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How Good is Bargained Routing?
Gideon Blocq and Ariel Orda

Abstract—In the context of networking, research has focused
on non-cooperative games, where the selfish agents cannot reach
a binding agreement on the way they would share the infras-
tructure. Many approaches have been proposed for mitigating
the typically inefficient operating points. However, in a growing
number of networking scenarios selfish agents are able to
communicate and reach an agreement. Hence, the degradation
of performance should be considered at an operating point of
a cooperative game. Accordingly, our goal is to lay foundations
for the application of cooperative game theory to fundamental
problems in networking. We explain our choice of the Nash
Bargaining Scheme (NBS) as the solution concept, and introduce
the Price of Selfishness (PoS), which considers the degradation of
performance at the worst NBS. We focus on the fundamental load
balancing game of routing over parallel links. First, we consider
agents with identical performance objectives. We show that, while
the PoA here can be large, through bargaining, all agents, and
the system, strictly improve their performance. Interestingly, in
a two-agent system or when all agents have identical demands,
we establish that they reach social optimality. We then consider
agents with different performance objectives and demonstrate
that the PoS and PoA can be unbounded, yet we explain why both
measures are unsuitable. Accordingly, we introduce the Price of
Heterogeneity (PoH), as an extension of the PoA. We establish an
upper-bound on the PoH and indicate its further motivation for
bargaining. Finally, we discuss network design guidelines that
follow from our findings.

I. INTRODUCTION

A. Background and Motivation

Traditional communication networks were designed and
operated with systemwide optimization in mind. However, it
has been recognized that systemwide optimization may be
an impractical paradigm for the control of modern network-
ing configurations. Indeed, control decisions in large-scale
networks are often made by various agents independently,
according to their individual interests, and Game Theory [1]
provides the systematic framework to study and understand
their behavior. To date, game theoretic models have been
employed in virtually all networking contexts. These include
control tasks at the network layer, such as flow control
(e.g., [2]), routing (e.g., [3]–[6]) and multicasting as well as
numerous studies on control tasks at the link and MAC layers.
Moreover, the application of Game Theory to communication
networks has extended beyond control tasks. For example,
several studies considered game theoretic scenarios in the
context of the creation and evolution of the network topology.
Others considered game theoretic scenarios at other layers,
e.g., numerous studies in the context of network security
(see [7] and references therein) and a large body of work on
peer-to-peer applications.
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Research to date has mainly focused on non-cooperative
networking games, where the selfish decision makers (i.e., the
players, or agents) cannot communicate and reach a binding
agreement on the way they would share the network infras-
tructure. Moreover, the main dynamics that were considered
were Best-Reply, i.e., each player would observe the present
state of the network and react to it in a self-optimizing manner.
Accordingly, the operating points of such systems were taken
to be some equilibria of the underlying non-cooperative game,
most notably, Nash equilibria.

Such equilibria are inherently inefficient [8] and, in general,
exhibit suboptimal network performance. As a result, the
question of how bad the quality of a Nash Equilibrium is with
respect to a centrally enforced optimum has received consid-
erable attention e.g., [6], [9], [10]. In order to quantify this
inefficiency, several conceptual measures have been proposed
in the literature. In particular, the Price of Anarchy (PoA) [9],
defined as the ratio between the system (social) performance
at a (worst) Nash Equilibrium and the corresponding optimal
system performance, has become the de facto benchmark
for measuring the performance of non-cooperative networking
games.

It has been repeatedly observed that the value of the PoA is
typically large, often unbounded and many approaches have
been proposed for mitigating this problem. These include
schemes for resource provisioning [11], Stackelberg strategies
for controlling part of the traffic [12], [13], incentive schemes
for cooperation or cost sharing among mobile terminals [14],
[15], schemes for choosing the initial configuration [16], [17],
schemes for exercising limited control on the game dynamics
[17] and numerous proposals for pricing mechanisms. Some
studies also considered players to be “partially altruistic” [18].
Nevertheless, in all the above studies, the standing assumption
has been that the network agents play a non-cooperative game.

However, there is a growing number of networking scenar-
ios where, while there is competition among self-optimizing
agents (i.e., a “game” among “selfish players”), there is also
a possibility for these agents to communicate, negotiate and
reach a binding agreement. Indeed, in many scenarios the
competition is among business organizations, which can, and
often do, reach agreements (e.g., SLAs) on the way that they
provide, consume or share the network resources. The proper
framework for analyzing such settings is that of Coopera-
tive Game Theory [1]. Such a paradigm transfer, from non-
cooperative to cooperative games, calls to revisit fundamental
concepts. Indeed, the operating point of the network is not an
equilibrium of a non-cooperative game, but rather a solution
concept of a cooperative game. Accordingly, the performance
degradation of such systems should be considered at the new
operating points. It is also important to note that the (typically
high, often unbounded) Price of Anarchy is a price that is
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paid not only due to the selfish nature of the decision makers,
but also due to their inability to cooperate; when the latter
becomes possible, we need a measure that accounts for the
price that is paid solely due to the selfishness of the network
agents.

The goal of this paper is to lay foundations for the applica-
tion of Cooperative Game Theory to fundamental problems
in networking. We focus on the Nash Bargaining Scheme
(NBS) [1] as the solution concept for cooperative networking
games. As shall be discussed, per bargaining problem, the
existence and uniqueness of a solution to the NBS is guaran-
teed under mild conditions. Accordingly, we introduce a novel
concept for measuring the effect of cooperation, termed as the
Price of Selfishness (PoS). Taken as the ratio between the sys-
tem (social) performance under the (worst) Nash Bargaining
Scheme and the corresponding optimal system performance,
the PoS quantifies the loss incurred by agents solely due to
their selfish behavior.

B. Previous Work
Cooperative game theoretic models and solution concepts

(and the NBS in particular) have been considered in the context
of networking by a few studies. In [19], the NBS is used to
distribute jobs fairly among servers, while in [20] it is used
to allocate bandwidth fairly among users. In [21], the NBS is
implemented to improve the fairness and efficiency of traffic
engineering and server selection. In [22], network formation
is addressed through the use of cooperative game theoretic
tools such as the Shapley Value [1] and the NBS. There, it is
numerically shown that the NBS permits to allocate costs fairly
to users within a reasonable computation time. In [23], the
NBS is used to calculate the subgame perfect equilibrium and
provide upper-bounds for the PoA. In [24], coalition games and
the Shapley Value are used to maximize the utility framework
for routing and flow control in ad-hoc networks. In [25] a
modified version of the NBS is used to set fair prices between
ISP and CP’s in a nonneutral network.

Cooperative Game Theory and the NBS in particular, have
also been used in spectrum sharing [26], where nodes in a
multi-hop wireless network need to agree on a fair allocation
of the spectrum. In [27], a bargain-based mechanism is pro-
posed for message passing in participatory sensing networks,
in order to encourage cooperative message trading among the
selfish nodes. In [28], a coalition game model with a stable
solution is proposed in order to investigate the performance
gain of multiple communities in delay tolerant networks. In
[29], the design of new coalition-based dynamics is investi-
gated in the context of cognitive radio networks. In [30], a
network synthesis game is studied, in which individual access
networks with insufficient resources form coalitions in order
to satisfy service demands. There, the Core [1] of the game is
investigated for several payoff allocations among the players.
In [31], various cost allocation schemes are studied for players
that have the option to join coalitions of multicast services in a
wireless network. We also note that there is a body of work on
network bargaining games, e.g., [32] and references therein;
however, in those studies a ”network” describes some relations
among general economic agents.

Most related to the present paper, a previous study [33]
proposed the Strong Price of Anarchy (SPoA) as a measure
that considers the degradation of performance when some
collaboration among the agents is possible. The SPoA is
defined similarly to the PoA but considers only strong (rather
than all) Nash equilibria;1 however, since such equilibria are
not guaranteed to exist (in particular, we indicate they do not
in the framework considered in this paper), it cannot provide
a general benchmark that would be the “cooperative games
counterpart” of the Price of Anarchy.

C. Our Contribution

We concretize our study by considering the setting of
routing in a “parallel links” network. Beyond being a basic
framework of routing, this is the generic framework of load
balancing among servers in a network. It has been the subject
of numerous studies in the context of non-cooperative net-
working games, e.g., [3], [5], [9], [13], [34], to name a few.
In particular, in [3] it has been established that, under a non-
cooperative routing game and under some standard modeling
assumptions, the system has a unique Nash Equilibrium. We
begin by considering the case where N agents aim at optimiz-
ing the same type of performance objective, e.g., each tries to
minimize its traffic delay. This is the classic setting on which
the literature has focused, in particular whenever considering
the Price of Anarchy. We demonstrate that, in the considered
routing game, the degradation of system performance at the
Nash Equilibrium can be very large. Yet, we establish that,
for an interesting class of performance functions, the N -player
bargaining problem related to our routing game, is essential,
i.e., if the network agents are allowed to bargain and reach
a binding agreement (while remaining selfish), each agent is
guaranteed to strictly improve its performance. Consequently,
the PoS is strictly smaller than the PoA. Interestingly, when
N = 2 or when all N agents have identical demands, the PoS
is equal to 1; that is, by letting the agents bargain, no loss
in system performance is incurred due to their selfishness. On
the other hand we provide an example where N > 2 and
show that 1 < PoS < PoA. For this case it remains an open
question how to tighten the bounds on the PoS.

We then extend our study to address the case where agents
consider vastly different (“heterogeneous”) performance ob-
jectives and demonstrate that the corresponding N -player
bargaining game is not necessarily essential. We then show
that the PoS, and also the PoA, can be unbounded. However,
we explain why both measures may be unsuitable for such
heterogeneous scenarios. Accordingly, we introduce an ad-
ditional measure, termed the Price of Heterogeneity (PoH),
and indicate that it is a proper extension of the PoA for the
heterogeneous setting. We establish an upper-bound on the
PoH for a quite general class of (heterogeneous) performance
objectives, and indicate that it provides incentives for bargain-
ing also in this, more general case. Finally, we discuss some
network design guidelines that follow from our findings.

1A Strong Nash Equilibrium is a Nash Equilibrium in which no coalition,
taking the actions of its complements as given, can cooperatively deviate in
a way that benefits all of its members.
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The main contributions of this study can be summarized as
follows:
• We introduce the Price of Selfishness as a figure of merit

for network (or system) performance under a cooperative
game.

• We establish that, in the game of routing over parallel
links and for interesting classes of “homogeneous” per-
formance objectives, the N -player bargaining problem
is essential, i.e., all agents strictly improve their perfor-
mance, and the PoS is strictly smaller than the potentially
large PoA. Moreover, when N = 2 or when all N agents
have identical demands, the PoS is equal to 1.

• We indicate that, in the wider case of “heterogeneous”
performance objectives, the N -player bargaining problem
is not necessarily essential and we show that the PoS can
be arbitrarily large.

• We introduce the Price of Heterogeneity (PoH) as a
proper extension of the PoA for the heterogeneous case
and establish an upper-bound on the PoH.

The rest of this paper is organized as follows. In section II
we formulate the model and terminology. In section III we
consider the classic case of homogeneous performance objec-
tives. The heterogeneous case is treated in section IV. Finally,
conclusions are presented in Section V.

