arXiv:1109.0264v1 [cs.IT] 1 Sep 2011

Simple Regenerating Codes:
Network Coding for Cloud Storage

Dimitris S. Papailiopoulos’, Jiangiang Luo?, Alexandros G. Dimakis’, Cheng Huang*, and Jin Li*
fUniversity of Southern California, Los Angeles, CA 90089, Email:{papailio, dimakis}@usc.edu
tWayne State University, Detroit, MI 48202, Email: jiangiang@wayne.edu

*Microsoft Research, Redmond, WA 98052, Email: {cheng.huang,

Abstract—Network codes designed specifically for distributed
storage systems have the potential to provide dramatically higher
storage efficiency for the same availability. One main challenge
in the design of such codes is the exact repair problem: if a node
storing encoded information fails, in order to maintain the same
level of reliability we need to create encoded information at a
new node. One of the main open problems in this emerging area
has been the design of simple coding schemes that allow exact
and low cost repair of failed nodes and have high data rates. In
particular, all prior known explicit constructions have data rates
bounded by 1/2.

In this paper we introduce the first family of distributed
storage codes that have simple look-up repair and can achieve
arbitrarily high rates. Our constructions are very simple to
implement and perform exact repair by simple XORing of
packets. We experimentally evaluate the proposed codes in a
realistic cloud storage simulator and show significant benefits in
both performance and reliability compared to replication and
standard Reed-Solomon codes.

I. INTRODUCTION

Distributed storage systems have reached such a massive
scale that recovery from failures is now part of regular
operation rather than a rare exception [23]]. Large scale de-
ployments typically need to tolerate multiple failures, both
for high availability and to prevent data loss. Erasure coded
storage achieves high failure tolerance without requiring a
large number of replicas that increase the storage cost [9].
Three application contexts where erasure coding techniques
are being currently deployed or under investigation are Cloud
storage systems, archival storage, and peer-to-peer storage
systems like Cleversafe and Wuala (see e.g. [2[], [3], [5], I8,
112

One central problem in erasure coded distributed storage
systems is that of maintaining an encoded representation when
failures occur. To maintain the same redundancy when a
storage node leaves the system, a newcomer node has to join
the array, access some existing nodes, and exactly reproduce
the contents of the departed node. Repairing a node failure in
an erasure coded system requires in-network combinations of
coded packets, a concept called network coding. Network cod-
ing has been investigated for numerous applications including
p2p systems, wireless ad hoc networks and various storage
problems (see e.g. [6], [7]], [15]).

In this paper we focus on network coding techniques for
exact repair of a node failure in an erasure coded storage
system [4], [2]. There are several metrics that can be optimized
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during repair: the total information read from existing disks
during repair [11]], [12], the total information communicated
in the network [[14f], [16]-[22] (called repair bandwidth [4]),
or the total number of disks required for each repair [8]], [13]].

Currently, the most well-understood metric is that of repair
bandwidth. For designing (n, k) erasure codes that have n
storage nodes and can tolerate any n — k failures, an informa-
tion theoretic tradeoff between the repair bandwidth v and the
storage per node « was established in [4], using cut-set bounds
on an information flow graph. Explicit code constructions
exist for the the two extreme points on this bandwidth-storage
tradeoff, see e.g. [2], [S]. Despite this substantial amount
of prior work, there are no practical code constructions of
efficiently repairable codes with data rates above 1/2. Further,
different performance metrics might be of interest in different
applications. It seems that for cloud storage applications the
main performance bottleneck is the disk I/O overhead for
repair, which is proportional to the number of nodes d involved
in rebuilding a failed node.

Our Contribution: In this paper we introduce the first
family of distributed storage codes that have simple look-up
repair and can achieve arbitrarily high rates. Our constructions
are very simple to implement and perform exact repair by
simple packet combinations. Specifically, we design simple
regenerating codes (SRC) that have high-rate, very small disk-
I/O d, and minimal repair computation.

