states of each failure path (synthetic case)
compared to the length of the COPY instructions.

is only 34% of the time it takes the naı̈ve algorithm to
complete. It is important to note that some components of the
naı̈ve implementation are done using off-the-shelf software.
Hence, we chose to take the following conservative approach
in estimating the time reduction; our approach ignores com-
pletely the decompression stage of the naı̈ve implementation
and therefore it underestimates our performance gain.

Notice that our algorithm run time depends on the number
of scanned bytes (Algorithm 2, Lines 6, 9, and 14) and the
failure transitions it takes (Algorithm 2 , Lines 18–19). Thus,
our main figure of interest is the ratio between the number
of the bytes our algorithm scans and these failure transitions,
in addition to the size of the plain text (scanned by the naı̈ve
algorithm); namely,

scan-ratio =
scanned bytes+ failure transitions taken

size of the plain text
(1)

Note that the different bytes of the plain-text can be
classified by the type of their corresponding SDCH instruc-
tion. Let |add| be the number of bytes generated by either
ADD or RUN instruction (the number of bytes generated by
a RUN instruction is negligible) and |copy| be the number
of bytes generated by a COPY instruction. Furthermore, we
denote by |copyscanned | the number of bytes generated by a
COPY instruction and scanned by our algorithm (that is, in
Line 14). Thus, Equation (1) can be rewritten as

scan-ratio =
|add|+ |copyscanned |+ failure transitions taken

|add|+ |copy|
Our experiments show that even in the synthetic case in

most of the files the algorithm takes no more than 2 failure
transitions. The maximum number of failure transitions the
algorithm takes is 19 (it occurs only in a single file), and the
average number of transitions per file is 2.35; this is extremely
low considering an average of 557 COPY instructions per
file. This low number is explained by examining the relation
between the length of the COPY instructions and the depth of
the states in the State array (corresponding to the dictionary
file), as shown in Fig. 2. In any case where that length is larger
than the depth of the state, no failure transition is taken (recall
Line 18 in Algorithm 2). We also depicted the histograms

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Compression Ratio

S
c
a
n
 R

a
ti
o

Regular Files
Synthetic Case
Optimal Ratio

Fig. 3. Comparison between the scan-ratio and compression-ratio for the
real-life and synthetic cases. The line depicts the best achievable scan-ratio.

of depth after a single failure transition and after two failure
transitions; these histograms show that even in the rare case
where a failure transition is taken, the failure path traversal is
stopped almost immediately.

We compare the scan-ratio with the compression-ratio
|add|/(|add|+ |copy|); namely, the fraction of bytes that
were generated using ADD instructions compared to the total
number of bytes (or equivalently, the ratio between the size of
the compressed text and the plain text).

Note that the best achievable scan-ratio is equal to the
compression-ratio (when |copyscanned | = 0). Furthermore, the
better the compression-ratio, the better the scan-ratio is,
because more bytes are copied and therefore, potentially, less
bytes should be scanned. Fig. 3 presents this exact relation
for the input files with Snort‘s patterns and for the input files
in the synthetic case. With Snort’s patterns, the input files
do not contain long patterns so the algorithm does not reach
states with high depth. Therefore, the condition in Line 13
of Algorithm 2 rarely holds and the scan-ratio almost equals
the compression-ratio for any compression-ratio value. In the
synthetic case, the input files contain patterns of all lengths
and the algorithm reaches states with high depth. In this case,
the algorithm has to scan several bytes until the number of
scanned bytes is equal or greater than the depth of the current
state. Thus, for the synthetic case, the scan-ratio is between
1.05 to 1.2 times the compression-ratio, and it depends on the
compression-ratio value.

To conclude, these figures imply that we achieve almost
optimal time reduction, which equals to the compression ratio.

Regular Expressions: In order to evaluate the scan ratio
with the regular expression patterns, we have to calculate the
number of extra bytes the algorithm scans when it matches
all the anchors of such a pattern. Since matches are in
general infrequent [25], the regular expression engine is not
executed often (on average, we have only 5 executions per
file). Furthermore, even when all the anchors are matched, the
engine will not have scan more than a few bytes. Let regexpscan
be the bytes that are scanned by the regular expression engine.
The scan ratio from Equation V is redefined to include
these characters by adding regexpscan to its numerator. Fig. 4
presents the relation between the compression ratio to the

8

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Compression Ratio

S
c
a
n
 R

a
ti
o

Regular Expression Scan
Optimal Ratio

Fig. 4. Comparison between the scan-ratio when considering also regular
expression matching and compression-ratio for the real-life case.

redefined scan ratio. On average, the overhead of the regular
expression is around 1% which is almost negligible; the scan-
ratio stays remarkably close to the optimal value. Note that
the minimal scan ratio of any regular expression engine that
scans the uncompressed file is 100%, i.e. every byte is scanned
at least once. An engine that performs one full scan for the
anchors and then a scan for regular expression tokens (like
Snort), inspects all bytes once, in the case where not all string
anchoress are matched, and more than once otherwise.

Memory Consumption: Let n be the size of the dictionary,
k be the size of the Matched list, and p the number of bits
required to represent a pointer in the system. The memory
consumption of our algorithm is np+2kp, where the first term
is for holding the values of the elements in State array, and
the second term is for the Matched list (each of its k element
holds a pointer to the dictionary and a pointer to the patterns).