II. MODEL AND GAME THEORETIC FORMULATIONS

A. Model

Following [3], we are given a set N = {1, 2, . . . , N} of
selfish “users” (or, “players”, “agents”), which share a set
of parallel “links” (e.g., communication links, servers, etc.)
L = {1, 2, . . . , L}, interconnecting a common source node to a
common destination node. See Figure 1. Let cl be the capacity

Fig. 1. Parallel Links Model

of link l. Each user i ∈ N has a traffic demand ri. A user ships
its demand by splitting it over the links L, i.e., user i decides
what fraction of ri should be sent through each link. We denote
by f il , the flow of user i ∈ N on link l ∈ L. Thus, user i
can fix any value for f il , as long as f il ≥ 0 (non-negativity
constraint) and

∑
l∈L f

i
l = ri (demand constraint). Denote the

total demand of all the users by R, i.e., R =
∑
i∈N r

i. We
assume that the system of parallel links can accommodate the
total demand, i.e., we only consider capacity configurations
c = [c1 . . . cL] for which

∑
l cl > R. Turning our attention

to a link l ∈ L, let fl be the total flow on that link i.e.,
fl =

∑
i∈N f

i
l ; also, denote by fl the vector of all user flows

on link l ∈ L, i.e., fl = (f1
l , f

2
l , . . . , f

N
l ). The routing strategy

of user i, f i, is the vector f i = (f i1, f
i
2, . . . , f

i
L). The (routing)

strategy profile f is the vector of all user routing strategies,
f = (f1, f2, . . . , fN). We say that a user’s routing strategy is
feasible if its components obey the nonnegativity and demand
constraints and we denote by Fi the set of all feasible f i’s.
Similarly, a routing strategy profile is feasible if it is composed
of feasible routing strategies and we denote by F the set of
all feasible f ’s.

The performance measure of a user i ∈ N is given by a
cost function J i(f). The aim of each user is to minimize its
cost. As in [3], the following standard assumptions on the cost
function J i of each user are imposed:

S1 J i is the sum of link cost functions i.e.,
J i(f) =

∑
l∈L J

i
l (fl).

S2 J il is a function of two arguments, namely user i’s flow
on link l and the total flow on that link. In other words:
J il (fl) = J il (f

i
l , fl).

S3 J il is increasing in each of its two arguments.
S4 J il : [0,∞)2 → [0,∞), a continuous function.
S5 J il is convex in f il .
S6 J il is continuously differentiable in f il .
S7 Note that ∂Ji

l

∂fi
l

=
∂Ji

l

∂fi
l

(f il , fl), i.e., it is a function of
two arguments. We assume that whenever J il is finite,
∂Ji

l

∂fi
l

(f il , fl) is strictly increasing in each of the two
arguments.

Cost functions that comply with the above assumptions shall
be referred to as Standard. An N -tuple of positive values
J = (J1, J2, . . . , JN ) is said to be a feasible cost vector if
there is a feasible (routing) strategy profile f ∈ F such that,
for all 1 ≤ i ≤ N , J i = J i(f).

An important class of problems is when users are interested
in the same performance measure, e.g., delay (i.e., each user
aims at optimizing the delay of its traffic). In fact, much
of the current literature on networking games has focused
on this class, e.g., [4]–[6], [9], [34]–[36]. In this case, the
performance of a link l is manifested through some function
Tl(fl), which measures the cost per unit of flow on the link,
and depends on the link’s total flow. For example, Tl may be
the delay of link l. Specifically, we consider users whose cost
functions assume the following, “homogeneous”, form:

H1 J il (f
i
l , fl) = f il · Tl(fl).

H2 Tl : [0,∞)→ [0,∞).
H3 Tl(fl) is strictly increasing and convex.
H4 Tl(fl) is continuously differentiable.

H5 Tl(fl) =

{
T (cl − fl) if fl < cl

∞ if fl ≥ cl,
where the function T (·) is independent of the link entity, but it
is a function of the residual capacity cl−fl. Moreover, T (cl−
fl) is strictly increasing in fl. Cost functions that comply with
the above assumptions shall be referred to as homogeneous.
Note that homogeneous functions are necessarily standard. We
note that, for homogeneous functions, we have

∂J il
∂f il

(f il , fl) = f il · T ′l (fl) + Tl(fl)

where T ′l = dTl

dfl
. Note also that, if Tl(fl) is the average delay

per unit of flow, then the corresponding homogeneous cost
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function is the widely used total delay function (in our case,
per user); by dividing the latter by the traffic demand we obtain
the traffic’s average delay. Finally, we note that the technical
Assumption H5 holds for interesting classes of cost functions,
such as link delays under the M/M/1 queueing model, where
Tl(fl) = 1

Cl−fl . As a result of Assumption H5, we get the
following lemma.

Lemma 2.1: For any two links l, n it holds that Tl(fl) ≤
Tn(fn) if and only if T ′l (fl) ≤ T ′n(fn).

Proof: Necessary Condition:
First consider cl ≥ cn and denote δ ≡ cl − cn. From

Assumption H5 we get,

Tl(fl) ≤ Tn(fn) = T (cn−fn) = T (cl−δ−fn) = Tl(fn+δ).

It follows from Assumption H3 that fl ≤ fn + δ and that
T ′l (fl) ≤ T ′l (fn + δ). Again, from Assumption H5 we have,
T ′l (fl) ≤ T ′l (fn + δ) = T ′n(fn).

Now consider cl < cn and denote ∆ ≡ cn − cl. From
Assumption H5 we get,

Tl(fl) = T (cl−fl) = T (cn−∆−fl) = Tn(fl+∆) ≤ Tn(fn).

It follows that fl + ∆ ≤ fn and T ′l (fl) = T ′n(fl + ∆) ≤
T ′n(fn).
Sufficient Condition Due to Assumptions H3 and H5, the
proof follows straight from the necessary condition’s proof
when switching T (·) with T ′(·).
We order the links such that ∀l < n, cl ≥ cn, i.e., ∀l < n, ∀f ,
Tl(f) ≤ Tn(f). Hence, Assumption H5 effectively implies
a “quality” ordering of the links. In the rest of the section,
cost functions shall be assumed to be just “standard”, unless
explicitly referred to as “homogeneous”.

B. Game Theoretic Formulation

We distinguish between two cases, namely noncooperative
and cooperative game scenarios, as follows.

1) Noncooperative Routing (Load Balancing) Game: In
this case, the standard solution concept is the Nash Equi-
librium [1], i.e., a routing strategy profile such that no user
finds it beneficial to change its flow on any link. Formally,
a feasible routing strategy profile f̂ = (f̂1, f̂2, . . . , f̂N) is a
Nash Equilibrium Point (NEP) if, for all i ∈ N , the following
condition holds:

J i(f̂) = J i(f̂1, . . . , f̂ i−1, f̂ i, f̂ i+1, . . . , f̂N) (1)

= min
f i∈Fi

J i(f̂1, . . . , f̂ i−1, f i, f̂ i+1, . . . , f̂N).

It follows from our assumptions on standard cost functions
that the minimization in (1) is equivalent to the following
Karush-Kuhn-Tucker (KKT) conditions: for every i ∈ N there
exist a (Lagrange multiplier) λi such that, for every link l ∈ L,

f il > 0→ ∂J il
∂f il

(fl) = λi (2)

f il = 0→ ∂J il
∂f il

(fl) ≥ λi.

The KKT conditions as stated above constitute necessary and
sufficient conditions for a feasible routing strategy profile to
be an NEP. In [3], the following has been established:

Theorem 2.1: In a network of parallel links (as defined
above), where the cost function of each user is standard, there
exists a routing strategy profile that is an NEP and it is unique.2

For 1 ≤ i ≤ N , denote by Ĵ = (Ĵ1, . . . , ĴN ) the cost
vector at the (unique) Nash Equilibrium.

2) Cooperative Game: The Nash Bargaining Scheme (or,
Nash Bargaining Solution) is a main solution concept in
Cooperative Game Theory [1]. Due to its appealing properties,
such as its existence and uniqueness for each bargaining
problem (under mild conditions), it has been widely applied to
cooperative scenarios. Accordingly, we adopt it as our solution
concept for the cooperative version of our routing game (and,
more generally, for networking games).

Informally, a “bargaining scheme” proposes a cost vector
that induces a strategy profile that the players agree to play.
In the context of the Nash Bargaining Scheme, a standard
assumption (see [1]) is that the agreement may consist of
choosing between a finite number of strategy profiles, accord-
ing to given (agreed) probabilities. Then, the players would
play the game according to the chosen (pure, in our case)
strategy profile. This is the standard way to cope with a certain
convexity requirement, as explained in the following.

Formally, a bargaining scheme proposes a cost vector g̃ that
can be represented as the convex combination of some feasible
cost vectors, i.e. g̃ =

∑M
m=1 p̃m · J(f̃(m)), for some

0 < p̃m ≤ 1,
∑M
m=1 p̃m = 1 and f̃(m) ∈ F for m = 1 . . .M ,

where M is some finite number. p̃ = [p̃1, . . . , p̃M ] is termed
the bargained probability vector and f̃(m) for m = 1 . . .M ,
are termed bargained strategy profiles (if their choice is not
unique we pick them arbitrarily). The set of all such g̃ is
denoted by G. A bargaining game is defined by a set of
(bargainable) costs G, as defined above, and by a disagreement
point v. The disagreement point is a (feasible) cost vector that
corresponds to the costs that would be paid by the players
if they do not reach an agreement. As is usually done, we
consider it to be the cost vector that corresponds to the
(unique) NEP, i.e., v = Ĵ, [1]. Then, an N -player bargaining
problem is defined as follows:

Definition 2.1: An N -player bargaining problem consists
of a pair (G, Ĵ), where G is a closed convex subset of RN , Ĵ
is a vector in RN and the set G

⋂
{(g1, . . . , gN ) | gi ≤ Ĵ i ∀i}

is nonempty and bounded. An N -player bargaining problem
is essential if and only if there exists at least one cost vector
g for which gi < Ĵ i, ∀i ∈ N .
It is easy to verify that the routing game considered in this
study meets the mathematical requirements of an N -player
bargaining problem. However, it is not clear this problem is
also essential, i.e., that every user stands to strictly lower
its cost through bargaining. In Sections III and IV we will
show that, under homogeneous costs, the N -player bargaining
problem related to our routing game, is essential, while under
standard costs this may not be the case.

We note that, in general, the convexity requirement imposed
on G in Definition 2.1 is necessary for obtaining the structural

2On the other hand, it is easy to verify that, in general, the unique NEP of
the routing game is not a Strong Nash Equilibrium, due to the lack of Pareto
optimality. Hence the Strong Nash Equilibrium cannot serve as a solution
concept for the considered cooperative routing game.
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result of the following Theorem 2.2. Allowing players to
bargain a random selection of the strategy profile is the stan-
dard (and often only) way to obtain such convexity (see [1]).
Nonetheless, we shall show that the results of this study can
also be obtained when considering the more restricted (and
more practically appealing) case in which no randomization is
allowed and one bargained strategy profile should be chosen.

Given an N -player bargaining problem, a Nash Bargaining
Scheme (NBS) is a cost vector
g̃ = g̃(G, Ĵ) = (g̃1, . . . , g̃N ) that satisfies the following
axioms [1], [37]:

N1 Individual Rationality: for 1 ≤ i ≤ N , g̃i ≤ Ĵ i; i.e.,
no player will incur a higher expected cost than at the
disagreement point. If 1 ≤ i ≤ N , g̃i < Ĵ i, we say that
this axiom is strictly satisfied.