An (n,k, f)-SRC is a code for n storage nodes that can
tolerate n — k erasures, where each node stores a fraction %
of the file size in coded chunks. To repair a single coded chunk
we need to access f disks and read 1 chunk from each disk.
The regeneration of an entire lost node costs a fraction % in
repair bandwidth and d = 2f disk accesses. Our codes have
rate R = %%, which can be made arbitrarily close to
for constant in k erasure resiliency.
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We experimentally evaluate the proposed codes in a realistic
cloud storage simulator that models node rebuilds in Hadoop.
Our simulator was initially validated on a real Hadoop sys-
tem of 16 machines connected by a 1GB/s network. Our
subsequent experiment involves 100 machines and compares
the performance of SRC to replication and standard Reed-
Solomon codes. We find that SRCs add a new attractive point
in the design space of redundancy mechanisms for cloud
storage.
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Fig. 1.

II. SIMPLE REGENERATING CODES

The first requirement from our storage code is the (n, k)
property: a code will be storing information in n storage nodes
and should be able to folerate any combination of n — k
failures without data loss. We refer to codes that have this
reliability as “(n, k) erasure codes,” or codes that have “the
(n, k) property.”

One well-known class of erasure codes that have this
property is the family of maximum distance separable (MDS)
codes [S], [[10]. In short, an MDS code is a way to take a
data object of size M, split it into chunks of size M /k and
create n chunks of the same size that have the (n, k) property.
It can be seen that MDS codes achieve the (n,k) property
with the minimum storage overhead possible: any & storage
nodes jointly store M bits of useful information, which is the
minimum possible to guarantee recovery.

Our second requirement is efficient exact repair [5]. When
one node fails or becomes unavailable, the stored information
should be easily reconstructable using other surviving nodes.
Simple regenerating codes achieve the (n,k) property and
simple repair simultaneously by separating the two problems.
Large MDS codes are used to provide reliability against any
n — k failures while very simple XORs applied over the MDS
coded packets provide efficient exact repair when single node
failures happen.
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Fig. 2. File reconstruction of a (4, 2,2)-SRC.

We give a first overview of our construction through a
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Example of a (4, 2,2)-SRC. n = 4 storage nodes, any k = 2 recover the data and XORs of degree f = 2 provide simple repair.

simple example in Fig. which shows an (n = 4,k =
2, f = 2)-SRC. The original data object is split in 4 chunks
f1s fay f3, f4. We first encode [f; fo] in [x1 x2 x3 4] and
[fs fa] in [y1 y2 y3 w4] using any standard (4,2) MDS
code. This can be easily done by multiplication of the data
with the 2 x 4 generator matrix G of the MDS code to form
(71 @2 w3 w4] = [f1 f2]G and [y1 y2 y3 ya] = [f3 f4]G. Then
we generate a parity out of each “level” of coded chunks, i.e.,
S; = x; + y;, which results in an aggregate of 12 chunks. We
circularly place these chunks in 4 nodes, each storing 3, as
shown in Fig. 1.

It is easy to check that this code has the (n, k) property and
in Fig. [2| we show an example by failing nodes 1 and 4. Any
two nodes contain two x; and two y; chunks which through
the outer MDS codes can be used to recover the original data
object. We note that the parity chunks are not used in this
process, which shows the sub-optimality of our construction.
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Fig. 3. The repair of node 1 in a (4, 2,2)-SRC

In Fig. B} we give an example of a single node repair
of the (4,2,2)-SRC. We assume that node 1 is lost and a
newcomer joins the system. To reconstruct x1, the newcomer
has to download y; and s; from nodes 3 and 4. This simple
repair scheme is possible due to the way that we placed the
chunks in the 4 storage nodes: each node stores 3 chunks with



different index. The newcomer reconstructs each lost chunk by
downloading, accessing, and XORing 2 other chunks. In this
process the outer MDS codes are not used.