Searching for Snort patterns on google.com dictionary
yields a Matched list of size approximately 40000 (we ignored
matches of patterns of length 1 which can be dealt separately).
In our given input, we need no more than 17 bits to address
either a byte in a dictionary or a state in the DFA, therefore
the memory consumption is 3457000 bits = 420 KB for n =
116 KB. This memory consumption can be further reduced
using a variable-length pointer encoding.

VI. CONCLUSIONS

This paper presents a novel pattern matching algorithm on
shared dictionary compressed traffic, which scans 99% of the
bytes only once: around 56% of these bytes are scanned in an
offline phase, implying that it gain up to 56% improvement
in the performance over multi-patterns matching algorithm
that scans the plain-text. In addition, our algorithm has low
memory consumption (around 420 KB for today’s dictionary).

Our algorithm can run on two different environments.
First, it can run within a security tool that performs DPI
and therefore has to be deployed with a pattern matching
algorithm. In addition, it can run in a single user environment,
such as PC, tablet or cellular phone. The performance of
all these tools is dominated by the speed of their string-
matching algorithms [26], therefore our algorithm provides
a real improvement when dealing with SDCH-compressed

traffic. In addition, due to its low memory footprint, the
algorithm can be easily deployed in nowadays environments.

Our future work includes methods to exploits the interplay
between a Gzip compression which is performed over an
SDCH-compressed file.

REFERENCES

[1] W3Techs, “Usage of compression broken down by ranking.” [Online].
Available: http://w3techs.com/technologies/breakdown/ce-compression/
ranking

[2] P. Deutsch, “Rfc1952 gzip file format specification version 4.3,” IETF
RFC 1952, 1996.

[3] ——, “Deflate compressed data format specification version 1.3,” IETF
RFC 1951, 1996.

[4] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, pp. 337–343, May 1977.

[5] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of IRE, pp. 1098–1101, 1952.

[6] B. M. J. Butler, W. Lee and K. Mixter, “A proposal for shared dictionary
compression over http,” Google Inc., Tech. Rep., 09 2008.

[7] SureStart, “Google chrome tops 20% market share for
june 2011.” [Online]. Available: http://www.sure-start.com/
google-chrome-tops-20-market-share-for-june-2011/3675556/

[8] T. Virki and S. Carew, “Google topples nokia from smartphones
top spot,” Reuters. [Online]. Available: http://www.reuters.com/article/
2011/01/31/us-google-nokia-idUSTRE70U1VW20110131

[9] Canalys, “Googles android becomes the worlds leading smart
phone platform.” [Online]. Available: http://www.canalys.com/pr/2011/
r2011013.html

[10] A. Aho and M. Corasick, “Efficient string matching: an aid to biblio-
graphic search,” Commun. of the ACM, pp. 333–340, 1975.

[11] B. W. Watson and G. Zwaan, “A taxonomy of keyword pattern matching
algorithms,” Eindhoven University of Technology, Tech. Rep. 27, 1992.

[12] R. Boyer and J. Moore, “A fast string searching algorithm,” Commun.
of the ACM, pp. 762 – 772, October 1977.

[13] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Department of Computer Science, University of Arizona, Arizona, Tech.
Rep. TR-94-17, May 1993.

[14] A. Amir, G. Benson, and M. Farach, “Let sleeping files lie: Pattern
matching in z-compressed files,” J. Comput. Syst. Sci., pp. 299–307,
1996.

[15] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa, “Shift-and approach
to pattern matching in lzw compressed text,” in CPM, 1999, pp. 1–13.

[16] G. Navarro and M. Raffinot, “A general practical approach to pattern
matching over ziv-lempel compressed text,” in CPM, 1999, pp. 14–36.

[17] G. Navarro and J. Tarhio, “Boyer-moore string matching over ziv-lempel
compressed text,” in CPM, 2000, pp. 166–180.

[18] A. Bremler-Barr and Y. Koral, “Accelerating multi-patterns matching on
compressed http traffic,” in IEEE INFOCOM, 2009, pp. 397–405.

[19] U. Manber, “A text compression scheme that allows fast searching
directly in the compressed file,” ACM Trans. Inf. Syst., pp. 124–136,
1997.

[20] N. Ziviani, E. S. de Moura, G. Navarro, and R. Baeza-Yates, “Com-
pression: A key for next-generation text retrieval systems,” Computer,
vol. 33, pp. 37–44, November 2000.

[21] M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara, S. Fuka-
machi, T. Shinohara, and S. Arikawa, “Speeding up string pattern
matching by text compression. the dawn of a new era.” Trans. Inf.
Process. Soc. Jpn., no. 3, pp. 370–384, 2001.

[22] M. Becchi and S. Cadambi, “Memory-efficient regular expression search
using state merging,” in IEEE INFOCOM, may 2007, pp. 1064 –1072.

[23] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Commun. of the ACM, no. 6, pp. 668–676, 1990.

[24] “Snort,” http://www.snort.org.
[25] A. Luchaup, R. Smith, C. Estan, and S. Jha, “Speculative parallel pattern

matching,” will appear in June 2011 issue of the IEEE Transactions on
Information Forensics and Security, 2011.

[26] M. Fisk and G. Varghese, “An analysis of fast string matching applied
to content-based forwarding and intrusion detection,” Techical Report
CS2001-0670 (updated version), 2002.

9