N2 Pareto Optimality: If ∃ g ∈ G such that, for some i,
gi < g̃i then for some k holds that gk > g̃k; i.e., there is
no way to reduce the expected cost of a player without
increasing the cost of another player.

N3 Symmetry: For any two players i, k, if Ĵ i = Ĵk and
{(. . . , gk−1, gk, . . . , gi−1, gi, . . .) |
(. . . , gk−1, gi, . . . , gi−1, gk, . . .) ∈ G} = G, then g̃i =
g̃k; i.e., if the players are indistinguishable, then the
agreement should not discriminate between them.3

N4 Invariance to Equivalent Payoff Representations: For
any numbers ai, bi with i = 1 . . . N and ai > 0 for all i,
if G = {(a1·g1+b1, . . . aN ·gN+bN ) | (g1, . . . , gN ) ∈ G}
and w = (a1 · Ĵ1 + b1, . . . aN · ĴN + bN ) then g̃(G,w) =
(a1 · g̃1(G, Ĵ) + b1,. . . , aN · g̃N (G, Ĵ) + bN ); i.e, a linear
transformation of the utility function (being a transforma-
tion that maintains the some ordering over preferences)
should not alter the outcome of the bargaining process.

N5 Independence of Irrelevant Alternatives: For any
closed convex set S, if S ⊆ G and g̃ ∈ S, then g̃(G, Ĵ) =
g̃ (S, Ĵ); i.e., removal of “uninteresting” strategy profiles
should not alter the outcome of the bargaining process.

In [1], the following has been established:
Theorem 2.2: For every N -player bargaining problem there

exists a unique solution (i.e., NBS) g̃ that satisfies all five
axioms (N1)-(N5), and it is provided by:

g̃ = arg max
g∈G,∀i gi≤Ĵi

N∏
i=1

(
Ĵ i − gi

)
. (3)

Therefore, under mild conditions, a cooperative game always
admits a solution in the form of an NBS, which is unique in
terms of the proposed cost vector.

C. System Optimization

As commonly assumed in the literature (e.g., [5], [6],
[9], [12], [13], [16], [17], [38]), the welfare of a system is
measured by the sum of the individual costs of the players, i.e.,
by a (“social”) cost function Jsys defined as Jsys =

∑
i∈N J

i.
We denote by J∗sys the optimal value of the system’s cost, i.e.,
the minimal value of Jsys over all feasible routing strategy

3Note that players with the same cost functions and traffic demands are
indistinguishable in the sense of this axiom.

profiles. In addition, we denote by Ĵsys the value of the system
cost at the (unique) NEP. In the case of homogeneous cost
functions, we have:

Jsys =
∑
i∈N

J i =
∑
i∈N

∑
l∈L

f il · Tl(fl) =
∑
l∈L

fl · Tl(fl). (4)

For example, if Tl(fl) stands for the link’s delay, then Jsys
corresponds to the total delay experienced by the system’s
traffic. Note that, for homogeneous costs, Jsys depends only
on the total flows on the links. Accordingly, for such costs,
we denote by f∗ = (f∗l )l∈L the optimal vector of link flows,
i.e.,

J∗sys =
∑
l∈L

f∗l · Tl(f∗l ). (5)

Similarly, f̂ = (f̂l)l∈L is the vector of link flows at the NEP
and

Ĵsys =
∑
l∈L

f̂l · Tl(f̂l) (6)

is the system’s cost at the NEP. Also, for an NBS with
disagreement point Ĵ, bargained probability vector p̃ and
strategy profiles f̃(m) for m = 1 . . .M , f̃(m) = (f̃l(m))l∈L
are the corresponding vectors of link flows, and

g̃(G, Ĵ)sys =

M∑
m=1

p̃m ·

[∑
l∈L

f̃l(m) · Tl(f̃l(m))

]
(7)

is the expected social cost at the NBS.
The following lemma establishes that, for homogeneous

cost functions, both at the system optimum and at the Nash
Equilibrium, the costs of the links monotonically increase with
the link index, i.e., “better” links bear lower costs.

Lemma 2.2: With homogeneous costs, ∀l, 1 ≤ l < L, the
following hold: (i) Tl(f∗l ) ≤ Tl+1(f∗l+1); and (ii) Tl(f̂l) ≤
Tl+1(f̂l+1).

Proof: Consider some arbitrary link l, 1 ≤ l ≤ L− 1 at
the system optimum. There are two possible cases:

1) f∗l ≤ f∗l+1.
2) f∗l > f∗l+1.
Consider Case 1. From Lemma 2.1 it follows that

Tl(f
∗
l ) ≤ Tl+1(f∗l ) ≤ Tl+1(f∗l+1), as required.

Consider now Case 2. We have f∗l > f∗l+1 ≥ 0. The KKT
conditions for system optimality induce:

f∗l T
′
l (f
∗
l ) + Tl(f

∗
l ) ≤ f∗l+1T

′
l+1(f∗l+1) + Tl+1(f∗l+1). (8)

From (8) it follows that either Tl(f∗l ) ≤ Tl+1(f∗l+1) or
T ′l (f

∗
l ) ≤ T ′l+1(f∗l+1). Due to Assumption H5, both statements

are true, therefore Tl(f∗l ) ≤ Tl+1(f∗l+1), as required.
Consider now the Nash Equilibrium and assume by contra-

diction that there exists a link l, 0 ≤ l ≤ L − 1, for which
it holds that Tl(f̂l) > Tl+1(f̂l+1), hence, by Assumption
H5, also T ′l (f̂l) > T ′l+1(f̂l+1). If f̂l = 0, it follows that
Tl(f̂l) = Tl(0) ≤ Tl(f̂l+1) ≤ Tl+1(f̂l+1), which contradicts
Tl(f̂l) > Tl+1(f̂l+1).

If f̂l > 0, then ∀i such that f̂ il > 0, the KKT condition (2)
induces:
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f̂ il T
′
l (f̂l) + Tl(f̂l) ≤ f̂ il+1T

′
l+1(f̂l+1) + Tl+1(f̂l+1). (9)

From (9) it follows that f̂ il ≤ f̂ il+1 ∀i, for which f̂ il >

0, which implies that f̂l ≤ f̂l+1. It follows that Tl(f̂l) ≤
Tl(f̂l+1) ≤ Tl+1(f̂l+1), which contradicts our assumption that
Tl(f̂l) > Tl+1(f̂l+1). Hence, ∀l, 1 ≤ l ≤ L − 1, it holds that
Tl(f̂l) ≤ Tl+1(f̂l+1).

Furthermore, the following lemma establishes that there
exists a ‘threshold link’, in the following sense.

Lemma 2.3: There exists a link M ∈ L for which: (i) ∀l ≤
M , Tl(f̂l) ≥ Tl(f∗l ) and (ii) ∀n > M , Tn(f̂n) ≤ Tn(f∗n).

Proof: Assume by contradiction that there is no such
link M . We can split this into three (exhaustive) cases:

1) Tl(f
∗
l ) ≤ Tl(f̂l) ∀l ∈ L. Moreover, ∃l̄, such that

Tl(f
∗
l̄

) < Tl(f̂l̄).
2) Tl(f

∗
l ) ≥ Tl(f̂l) ∀l ∈ L. Moreover, ∃l̄, such that

Tl(f
∗
l̄

) > Tl(f̂l̄).
3) There are links l, l̄ ∈ L, l < l̄, for which Tl(f̂l) ≤ Tl(f∗l )

and Tl̄(f̂l̄) > Tl̄(f
∗
l̄

).
Cases 1 and 2 respectively indicate that

∑
l∈L f

∗
l <∑

l∈L f̂l and
∑
l∈L f

∗
l >

∑
l∈L f̂l, each of which is a

contradiction.
Consider Case 3. Due to monotonicity, it implies that f̂l ≤

f∗l and f̂l̄ > f∗
l̄

.
First we prove that f∗l > 0. Assume by way of contradiction

that f∗l = 0. Then, since f∗l ≥ f̂l, it follows that f̂l = 0.
Moreover, it follows that f∗

l̄
= 0 and f̂l̄ = 0. Indeed,

otherwise, the KKT optimality conditions would induce:

Tl̄(f
∗
l̄ ) + f∗l̄ T

′
l̄ (f
∗
l̄ ) ≤ Tl(f∗l ) + f∗l T

′
l (f
∗
l ) = Tl(0) (10)

which, by Lemma 2.2, is a contradiction. Similarly, the KKT
condition (2) would induce, for all i for which f i

l̄
> 0:

Tl̄(f̂l̄) + f̂ il̄ T
′
l̄ (f̂l̄) ≤ Tl(f̂l) + f̂ il T

′
l (f̂l) = Tl(0) (11)

also which, by Lemma 2.2, is a contradiction. Hence, we
conclude that f∗l > 0. Now suppose that f∗

l̄
> 0. Then, since

f∗l > 0, the KKT optimality conditions imply:

f∗l T
′
l (f
∗
l ) + Tl(f

∗
l ) = f∗l̄ T

′
l̄ (f
∗
l̄ ) + Tl̄(f

∗
l̄ ). (12)

Hence, from (12) and Lemma 2.2 we conclude that f∗l ≥
f∗
l̄

. For f∗
l̄

= 0, clearly f∗l ≥ f∗
l̄

. Thus we always have
f∗l ≥ f∗

l̄
. Analogously, since Tl̄(f̂l̄) > Tl̄(f

∗
l̄

) ≥ 0, the KKT
condition (2) for link l, l̄ induces, for all i for which f̂ i

l̄
> 0:

f̂ il T
′
l (f̂l) + Tl(f̂l) ≥ f̂ il̄ T

′
l̄ (f̂l̄) + Tl̄(f̂l̄), (13)

thus, from (13) it follows that f̂ il ≥ f̂ il̄ , ∀i for which f̂ i
l̄
> 0.

It thus follows that f̂l ≥ f̂l̄. Therefore:

0 ≤ f∗l̄ < f̂l̄ ≤ f̂l ≤ f∗l . (14)

From (12) and (14) it follows that:

f̂lT
′
l (f̂l) + Tl(f̂l) < f̂l̄T

′
l̄ (f̂l̄) + Tl̄(f̂l̄). (15)

Thus:

f̂lT
′
l (f̂l)− f̂l̄T ′l̄ (f̂l̄) < Tl̄(f̂l̄)− Tl(f̂l). (16)

On the other hand, let Il̄ = {i | f̂ i
l̄
> 0}. Taking the sum

over all such i, it follows from (13) that:

∑
i∈Il̄

f̂ il T
′
l (f̂l)+ | Il̄ | ·Tl(f̂l) ≥ f̂l̄T ′l̄ (f̂l̄)+ | Il̄ | ·Tl̄(f̂l̄). (17)

Thus, it follows that:

f̂lT
′
l (f̂l)+ | Il̄ | ·Tl(f̂l) ≥ f̂l̄T ′l̄ (f̂l̄)+ | Il̄ | ·Tl̄(f̂l̄). (18)

It follows from (18) that:

f̂lT
′
l (f̂l)− f̂l̄T ′l̄ (f̂l̄) ≥| Il̄ | ·

(
Tl̄(f̂l̄)− Tl(f̂l)

)
≥ Tl̄(f̂l̄)− Tl(f̂l) (19)

which contradicts (16). Hence, there do not exist links l, l̄ ∈
L, l < l̄ for which Tl(f̂l) ≤ Tl(f

∗
l ) and Tl̄(f̂l̄) > Tl̄(f

∗
l̄

). We
conclude that there exists a link M ∈ L, as described in the
lemma.