In short our codes combine outer MDS codes and sim-
ple parities to provide fault tolerance and efficient repair
respectively. Due to this separation of duties, our codes are
suboptimal. However, as we show subsequently this optimality
loss corresponds to asymptotically negligible loss in storage
efficiency and only a logarithmic factor overhead compared to
the optimal information theoretic storage bounds.

A. The f =2 Case: degree 2 parities

We now present our general SRC construction for the f = 2
case.

B. Code Construction, Erasure Resiliency, and Rate

Let a file f, of size M = 2k, that we cut into 2 parts, say
£ — |:f(1) f<2>] ’ (1)

where £f() € F'**, for i € [2], where [N] = {1,..., N} and
F is the finite field over which all operations are performed.
Our coding process, is a two-step one: first we independently
encode each of the file parts using an outer MDS code and
generate simple parity sum out of them. Then we store the
coded chunks and the parity sum chunks in a specific way in
n storage components. This encode and place scheme enables
easy repair of lost chunks and arbitrary erasure tolerance.

We start with an (n, k) MDS code that we use to encode
independently each of the 2 file parts of size k, £(!) and £(®),
into two coded vectors, x and y, of length n. This encoding
process is given by

x=fVG andy = f?G, (2)

where G € F¥*" is the outer MDS code generator matrix.
We pose no requirements on that MDS code, in the sense
that any (n, k) MDS design will work for our purposes. The
maximum distance of the code ensures that any k encoded
chunks of x can reconstruct f(!); the same goes for any k
chunks from y, i.e., we can use them to reconstruct f 1), we
continue by generating a parity sum vector by adding the two
coded vectors x and y

s=x+Yy, 3)

where s; = x; + y;; we note that the index [ of the parity
sum s; is the same as the subscript of the 2 coded chunks that
generate it. This process yields 3n chunks: 2n coded chunks
in the vectors x and y, and n parity sum chunks, i.e., the
vector s =X +y.

We proceed by placing these 3n chunks in n storage nodes
in the following way: each storage node will be storing 3
chunks, one from x, one from y, and one from the parity
vector s. We require that these 3 chunks do not share a

subscript. This subscript requirement can be guaranteed by
the following circular placement of chunks in the i-th node

;
Yiol | » 4)
Sid2

where ¢ € [n] and @ denotes modulus addition on the ring
{1,...,n} (for example n@® 1 = 1). The above circular chunk
placement results in the following coded array of n storage
nodes

node 1 | node 2 node n — 2 | node n — 1 | node n
1 X2 Tn—2 Tn—1 Tn
Y2 Y3 Yn—1 Yn Y1
S3 S4 e Sn S1 52

We can observe that for n > 2, indeed the 3 chunks of each
node do not share a subscript.

C. Erasure Resiliency and Effective Coding Rate

In this section, we present the erasure resiliency and coding
rate of the (n,k,2)-SRC and prove the following theorem.
Due to lack of space we do not present some proofs in full
length and we give sketches instead. The extended version of
the paper with full proofs can be found online at [1]].

Theorem 1: The (n,k,2)-SRC can tolerate any possible

combination n— k erasures and has effective coding rate % . %

Proof Sketch: The (n, k) property of the SRC is inherited by
the underlying MDS outer codes: we can always retrieve the
file by connecting to any subset of k£ nodes of the storage array.
Any subset of k£ nodes contain k£ chunks of each of the two
file parts f(1) and £(2), which can be retrieved by inverting the
corresponding k X k submatrices of the MDS generator matrix
G Hence, the (n, k) property of the two identical outer MDS
pre-codes renders gives the (n, k, 2)-SRC its (n, k) property.
We proceed by calculating the coding rate (space efficiency)
R of the (n,k,2)-SRC, by considering the ratio of the total
amount of useful stored information, to the total amount of
data that is stored. That is, the ratio of the initial file size to

the expedited storage
n_ file size _2~k. 5)

storage spent 3 -7

O
Hence, the (n,k,2)-SRC is an erasure code with rate upper
bounded by %: for fixed erasure tollerance, n — k = m, the

SRC can have rate arbitrarily close to %, that is,
2 k k—oo 2
—— 5 . 6
3k+m 3 ©
The (n,k,2) SRC construction that is presented in this
section can be generalize to constructions where the rate can
be made arbitrarily high. This is done by increasing the amount
of chunks stored per node and the degree of the parity sums
from 2 to f. These constructions are presented in Section III.