D. Prices of Anarchy, Selfishness and Isolation

Define Ĵ as the set of all cost vectors that correspond to a
Nash equilibrium. The Price of Anarchy (PoA) [9] is defined
as

PoA = sup
J∈Ĵ

Jsys
J∗sys

. (20)

Note that, in our routing game, there exists a unique NEP [3],
with social cost Ĵsys. Hence, in our setting, the PoA is defined
as

PoA =
Ĵsys
J∗sys

. (21)

For quantifying the degradation of performance under a coop-
erative game scenario, i.e., solely due to the selfish nature of
the decision makers, we introduce the following concept.

Definition 2.2: The Price of Selfishness (PoS) is the ratio
between the worst expected social cost of any Nash Bargaining
Solution g̃(G, Ĵ), for which the disagreement point is a NEP,
and the optimal social cost, i.e.,

PoS = sup
g̃(G,Ĵ)

Ĵ∈Ĵ

g̃(G, Ĵ)sys
J∗sys

. (22)

Due to Theorem 2.1, in our routing game, Ĵ, is unique. We
denote the social cost of the unique NBS of the bargaining
game (G, Ĵ), as J̃sys. Hence, the Price of Selfishness in our
game is defined as

PoS =
J̃sys
J∗sys

. (23)

Due to the axiom of Individual Rationality (N1), the PoS is
never higher than the PoA and potentially could be much
lower. The difference between the two is an issue of major
importance, as it indicates how much gain (if at all) is
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accomplished by allowing the decision makers to bargain
and reach binding agreements. For completeness, we also
introduce a further concept, as follows:

Definition 2.3: The Price of Isolation (PoI) is the largest
ratio of the social cost at a Nash Equilibrium and the expected
social cost of its corresponding Nash Bargaining Scheme, i.e.,

PoI = sup
Ĵ∈Ĵ

Ĵsys

g̃(G, Ĵ)sys
. (24)

In our routing game,

PoI =
Ĵsys

J̃sys
. (25)

The PoI quantifies the degradation of performance paid due to
the inability of the (selfish) decision makers to communicate
and reach an agreement. We note that, for a given game (e.g.,
the routing game considered in this study), worst-case values
of the PoA, PoS and PoI may be obtained in (three) different
scenarios.

III. HOMOGENEOUS COSTS

It is well known that the Price of Anarchy can assume large
values and in section III-B, we present a generic example
within our framework, for which the PoA is unbounded.
However, we proceed to establish that, such deficiency of
performance can be mitigated through bargaining. Specifically,
we show that, with homogeneous costs, the Nash Bargain-
ing Scheme strictly improves the system’s performance, and
strictly lowers the cost of each individual user, unless of
course PoA = 1, in which case PoS = PoA = 1. In
order to establish that the Nash Bargaining Scheme strictly
improves the performance of every user, we constructively
design a strategy profile ḡ, whose corresponding cost vector
strictly satisfies Axiom N1, i.e., ∀i, ḡi < Ĵ i. This effectively
proves that our N -player bargaining problem is essential. It
then follows from Theorem 2.2 that the NBS strictly lowers
the system’s cost, compared to the system costs at the Nash
equilibrium.

Our goal is to bring forth an initial feasible routing strategy
profile, f̄ , and constructively adjust it by exchanging flow be-
tween users, such that its corresponding cost vector will strictly
satisfy Axiom N1. Initially, define f̄ as the routing strategy
profile where all the users send their flow proportionally with
regard to the system optimum, namely:

∀i∈N ,l∈L f̄ il =
ri

R
f∗l . (26)

The corresponding users’ costs thus equal4:

J̄ i(f̄ il , f̄l) =
ri

R
J∗sys =

ri

R
·
∑
l∈L

f∗l Tl(f
∗
l ). (27)

From (26) it is clear that the users send their aggregated
flow such that it equals the system optimum, yet this does not

4The process (algorithm), which will be described in Lemma 3.2, consists
of exchanging flows between users. After each such exchange, with a slight
abuse of notation, we will denote the new cost of each user by J̄i and avoid
indexing the steps. J̄i, therefore, may change after each exchange of flow
between users.

imply that Axiom N1 is strictly satisfied. Specifically, we need
all the users to strictly lower their costs with respect to the
NEP. However, when sending flow according to (26), it may
happen that some users increase their cost in comparison to
the NEP. Therefore, we specify a process (algorithm), where
users exchange flow between themselves, such that J̄ strictly
satisfies Axiom N1, while maintaining system optimality.
Note that exchanges of flow between users shall not affect
the aggregated flow on each of the links, hence the system
optimum is still reached after each exchange.

Define Ḡi , Ĵ i − J̄ i. We divide the users up into two
sets. One set (Ḡ+) contains the users with a lower cost at
J̄ i(f̄ il , f̄l), compared to the NEP, i.e., k ∈ G+ if Ḡk > 0.
The complementary set (G−) contains the users with a higher
or equal cost at J̄ i(f̄ il , f̄l), in comparison to the NEP, i.e.,
k ∈ G− if Ḡk ≤ 0. From (27), the following holds:∑

i∈G+

ri

R
·
∑
l∈L

f∗l Tl(f
∗
l ) +

∑
j∈G−

rj

R
·
∑
l∈L

f∗l Tl(f
∗
l ) (28)

≤
∑
i∈G+

∑
l∈L

f̂ il Tl(f̂l) +
∑
j∈G−

∑
l∈L

f̂ jl Tl(f̂l),

where the left side of (28) equals the optimal system cost and
the right side equals the system cost at the NEP.

From (28) we derive that:∑
i∈G+

[∑
l∈L

f̂ il Tl(f̂l)−
ri

R
·
∑
l∈L

f∗l Tl(f
∗
l )

]
(29)

≥
∑
j∈G−

[
rj

R
·
∑
l∈L

f∗l Tl(f
∗
l )−

∑
l∈L

f̂ jl Tl(f̂l)

]
and from (27) and (29) it follows that:∑

i∈G+

Ḡi ≥ −
∑
j∈G−

Ḡj . (30)

Inequality (30) indicates that the overall gain from the users
in G+ exceeds the loss of the users in G−. This implies that
there can be an exchange of flow between users in G− and
G+, which translates into a exchange of cost, such that all
users will end up in G+, in which case Axiom N1 is strictly
satisfied. However, in order for a user m ∈ G− to lower its
cost and end up in G+, another user k ∈ G+ and a pair of
links l, n has to be found, such that f̄kl > 0, f̄mn > 0 and
Tl(f

∗
l ) < Tn(f∗n). The following lemma proves that, as long

as G− is not empty, such a user k and links l, n necessarily
exist.

Lemma 3.1: In the game defined in Section II, with ho-
mogeneous costs, consider instances for which the PoA >
1. Assuming G− is nonempty, there always exists a tuple
(m, k, l, n) with users m ∈ G−, k ∈ G+ and links l, n, such
that f̄kl > 0, f̄mn > 0 and Tl(f∗l ) < Tn(f∗n).

Proof: Assume by way of contradiction that no such tuple
can be found. This implies that ∀m ∈ G−,∀k ∈ G+, ∀l
for which f̄kl > 0 and ∀n for which f̄mn > 0, it holds that
Tl(f

∗
l ) ≥ Tn(f∗n)5. Thus, from Lemma 2.2, there exist two

links L1, L2, L1 ≤ L2, such that all users in G− send their

5Since the PoA > 1, from (30), it is straightforward that G+ is non-empty.



8

flow on links l = 1, . . . , L2, all users in G+ send their flow on
links l = L1, . . . , L, and for any two links l, n, L1 ≤ l, n ≤ L2

it holds that Tl(f∗l ) = Tn(f∗n). Without loss of generality we
can exchange flow between any users m ∈ G−, k ∈ G+, on
links L1 ≤ l ≤ L2, such that after this exchange all users
in G− send their flow on links l = 1, . . . , L̄, and all users
in G+ send their flow on links l = L̄, . . . , L for some link
L1 ≤ L̄ ≤ L2. This exchange will not affect their cost. Seeing
that the aggregated flow of all the users continuously brings
about the optimum, it follows that:

∑
i∈G−

ri =

L̄−1∑
l=1

f∗l + f−∗
L̄

and
∑
i∈G+

ri = f+∗
L̄

+

L∑
l=L̄+1

f∗l ,

(31)
where f−∗l and f+∗

l respectively represent the amount of flow
that users in G− and G+ send on link l ∈ L at the system
optimum, i.e., f+∗

l + f−∗l = f∗l . Furthermore, from Lemma
2.3, we know that there exists a threshold link, M, for which (i)
Tl(f̂l) ≥ Tl(f

∗
l ), ∀l ≤ M , and (ii) Tn(f̂n) ≤ Tn(f∗n), ∀n >

M . This leaves us with two cases:
1) M < L̄
2) M ≥ L̄.
Consider Case 1, denote the demand of all users in G+ as

R+, i.e, R+ ,
∑
i∈G+ ri and the demand of all users in G−

as R−. Also, define f̂+
l ,

∑
i∈G+ f̂ il and R+

1 ,
∑L̄
l=1 f̂

+
l .

Finally denote J̄+ ,
∑
i∈G+ J̄ i and Ĵ+ ,

∑
i∈G+ Ĵ i. It

follows from (31) that:

R+ =

L∑
l=L̄

f+∗
l =

∑
l∈L

f̂+
l =

L̄∑
l=1

f̂+
l +

L∑
l=L̄+1

f̂+
l , (32)

hence:

R+
1 =

L̄∑
l=1

f̂+
l = f+∗

L̄
+

L∑
l=L̄+1

f∗l −
L∑

l=L̄+1

f̂+
l (33)

=

L∑
l=L̄+1

[
f∗l − f̂+

l

]
+ f+∗

L̄
. (34)

Note that we consider Case 1, thus f∗l ≥ f̂l ≥ f̂
+
l for l > M .

It follows from Lemma 2.2, Lemma 2.3 and (33) that:

Ĵ+ =

L̄∑
l=1

f̂+
l Tl(f̂l) +

L∑
l=L̄+1

f̂+
l Tl(f̂l) (35)

≤
L̄∑
l=1

f̂+
l · TL̄(f̂L̄) +

L∑
l=L̄+1

f̂+
l Tl(f̂l)

= R+
1 · TL̄(f̂L̄) +

L∑
l=L̄+1

f̂+
l Tl(f̂l)

≤
L∑

l=L̄+1

f∗l Tl(f̂l) + f+∗
L̄
· TL̄(f̂L̄)

≤
L∑

l=L̄+1

f∗l Tl(f
∗
l ) + f+∗

L̄
· TL̄(f∗L̄) = J̄+.

The first inequality follows from Lemma 2.2, the second
follows from Lemma 2.2 and (34) and the last inequality
follows from Lemma 2.3. If Ĵ+ ≤ J̄+, it implies that
∃k ∈ G+, for which Ḡk ≤ 0, which is a contradiction to
the definition of G+. Thus, Case 1 is not possible.

Now consider Case 2. Denote J̄− ,
∑
i∈G− J̄ i, Ĵ− ,∑

i∈G− Ĵ i and consider a new routing strategy profile h,
where for any l ∈ L, hl = f̂l. Moreover, at h, all users in
G− send their flow on links l = 1, . . . ,K and all users in G+

send their flow on links l = K, . . . , L for some K ∈ L. In
other words, the aggregated link flows at h are equal to the
aggregated link flows at the NEP, however at h, the users in
G− send all their demand on the links with the lowest cost per
unit of flow. Since M ≥ L̄ it follows from Lemma 2.3 that
K ≤ L̄ ≤ M . To prove the lemma for Case 2 it is sufficient
to establish that J̄− < Ĵ−, which leads to a contradiction. We
first prove that

∑
i∈G− J i(h) ≤ Ĵ−, whereafter we establish

that J̄− ≤
∑
i∈G− J i(h) and J̄− < Ĵ−.

Since ∀l, hl = f̂l, we can transform h into the NEP by
repeatedly switching flows between the users in G− and G+

until all users in G− send their demand according to f̂− and
since ∀l, hl = f̂l, all users in G+ send their demand according
to f̂+. Note that the aggregated link flow during this process
stays constant, thus it is clear that at every stage, users in G−

will only increase their cost by sending more flow on lower
links, while users in G+ only decrease their cost by sending
more flow on the higher links. Therefore,

∑
i∈G− J i(h) ≤ Ĵ−.

We continue to establish that J̄− ≤
∑
i∈G− J i(h). Consider

a different network, links L̄ = 1, . . . , L̄ and total demand R̄ =∑L̄
l=1 f

∗
l . Note that R̄ = R− + [f∗

L̄
− f−∗

L̄
]. We consider two

different routing strategy profiles in this new network. The first
is its system optimum, which we denote by g∗. The second
is the strategy profile where an amount of [f∗

L̄
− f−∗

L̄
] is sent

on link L̄ and the rest of the demand, R−, is sent according
to h. Thus, due to the optimality of g∗:

L̄∑
l=1

g∗l Tl(g
∗
l ) ≤

K∑
l=1

hlTl(hl) + [f∗L̄ − f
−∗
L̄

]TL̄(f∗L̄). (36)

However, from the KKT conditions (2), it follows that for any
link l ∈ L̄, g∗l = f∗l . Hence, from (36) we get that

J̄− =

L̄−1∑
l=1

f∗l Tl(f
∗
l ) + f−∗

L̄
TL̄(f∗L̄) (37)

=

L̄∑
l=1

g∗l Tl(g
∗
l )− [f∗L̄ − f

−∗
L̄

]TL̄(f∗L̄)

≤
K∑
l=1

hlTl(hl),

Thus, J̄− ≤
∑
i∈G− J i(h) and consequently, J̄− ≤ Ĵ−. If

J̄− < Ĵ−, then ∃k ∈ G−, for which Ḡk > 0, which is a
contradiction to the definition of G−.

Now consider Ĵ− = J̄−. Since L̄ ≤ M , it follows from
(36) and the definition of g and h that for any link l ≤ L̄,
Tl(f̂l) = Tl(f

∗
l ). Moreover, K = L̄. Consequently, according

to Case 2 and 3 in Lemma 2.3, it follows that ∀l, n ∈ L,
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Tl(f̂l) = Tl(f
∗
l ) and, the Price of Anarchy equals 1, which is

a contradiction to the conditions of the lemma. Thus, Case 2
is not possible either. We therefore conclude that there always
exists a tuple (m, k, l, n) such as described in the lemma,
unless G− is empty.

In the following lemma, we establish a process (which,
in fact, is a computationally efficient algorithm), which finds
tuples and exchanges flow between users such that all users
will end up in G+.

Lemma 3.2: In the game defined in Section II, with homo-
geneous costs, consider instances for which the PoA > 1.
There exists a bargained strategy profile, which equals the
system optimum and strictly satisfies Axiom N1.

Proof: Lemma 3.1 shows that we are always able to find
a tuple (m, k, l, n), unless G− is empty and all users are in
G+, in which case Axiom N1 is strictly satisfied. After finding
such a tuple, user m ∈ G− exchanges flow with another user
k ∈ G+, thereby lowering its cost until one of the following
events occurs:

1) f̄kl = 0.
2) f̄mn = 0.
3) Ḡk = ε, for some small enough ε > 0.
4) m ∈ G+.

We choose ε as a threshold, whereafter k refrains from
exchanging its flow.

Unless G− is empty, each time one of the events 1-4
occurs, a new tuple can be found as explained in Lemma 3.1.
Furthermore, from the strict inequality of (30) it follows that
there is enough cost to be transfered from users in G+ to users
in G−, such that, for a small enough ε, all users will end up
in G+. We therefore establish the following algorithm that
increments over the links l ∈ L and finds tuples (m, k, l, n)
until G− is emptied.

Denote l+ as the link for which ∃k ∈ G+ such that f̄kl+ > 0
and ∀l < l+,∀i ∈ G+ it holds that f̄ il = 0. Likewise, define
l− as the link for which ∃m ∈ G− such that f̄ml− > 0 and
∀l > l−,∀j ∈ G− it holds that f̄ jl = 0.

In the first step, set l+ = 1 and l− = L. When two
users m, k are found, such as described in Lemma 3.1, they
exchange flow till one of the events 1-4 occurs. Afterwards, a
new tuple (m′, k′, l+, l−) is found for users m′, k′.

When no user k ∈ G+ can be found on link l+, we
increment the link number such that l+ ⇐ l+ + 1. The
algorithm now looks for a tuple (m, k, l+ + 1, l−). Similarly,
when no users m ∈ G− can be found on link l−, we decrement
the link number, such that, l− ⇐ l− − 1. The algorithm then
looks for a tuple (m, k, l+, l− − 1). Once l+ = l−, no such
tuple can be found, hence, by Lemma 3.1, G− is empty.
Furthermore, the algorithm completes within a final number of
steps (as formally established by Proposition 3.1 that follows).

After the algorithm, the set G− is empty and we obtain
a cost vector that strictly satisfies Axiom N1. Furthermore,
during every step of the algorithm the aggregated flow on the
links is equal to the flow at the system optimum.
We are now able to state the following theorem.

Theorem 3.1: In the game defined in Section II, with ho-
mogeneous costs, consider instances for which the Price of
Anarchy is strictly larger than 1, i.e., PoA > 1.

1) The corresponding N -player bargaining problem is es-
sential.

2) At the outcome of the NBS, each user strictly decreases
its cost. Thus, Price of Selfishness is strictly smaller than
the Price of Anarchy (PoS < PoA).

Proof: In Lemma 3.2 we established a bargained strategy
profile, f̄ , whose cost vector is socially optimal and strictly
satisfies Axioms N1. This completes the first claim of the the-
orem. Since the corresponding N -player bargaining problem is
essential,

∏N
i=1

(
Ĵ i − J i(f̄)

)
> 0, and as a result of Theorem

2.2 it follows that for the Nash Bargaining Solution, g̃,

N∏
i=1

(
Ĵ i − g̃i

)
≥

N∏
i=1

(
Ĵ i − J i(f̄)

)
> 0.

Thus, at the NBS each user strictly decreases its cost and from
(4), it follows that PoS < PoA, hence establishing the second
claim of the theorem.

Note that, since this cost vector is socially optimal, it also
satisfies Axiom N2 (Pareto Optimality). Thus, the scheme
described in the proof of Lemma 3.2 effectively constitutes an
efficient algorithm for computing a cost vector that satisfies
Axiom N1 and Axiom N2.

Proposition 3.1: Given the NEP, the process described in
Lemma 3.2 is an O(N ·L) algorithm for computing a feasible
cost vector which satisfies Axioms N1 and N2.

Proof: The ordering of the links at the optimum takes
O(L) time. The events 1-4, as described in Lemma 3.2, may
occur O(N) times for each pair of links, hence the time it
takes for each pair of links, (l+, l−), to find multiple tuples
of users, is O(N). The pointers l+ and l− increment over the
links, therefore tuples have to be found for a maximum of L
links. Since, each exchange of flow between users takes O(1)
time, the total computing time is O(N · L).
According to Theorem 3.1 it follows that all users (and the
system), stand to gain from bargaining. However, it remains
an open question as to how much the cost of the system
is reduced. In the following sections we will show that,
for certain instances, through bargaining, the users bring
the system to optimality, thereby completely overcoming the
deficiency implied by their selfish behavior. Specifically, we
shall establish that in a 2-user system as well as in an N -user
system where all users have equal demands, the NBS brings
about the social optimum, i.e., PoS = 1.

A. Two Users

In this section we consider a system that consists of two
users, i.e., N = 2. We denote the two users in the system
as i and j. We show that, with homogeneous costs, the Nash
Bargaining Scheme always (i.e., with probability 1) brings the
system to its social optimum. Moreover, we will establish that
this is done through a single bargained strategy profile, chosen
with probability 1. Thus, through bargaining, the deficiency
of the network at the NEP can be overcome entirely. In order
to achieve this, we constructively design a bargained strategy
profile, whose corresponding cost vector is socially optimal
and, at the same time, complies with Axioms N1-N5. Thus, it
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follows from Theorem 2.2 that this cost vector is the unique
solution of the NBS. We then choose this bargained strategy
profile with probability 1, hence the PoS is always equal to 1.

As a result of Lemma 3.2, there might exist a range of
system-optimal cost vectors for which Axioms N1 and N2 are
satisfied. However, we focus on a particular cost vector that is
system optimal and also complies with Axioms N3-N5. To do
this, we first exhaustively describe the set of all cost vectors
that satisfy Axiom N1. Denote this set as GN1 ⊆ G. We then
focus on a specific cost vector within this set. The following
lemma describes two instances of system-optimal cost vectors
for which Axiom N1 is only weakly (i.e., not strictly) satisfied.
Hence, these cost vectors lie on the boundary of GN1.

Lemma 3.3: For any user k, there exists a system-optimal
routing strategy profile, f̄ , for which J̄k ≥ Ĵk.

Proof: We consider user i, since the proof is symmetric
for user j. At the NEP, we split the links into two sets: L+ =
{l ∈ L|f̂ jl ≥ f∗l } and L− = {l ∈ L|f̂ jl < f∗l }. Now, consider
a new routing strategy for user i, f̄ i in which it “fills” up
the links in L− according to the system optimum, starting
from link L upwards. After the filling process user i reaches
a link, K ∈ L− for which f̄ iK ≤ f∗K − f̂

j
K and for any link

l > K, l ∈ L−, f̄ il = f∗l − f̂
j
l . At the new routing strategy,

f̄ i, i’s cost is equal to

J i(f̄ i, f̂ j) =
∑
l>K
l∈L−

[
f∗l − f̂

j
l

]
Tl(f

∗
l ) + f̄ iKTK(f̄ iK + f̂ jK) ≥ Ĵ i.

(38)
The inequality follows from (1). We now change the routing
strategy of user j and construct a flow (f̄ i, f̄ j) that is system
optimal and for which J i(f̄ i, f̄ j) ≥ J i(f̄ i, f̂ j). By doing so we
have constructed a feasible optimal routing profile f̄ for which
J i(f̄) ≥ Ĵ i, hence proving the lemma.

We define the strategy f̄ j as follows. On any link l ∈ L, j
sends an amount f̄ jl such that f̄ jl + f̄ il = f∗l . Since for any link
l, f̄ il ≤ f∗l , this new routing strategy is feasible. On any link
l ∈ L−, l > K, j does not increase its flow, i.e., f̄ jl = f̂ jl .
Furthermore, on link K, f̄ jK ≥ f̂

j
K . As a result,

J i(f̄ i, f̄ j) =
∑
l>K
l∈L−

[
f∗l − f̄

j
l

]
Tl(f

∗
l ) + f̄ iKTK(f̄ iK + f̄ jK)

(39)

≥
∑
l>K
l∈L−

[
f∗l − f̂

j
l

]
Tl(f

∗
l ) + f̄ iKTK(f̄ iK + f̂ jK).

Hence, from (38) and (39), J i(f̄ i, f̄ j) ≥ J i(f̄ i, f̂ j) ≥ Ĵ i.
With Lemma 3.3, we can now exhaustively describe GN1.

Lemma 3.4: The set of cost vectors that satisfy Axiom N1
is equal to a triangle with vertices at (Ĵ i, J∗sys − Ĵ i), (J∗sys −
Ĵj , Ĵj) and (Ĵ i, Ĵj). (See Figure 2).

Proof: From Lemma 3.3, it is immediate that the cost
vectors x = (Ĵ i, J∗sys − Ĵ i), y = (J∗sys − Ĵj , Ĵj) and z =

(Ĵ i, Ĵj) all lie in GN1. Moreover, since G is convex, the three
edges (x,y), (x, z) and (y, z) also lie in GN1. For any cost
vector g that lies on (x, z) or (y, z), Axiom N1 is weakly
satisfied. Moreover, since gi + gj ≥ J∗sys for any g ∈ G,
the edges (x, z) and (y, z) describe the boundaries of GN1.

Fig. 2. Set of bargainable costs.

Finally, the edge (x,y) is equal to the line gi + gj = J∗sys
where gi ≤ Ĵ i and gj ≤ Ĵj . It is straightforward that any cost
vector outside the edges of the triangle either does not satisfy
Axiom N1 or is not feasible.
After describing GN1, we now make use of the remaining
Axioms N2-N5 to identify a specific cost vector in GN1 which
is equal to the unique NBS.

Lemma 3.5: Consider the bargaining problem (G, Ĵ). The
Nash Bargaining Solution, g̃(G, Ĵ), corresponds to the feasi-
ble, system-optimal cost vector for which

Ĵ i − g̃i(G, Ĵ) = Ĵj − g̃j(G, Ĵ).

Proof: From Axiom N1, we know that g̃(G, Ĵ) ∈ GN1.
Since GN1 ⊆ G, from Axiom N5, it follows that

g̃(G, Ĵ) = g̃(GN1, Ĵ). (40)

Thus, in order to prove the lemma, it suffices to look at
the bargaining problem (GN1, Ĵ). Now consider the linear
transformation of GN1 such that

ḠN1 = {gi − Ĵ i, gj − Ĵj |(gi, gj) ∈ GN1}.

After the transformation, the vectors x, y, Ĵ from Lemma
3.4, correspond to respectively, (0, J∗sys − Ĵsys), (J∗sys −
Ĵsys, 0) and (0, 0). Thus, the bargaining problem (ḠN1, (0, 0))
is symmetric for both users and according to Axiom N3,
g̃i(ḠN1, (0, 0)) = g̃j(ḠN1, (0, 0)). Moreover, from Axiom N2,
g̃(ḠN1, (0, 0)) lies on the Pareto frontier of ḠN1, i.e., the edge
(x − Ĵ,y − Ĵ), hence g̃i(ḠN1, (0, 0)) + g̃j(ḠN1, (0, 0)) =
J∗sys − Ĵsys. Consequently,

g̃i(ḠN1, (0, 0)) =
J∗sys − Ĵsys

2
, g̃j(ḠN1, (0, 0)) =

J∗sys − Ĵsys
2

.

Due to Axiom N4,

g̃(GN1, Ĵ) = (g̃i(ḠN1, (0, 0)) + Ĵ i, g̃j(ḠN1, (0, 0)) + Ĵj),

hence,

g̃i(GN1, Ĵ) =
J∗sys + Ĵ i − Ĵj

2
, g̃j(GN1, Ĵ) =

J∗sys + Ĵj − Ĵ i

2
.

(41)
Finally, from (40) and (41) it follows that Ĵ i − g̃i(G, Ĵ) =
Ĵj − g̃j(G, Ĵ) and g̃i(G, Ĵ) + g̃j(G, Ĵ) = J∗sys.
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As a result of Lemma 3.5, we are able to prove the following
theorem.

Theorem 3.2: In the game defined in Section II, with ho-
mogeneous costs and N = 2, the Price of Selfishness equals
1. Moreover, the outcome of the NBS is always (i.e., with
probability 1) socially optimal.

Proof: As a result of Lemma 3.5, we have established
a bargained strategy profile, whose cost vector is socially
optimal and complies with Axioms N1-N5.6 Henceforth, we
can choose the constructed bargained strategy profile, with
probability 1. Therefore, the Price of Selfishness is equal to
1 and the unique solution of the Nash Bargaining Scheme is
always (i.e., with probability 1) socially optimal.
According to Theorem 3.2, it is certainly worthwhile for both
players, and for the entire system, to send their demands
according to the NBS. Nevertheless, this result does not
automatically extend to a system with more than two players.
From Theorem 3.1, we know that all N -players strictly benefit
by sending their demand according to the NBS, but system
optimality is not guaranteed. Indeed, the following example
brings a case in which N > 2 and the NBS is not socially
optimal.

Example 3.1: Consider a network of three users and two
parallel links. The demands of the users are r1 = 0.1, r2 =
r3 = 7.45 and the costs of the users equal

J i =
f i1

20− f1
+

f i2
10− f2

, (42)

for i = 1, 2, 3. According to Theorem 2.2, we can find the
NBS, by maximizing (Ĵ1 − g1)(Ĵ2 − g2)(Ĵ3 − g3) for any
g ∈ G. However, it follows that f̃1 = 11.17 < f∗1 . Hence, the
NBS does not bring the system to its optimum.
From the above example together with Theorem 3.1 we
conclude that for a general case of N -players, where N > 2,
it holds that 1 < PoS < PoA. It remains an open problem to
tighten the bounds of the PoS. Nevertheless, there exists other
cases in which, for the general case of N -players, the NBS is
system optimal, as will be shown in the next section.

B. Identical Users

We will provide a generic example of a two-link network,
for which all users have equal demands and the users’ costs
satisfy Assumptions H1-H4. In the example, the PoA can easily
be made larger by splitting the same aggregated traffic demand
among an increasing number of users.

Example 3.2: Consider a set of N players that route their
traffic demands over two parallel links. Assume that their
aggregated traffic demand is 1 and that the (homogeneous)
cost function of each user i is as follows:

J i = f i1 · (1 + εf1) + f i2 · (f2)N , ∀i ∈ N , (43)

where ε > 0. In [3] it is proven that, in such a case
of “symmetric users”, the flows at the NEP are such that

6Moreover, it is equal to both the egalitarian solution and utilitarian
solution (see [1]).

f̂ il = f̂l
N , ∀i ∈ N ,∀l ∈ L. Thus, from the KKT conditions

(2), if f1 > 0 and f2 > 0, it follows that

1 + εf̂1

(
1 +

1

N

)
=

(
1 +

N

N

)
· (f̂2)N = 2(f̂2)N .

Consequently, (f̂2)N > 1
2 and the system cost at the NEP is

Ĵsys ≥ (f2)N+1 >
1

2

(N+1)/N

≥ 1

4
.

Moreover, if either f1 = 0 or f2 = 0, it follows from (43) and
(4) that Ĵsys ≥ 1. Thus, Ĵsys ≥ 1

4 .
Now consider a new routing strategy profile f̄ , where f̄2 =

(N + 1)−1/N and f̄1 = 1− (N + 1)−1/N . Thus,

J∗sys ≤ Jsys(f̄) = f̄1 · (1 + εf̄1) + f̄2 · (f̄2)N , (44)

=
[
1− (N + 1)−

1
N

]
+ ε
[
1− (N + 1)−

1
N

]2
+ (N + 1)−

N+1
N

< (1 + ε)
[
1− (N + 1)−

1
N

]
+ (N + 1)−

N+1
N

= 1 + ε− (N + 1)−
1
N

[
ε+N(1 + ε)

N + 1

]
< (1 + ε)

[
1−N(N + 1)−

N+1
N

]
,

which tends to 0 when N →∞. Thus,

PoA ≥ 1/4

(1 + ε)
[
1−N(N + 1)−(N+1)/N

] ,
which tends to ∞ when N →∞.
In contrast to the unbounded PoA, the PoS will always be
equal to 1 in these settings, as will be established in the next
theorem.

Theorem 3.3: Consider the game defined in Section II,
where ri ≡ R

N , ∀i ∈ N , and the users’ costs satisfy As-
sumptions H1-H4. For the corresponding N -player bargaining
problem, it holds that:

1) Any solution g̃ that satisfies Axioms N2 and N3, is
unique.

2) The Price of Selfishness is always (i.e., with probability
1) equal to 1.

Proof: Assume by contradiction that there exist two dis-
tinct bargained cost vectors, g, h, which both satisfy Axioms
N2-N3. Since all users have equal demand, it follows from [3]
that, all users receive equal costs at the NEP. Axiom N3 states
that all users should then receive equal costs at the NBS. Thus,
for any two players i, j ∈ N , gi = gj and hi = hj . Assume
w.l.o.g. that

∑
i∈N g

i >
∑
i∈N h

i. Consequently,

gi > hi, ∀i ∈ N .

However, by switching from g to h, all users decrease their
expected cost, which is in contradiction to Axiom N2. Thus,
any bargained cost vector that satisfies Axioms N2-3, is
unique. This establishes the first part of the lemma.

In the same way as (26), we define a bargained strategy
profile f̄ , where users send their flow proportionally to the
social optimum of the system: ∀i∈N ,l∈L f̄ il = ri

R f
∗
l .

Similar to (27), the corresponding users’ costs are:

J̄ i(f̄ il , f̄l) =
ri

R
J̄(f̄ il , f̄l) =

ri

R

∑
l∈L

f∗l Tl(f
∗
l ) =

J∗sys
N

. (45)
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By combining the first part of the theorem together with
Theorem 3.1, it follows that, any cost vector that satisfies
Axioms N2-3 is equal to the unique NBS. Thus, in order
to demonstrate that the constructed bargained strategy profile
also brings about the NBS, it remains to verify that it satisfies
Axioms N2 and N3.
N2 From (45), it follows that the aggregated flow on the

links brings about the optimum. By definition, the system
optimum is Pareto optimal.

N3 From (45) it is clear that all users receive equal costs at
the NBS, therefore Axiom N3 is satisfied.

Thus, for the case where the users’ costs abide by assumptions
H1-H4, we have constructed a cost vector J̄, which satisfies
Axioms N1-N5 and is equal to the system optimum. We
can now choose the proposed bargained strategy profile with
probability 1, therefore the PoS is always (with probability 1)
equal to 1.
Note that, Theorem 3.3 relates to any bargaining scheme that
satisfies Axioms N2 and N3. Aside from the Nash Bargaining
Solution, this includes many other solutions, such as the
egalitarian solution or when N = 2, the Kalai-Smorodinsky
solution (see [1]).

C. Weighted Social Cost

As mentioned, our focus lies on a social cost that is the
sum of the users’ costs, which is the common practice in the
literature. Yet, it is of interest to examine the sensitivity of
the PoS to the choice of the social cost. To that end, we
turn to consider a case where, while the costs of the users
are homogeneous, the social cost assumes a more general
structure.

Specifically, suppose that, from a system point of view,
the performance of the users should not be treated equally.
Namely, for each user i, there is a coefficient (weight) αi > 0
that captures the relative importance of its performance. As
these are relative weights, we set

∑
i∈N α

i = 1. The social
cost is then: Jsys =

∑
i∈N α

i ·
∑
l f

i
l Tl(fl). Note that Jsys

stays convex. We term the above as a weighted social cost and
denote the Price of Selfishness of the non-weighted social cost
as PoS.

Proposition 3.2: In the game defined in Section II, with
homogeneous costs and with a weighted social cost, the Price
of Selfishness is bounded by

mini∈N α
i

maxi∈N αi
· PoS ≤ PoS ≤ maxi∈N α

i

mini∈N αi
· PoS.

Proof: For the social weighted cost it holds that

Jsys =
∑
i∈N

αi ·
∑
l∈L

f il Tl(fl) (46)

=
∑
l∈L

Tl(fl)
∑
i∈N

αif il

≤
∑
l∈L

Tl(fl) max
i∈N
{αi}

∑
i∈N

f il = max
i∈N

αi
∑
l∈L

flTl(fl).

Similarly, by switching max with min, we get from (46) that
Jsys ≥ mini∈N α

i
∑
l∈L flTl(fl).

By definition, the Price of Selfishness of the weighted case
equals,

PoS =

∑
i∈N α

i ·
∑
l f̃

i
l Tl(f̃l)∑

i∈N α
i ·
∑
l f
∗
l Tl(f

∗
l )
≤

maxi∈N α
i ·
∑
l f̃lTl(f̃l)

mini∈N αi ·
∑
l f
∗
l Tl(f

∗
l )

=
maxi∈N α

i

mini∈N αi
· PoS.

The lower bound follows similarly by switching min with max.

As a result of Proposition 3.2, we get the following corollary.

Corollary 3.1: In the game defined in Section II, with two
users or with N identical users, with homogeneous costs and
with a weighted social cost, the PoS is upper bounded by,

PoS ≤ maxi∈N α
i

mini∈N αi
.

IV. COPING WITH HETEROGENEITY

A. Unbounded PoS

It is of interest to consider the difference between the PoS
and PoA also within the wider class of standard functions.
The following result establishes that there are instances where
such a difference does not exist and moreover, both the PoS
and the PoA may assume arbitrarily (and identically) large
values. Consequently, in such cases, the N -player bargaining
problem is not essential.

Theorem 4.1: In the game defined in Section II, with stan-
dard costs, the corresponding N -player bargaining problem
may not be essential, i.e., the NBS may coincide with the
NEP. Moreover, the Price of Selfishness (hence, also the Price
of Anarchy) can be arbitrarily large.

Proof: We establish the claim through the following
example. Consider a network with two users and two parallel
links and let the total demands be r1 = r2 = 0.5. The costs
of the users are defined as follows:

J1 = f1
1 · f1 + 2 · f1

2 · (f2 + 1) (47)

J2 =
f2

1

1 + ε− f1
+

2

ε2
· f2

2 · (f2 + 1)

where 0 < ε < 0.1. It can be verified that, at the NEP, both
users ship all of their flow through link 1. Therefore, their
costs at the NEP are given by Ĵ1 = 0.5 and Ĵ2 = 0.5

ε .
We first need to verify that it is not profitable for any of

the users to flow on the bottom link at the NBS. This has to
hold for any bargained probability vector p̃.

Consider M feasible cost vectors J(f̃(m)),m = 1 . . .M
and denote the flows of the users 1 and 2 on the bottom link
as, respectively, xm and ym.

The individual costs of the users at the cost vectors
J i(f̃(m)),m = 1 . . .M , i = 1, 2 are equal to:

J1(f̃(m)) = (
1

2
− xm)(1− xm − ym) + 2xm · (xm + ym + 1)

(48)

J2(f̃(m)) =
1
2 − ym

ε+ xm + ym
+

2ym · (xm + ym + 1)

ε2
.
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We have to show that none of the players use the bottom link
at the NBS, i.e. the NEP coincides with the NBS. Due to
Axiom N1 (Individual Rationality), the following should hold
for i = 1, 2.

M∑
m=1

[
p̃m · (J i(f̃(m))− Ĵ i)

]
≤ 0. (49)

From (48), the cost of the first user can be written as

J1(f̃(m)) =
1

2
+

1

2
xm −

1

2
ym + 3(xm)2 + 3xm · ym. (50)

The following inequality now follows from (49) and (50), for
all j = 1, 2, . . . ,M :∑
m\j

[
p̃m ·

(
1

2
+

1

2
xm −

1

2
ym + 3(xm)2 + 3xm · ym − Ĵ1

)]
(51)

≤ p̃j ·
(
Ĵ1 − 1

2
− 1

2
xj +

1

2
yj − 3(xj)

2 − 3xj · yj
)

where Ĵ1 = 1
2 . In the same way, we get for the second user

∀j = 1, . . . ,M∑
m\j

[
p̃m ·

(
Ĵ2 −

1
2 − ym

ε+ xm + ym
− 2ym · (xm + ym + 1)

ε2

)]

≥ p̃j ·
( 1

2 − yj
ε+ xj + yj

+
2yj · (xj + yj + 1)

ε2
− Ĵ2

)
where Ĵ2 = 0.5

ε . Thus, we obtain for the second user
∀j = 1, . . . ,M∑
m\j

[
p̃m

( 1
2 (xm + ym) + ε · ym
ε · (ε+ xm + ym)

− 2ym · (xm + ym + 1)

ε2

)]

≥ p̃j
(
−

1
2 (xj + yj) + ε · yj
ε · (ε+ xj + yj)

+
2yj · (xj + yj + 1)

ε2

)
.

Thus, it holds that ∀j = 1, . . . ,M :∑
m\j

[
p̃m

( 1
2 (xm + ym) + ε · ym − 2ym · (xm + ym + 1)

ε2

)]

≥ p̃j
(− 1

2 (xj + yj)− ε · yj + 2yj · (xj + yj + 1)

ε2

)
.

Simplifying the above, we get ∀j = 1, . . . ,M :∑
m\j

[
p̃m

(
1

2
(xm − ym)− ym(1− ε)− 2(ym)2 − 2xm · ym

)]
(52)

≥ p̃j
(
−1

2
(xj − yj) + yj(1− ε) + 2(yj)

2 + 2xj · yj
)
.

By substracting (51) from (52) we obtain:∑
m\j

[
p̃m
(
−ym(1− ε)− 2(ym)2 − 5xm · ym − 3(xm)2

)]
(53)

≥ p̃j
(
yj(1− ε) + 2(yj)

2 + 5xj · yj + 3(xj)
2
)
∀j = 1, . . . ,M.

Since, by definition, p̃m > 0 for all m = 1, 2, . . . ,M , (53)
can hold only if xm = ym = 0, for all m = 1, 2, . . . ,M .

Hence, we establish that at the Nash Bargaining Scheme, the
players will only use the top link. This also shows that the
Nash Equilibrium is Pareto optimal. Therefore, the NBS in
this case coincides with the NEP (i.e. the PoS equals the PoA).

Consider now the following (feasible) flow profile: f1
1 = 0,

f1
2 = 0.5, f2

1 = 0.5, f2
2 = 0. The corresponding social cost

is equal to 1.5 + 0.5
0.5+ε , i.e., smaller than 2.5. Therefore, the

social optimum is no more than 2.5. Thus:

PoS = PoA ≥
0.5 + 0.5

ε

2.5
>

0.2

ε
. (54)

Hence, the PoS and the PoA can be made arbitrarily large by
choosing a sufficiently small ε.
More generally, it is interesting to note that, due to the axiom
of Individual Rationality, whenever the Nash Equilibrium
is Pareto optimal (as in the above example), the Price of
Selfishness equals the Price of Anarchy.

B. The Price of Heterogeneity

Theorem 4.1 is not surprising. Indeed, with non-
homogeneous costs, each user may be trying to optimize com-
pletely different performance objectives. Hence what might
be “good” for one might be “bad” for the other, in which
case there is little hope for bargaining. Moreover, with het-
erogeneous objectives, a social objective that is some simple
combination of the individual cost functions, e.g. their sum,
may be artificial. This implies that the Prices of Anarchy and
Selfishness, which are based on the definition of such a social
cost, may be inappropriate. Hence, for the heterogeneous case
we need to look for an alternative concept for benchmarking
the deterioration of performance due to the competition among
players.

To that end, consider again the example in the proof of
Theorem 4.1. To achieve social optimum, user 1 would need
to sacrifice its performance and also use link 2. However, that
link is also costlier for user 1 (albeit not to the extent it is for
user 2), hence, both at an NEP and at an NBS, user 1 would
stick with link 1. Now, suppose we optimally routed all of the
traffic (of both users), but considering as the target, the cost
function of user 2. In that case, the (socially) optimal solution
would coincide with the NBS (and the NEP), i.e., all traffic
routed over link 1, with an optimal (arbitrarily large) cost value
of 1

ε . Hence, the problem here is not due to selfish behavior
but rather due to the poor performance of the network, as
seen from the perspective of user 2. The above discussion
suggests that, with heterogeneous users, the deterioration of
performance in the game scenario should be measured through
the following question: how much might the performance of
a user deteriorate, due to the selfish behavior of the other
users, with respect to the case where all the traffic would be
optimally controlled according to its own cost function. This
figure measures the price that a user pays for the plurality of
performance objectives.

Definition 4.1: For a user i with a (standard) cost function
J i, the system cost function perceived by user i, denoted by
J isys, is the cost function obtained when applying J i to the
whole of the system traffic R =

∑
j∈N r

j .
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For example, consider a user i that attempts to minimize its
delay, where Tl(fl) stands for the link delay. Then,
J i =

∑
l∈L f

i
l · Tl(fl), whereas J isys =

∑
l∈L fl · Tl(fl).

However, J i and J isys are not comparable. In the above
example, J i is the total delay experienced by a volume of
traffic of size ri, whereas J isys is the total delay experienced
by a (larger) volume of traffic of size R. Rather, the figures
that should be compared are the respective performances of
each unit of traffic, i.e., we should normalize J i and J isys by
the respective volumes of traffic ri and R. Indeed, in the above
example, this would compare between the respective average
delays, namely 1

ri ·
∑
l∈L f

i
l · Tl(fl) and 1

R ·
∑
l∈L fl · Tl(fl).

We thus define:
Definition 4.2: The normalized cost of a user i is the ratio

between its cost J i and its size ri, namely: 1
ri · J

i. Similarly,
the normalized system cost perceived by user i is the ratio
between J isys and the total size of the system R, namely:
1
R · J

i
sys.

Note that Definition 4.1 implicitly assumes that there is a way
to define the system cost of a game through the cost function
of a specific user. While this is a valid assumption in many
classes of games, there are cases, such as zero-sum games,
where it is not. Moreover, Definition 4.2 is only applicable to
games where there exists a way to measure the size of the
players, e.g, number of items, budget. In the realm of routing
games, the size of a player refers to its flow demand. We are
now ready to define our proposed concept for quantifying the
degradation of performance in the heterogeneous case.

Definition 4.3: The Price of Heterogeneity of a user i ∈ N
(PoHi) is the ratio between the normalized cost experienced
by that user at a (worst, if many) Nash Equilibrium and the
optimal value of the normalized system cost perceived by that
user, i.e.,

PoHi =
1
ri · Ĵ

i

1
RJ

i∗
sys

, (55)

where J i∗sys is the minimum value of J isys, namely
J i∗sys = minf∈F J

i
sys.

Similarly, the Price of Heterogeneity (PoH) is the worst value
of the PoHi, i.e.:

PoH = max
i∈N

PoHi. (56)

We proceed to establish an upper-bound on the PoH for the
class of routing (load balancing) games specified in Section II,
considering the general (and, potentially “highly heteroge-
neous”) class of standard functions.

Theorem 4.2: In the game defined in Section II, with stan-
dard costs, the following hold:
• The Price of Heterogeneity of a user i ∈ N , i.e., PoHi,

is upper-bounded by PoHi ≤ R
ri .

• Let r = mini∈N r
i. Then, the Price of Heterogeneity, i.e.,

PoH , is upper-bounded by PoH ≤ R
r .

Proof: 7 Consider a user i ∈ N . Denote by f̂−il the
aggregate flow of the other users at the NEP on link l ∈ L,

7We note that this proof can be easily adapted to obtain the following
upper-bound for the Price of Anarchy for users with homogeneous costs:
PoA ≤ N . However, that bound has already been established in [34].

i.e., f̂−il =
∑
j∈N ,j 6=i f̂

j
l , and denote by R−i their aggregated

demand, i.e., R−i =
∑
j∈N ,j 6=i r

j . We will now describe a
“benchmark” strategy, f̄ i, which is a feasible routing strategy
that user i is able to use given the strategies of the other users
as provided by the flows f̂−il ; we point out that this is not
necessarily the best reply of user i to the f̂−il s.

Consider the problem of minimizing J isys, i.e., the problem
of optimally routing the total demand ri+R−i according to the
cost function of user i, i.e., J i. Also, denote R−i(0) = R−i

and L0 = L. Denote by f i∗l (0) the corresponding optimal flow
on link l ∈ L. We thus have:

J i∗sys =
∑
l∈L0

J il (f
i∗
l (0), f i∗l (0)). (57)

Denote by L1 ⊆ L the set of links for which, ∀l ∈
L1, f̂−il ≤ f i∗l (0). Clearly, this set is nonempty. Denote
R−i(1) , R−i(0) −

∑
l/∈L1

f̂−il , i.e., R−i(1) is the total
amount of flow that the other users ship on the links where
f̂−il ≤ f i∗l (0). Consider now the problem of optimally routing
the total demand ri+R−i(1), according to the cost function J i,
solely over the links in L1. Denote by f i∗l (1) the corresponding
optimal flow on link l ∈ L1.

Continuing inductively, denote by Lk+1 ⊆ Lk the set of
links for which, ∀l ∈ Lk+1, f̂−il ≤ f i∗l (k); it is clear
that this set is nonempty. Denote R−i(k + 1) , R−i(k) −∑
l∈Lk\Lk+1

f̂−il , i.e., R−i(k+ 1) is the total amount of flow
that the other users ship on the links where f̂−il ≤ f i∗l (k).
The process continues until, necessarily, for some K, LK =
LK+1.

The benchmark strategy is defined as follows: in each link
l ∈ LK (for which, by construction, f̂−il ≤ f i∗l (K)), user i
ships f̄ il = f i∗l (K) − f̂−il , whereas in other links it does not
ship any flow. Clearly, this is a feasible strategy for i, since
f̄ il ≥ 0 for all l ∈ L and

∑
l∈L

f̄ il =
∑
l∈LK

(f i∗l (K)−f̂−il ) = (R−i(K)+ri)−R−i(K) = ri.

(58)
We proceed with the following lemma.

Lemma 4.1: For all k, 1 ≤ k ≤ K,

∑
l∈Lk

J il (f
i∗
l (k), f i∗l (k)) ≤

∑
l∈Lk−1

J il (f
i∗
l (k − 1), f i∗l (k − 1)).

(59)
Proof: By construction, for 1 ≤ k ≤ K:

∑
l∈Lk

f i∗l (k) = ri+R−i(k) = ri+R−i(k−1)−
∑

l∈Lk−1\Lk

f̂−il .

(60)
Furthermore, by construction:

∑
l∈Lk−1\Lk

f̂−il ≥
∑

l∈Lk−1\Lk

f i∗l (k − 1). (61)
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Therefore:∑
l∈Lk

f i∗l (k) = ri +R−i(k − 1)−
∑

l∈Lk−1\Lk

f̂−il (62)

≤ ri +R−i(k − 1)−
∑

l∈Lk−1\Lk

f i∗l (k − 1)

=
∑
l∈Lk

f i∗l (k − 1).

Now, since (f i∗l )(k)l∈Lk
is an optimal flow (for the function

J i) for routing a total amount of
∑
l∈Lk

f i∗l (k) over the links
of Lk, while (f i∗l )(k−1)l∈Lk

is some flow for routing a larger
total amount (in view of (62)) over the same set of links, due
to the monotonicity assumption S3 on standard cost functions,
it follows that∑
l∈Lk

J il (f
i∗
l (k), f i∗l (k)) ≤

∑
l∈Lk

J il (f
i∗
l (k − 1), f i∗l (k − 1))

≤
∑

l∈Lk−1

J il (f
i∗
l (k − 1), f i∗l (k − 1)).

Applying the above Lemma inductively on k, we get:∑
l∈LK

J il (f
i∗
l (K), f i∗l (K)) ≤

∑
l∈L0

J il (f
i∗
l (0), f i∗l (0)) = J i∗sys,

(63)
where the last identity follows from (57). On the other hand,
the cost J̄ i that user i experiences when employing the
benchmark strategy against the strategies of the other users
j 6= i satisfies:

J̄ i =
∑
l∈LK

J il (f̄
i∗
l , f̄

i∗
l ) (64)

=
∑
l∈LK

J il (f
i∗
l (K)− f̂−il , f i∗l (K)− f̂−il )

≤
∑
l∈LK

J il (f
i∗
l (K), f i∗l (K)),

where the inequality in (64) is due to the monotonicity as-
sumption S3 on standard cost functions. Therefore J̄ i ≤ J i∗sys.
By definition, at the Nash Equilibrium, user i employs a best-
reply strategy for the given strategies of the other players,
hence its cost at the Nash Equilibrium, Ĵ i, is no larger than
when employing the benchmark strategy, i.e., Ĵ i ≤ J̄ i, hence,
Ĵ i ≤ J i∗sys. Normalizing the costs, we have:

PoHi =
1
ri · Ĵ

i

1
RJ

i∗
sys

=
R

ri
· Ĵ

i

J i∗sys
≤ R

ri
(65)

hence establishing the first part of the theorem. The second
part follows immediately.

The Price of Heterogeneity of a user i, PoHi, could be
interpreted as the PoA “as seen by that user”. Per Theorem 4.2,
that value cannot be worse than the reciprocal of the user’s
relative size in the system. A practical implication of the
theorem is that, in a heterogeneous environment, “you’d better
be big”.8 In a way, the theorem provides additional incentives

8In view of the bargaining paradox [37], the above is only in the worst-
case sense considered by the PoH .

to cooperate with other users that contemplate the same perfor-
mance objectives, even in the presence of other heterogeneous
users. Indeed, from the worst-case perspective considered by
the PoH, Theorem 4.2 indicates that, through bargaining, a
homogeneous subset of users can obtain a strategy profile that
would effectively make them behave as a single user with an
aggregated traffic demand, hence decreasing the upper bound
on the PoH.

Another practical implication from the derived upper bound
on the PoH is that, from a system perspective, users (or groups
of homogeneous users) are preferred to be identical in demand.
This seemingly contradicts [12], which considers a scenario
where a network administrator is able to send its own demand
through the network and aims at optimizing the overall system
performance. It is concluded in [12] that, when the demands
of all users are equal, it is hard for a network administrator
to enforce the system optimum. Our result adds to [12] and
illustrates that, in a scenario without direct interference from a
network administrator, the system may perform better if users
have identical demands.

V. CONCLUSION

We investigated the added value of bargaining among play-
ers in a communication network. As a new figure of merit for
cooperative games, the Price of Selfishness was introduced and
under the case of homogeneous costs, the NBS guarantees an
improvement in performance for all users and for the system.
Moreover, for certain cases, the NBS was shown to be equal
to the optimal (social) solution of the system. It remains an
open question how to tighten the bounds on the PoS for the
general case with N -users. We also considered the case of
non-homogeneous costs, for which we proposed the Price
of Heterogeneity as an appropriate extension of the Price of
Anarchy and established an upper bound on the PoH under
quite general conditions.

Our study focused on load balancing (routing) among
servers (links), and furthermore, it considered a specific so-
lution concept, namely the NBS. Yet, we believe that it
provides useful insight into the potential merit of adopting
bargaining schemes in networking games. For example, having
PoS ≡ 1 but potentially PoA >> 1 in certain homoge-
neous settings, together with a potentially unbounded PoS in
non-homogeneous settings, suggests a design guideline that
attempts to separate among homogeneous groups of users
(e.g., “highly delay-sensitive”, “less delay-sensitive but highly
sensitive to packet loss”, etc.) so that each group would share
its own network resources. Another important issue is the
ability, or willingness, of the users to bargain. The essential
bargaining solution concept implicitly assumes that, as long
as Axiom N1 is met, the players would accept the solution.
Yet, some users might not be able to do so, either due to
technical reasons (e.g., inability to communicate) or to other
reasons, such as administrative or legal constraints. Such a
user, even if “homogeneous” in terms of its cost function,
may prevent achieving social optimality through bargaining.
Therefore, another design guideline would be to try to separate
between cooperative users (i.e., that can engage in bargaining)
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and those that do not cooperate. Furthermore, if such isolations
are not possible and we need to confront a heterogeneous
scenario, our bound on the PoH suggests that homogeneous
groups of users would benefit from bargaining a joint strategy.

While we advocated the choice of the NBS, other solu-
tion concepts of cooperative games should be considered, as
they could better fit some of the networking scenarios. For
example, agents may have different bargaining powers, hence
asymmetric bargaining schemes [1] might be called for. In
addition, the NBS contemplates two scenarios, namely a grand
coalition versus a “disagreement point”. Yet, partial coalitions
should also be taken into account, e.g., due to the inability
of some users to engage in bargaining. Finally, we aim to
consider more complex topologies, which correspond to a
larger range of networking scenarios. Investigating the added
value of bargaining in such contexts is thus another important
area for future work.

REFERENCES

[1] R. Myerson, Game Theory, Analysis of Conflict. Harvard University
Press, 1991.

[2] Y. A. Korilis and A. A. Lazar, “On the existence of equilibria in
noncooperative optimal flow control,” Journal of the ACM, vol. 42, no. 3,
pp. 584–613, 1995.

[3] A. Orda, R. Rom, and N. Shimkin, “Competitive routing in multiuser
communication networks,” IEEE/ACM Trans. Networking, vol. 1, pp.
510–521, October 1993.
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