D. Repairing Lost Chunks

For the general (n, k,2)-SRC, when a single node is lost,
or a single chunk of that lost node is requested to be accessed,
the repair process is initiated. To sustain high data availability
in the presence of chunk and node erasures, the repair process
has to be fast and simple: it should be low cost with respect
to information read, communicated, and with respect to the
number of total disk accesses. The circular placement of
chunks in the SRC enables easy repair of single lost chunks,
or single node failures, with respect to the aforementioned
metrics. This is due to the fact that each chunk that is lost
shares an index with 2 more chunks stored in 2 distinct nodes.
By contacting these 2 remaining nodes, we can repair the lost
chunk by a simple XOR operation. For the repair of a single
chunk or a single node, we have the following theorem.

Theorem 2: The repair of a single chunk of the (n, k,2)-
SRC costs 2 in repair bandwidth and chunk reads, that is a
fraction % of the file size, and 2 disk accesses. Moreover, the
repair of a single node failure costs 6 in repair bandwidth and
chunk reads, that is a fraction % of the file size, and 4 in disk
accesses.

Proof: Let for example node ¢ € [n] fail, that is, chunks
Ti, Yiep1, and s;p2 are lost. Then, a newcomer joins the
storage array and wishes to regenerate the lost information.
To reconstruct acgl , the newcomer connects to the two chunks
available in the storage system that share the same subscript i,
i.e., it connects to the node that contains the parity s; and to
the node that contains the chunk y;. The newcomer can then
restore the lost chunk x; simply by subtracting y; from the
parity s;. This repair process is summarized in the following
3 steps.

Step | Repair chunk :EEU:
1 Access Disk 1©1 and download y;
2 Access Disk ¢62 and download s;
3 restore xz(-l) =8, — T4

where & is subtraction on the ring {1,...,n} (for example
161 =n). We follow the same manner to repair ¥;g1:

Step | Repair chunk y;q1:
1 Access Disk i@ 1 and download ;g1
2 Access Disk 161 and download s;g1
3 restore Yipl ‘= Sipl — Tipl

The parity repair is also similar, we need to access the 2 nodes
that contain the coded chunks x4, and y;q2 and sum them:

Step | Repair chunk s;g2:
1 Access Disk 1@ 2 and download ;g2
2 Access Disk 1@ 1 and download ;g2
3 restore Sip2 = Tih2 +yi@2

From the above, we observe that the repair of a single
chunk contained in a storage node requires 2 disk accesses,
2 chunk reads, and 2 downloads. Moreover, to repair a single
node failure an aggregate of 6 chunk reads and 6 downloads
is required. The set of disks that are accessed to repair all
chunks of nodes i is {1 ©2,i61,i® 1,i® 2}, for i € [n],
Hence, the number of disk accesses is min(n — 1,4), and

n—1is true when i ©2 = i ® 2, as is the case in our (4, 2,2)
example in Figures 1-3. ]

Remark 1: We would like to note that a repair would only
fail, i.e., one of the packets that are used to regenerate lost
information can not be retrieved only if n < 2.

In the following section, we introduce the general code
construction of the (n, k, f)-SRC, where we consider its rate,
reliability, repair properties, and analyze its asymptotics.

III. SRC: THE GENERAL CONSTRUCTION

In this section we generalize the f = 2 construction, to
the (n,k, f)-SRC. For the general (n,k, f)-SRC, we use f
parallel and identical MDS outer pre-codes and generate a
single parity vector from f encoded parts. We circularly place
the generated chunks in n storage nodes. The (n, k, f)-SRC
is an (n, k) erasure code with rate R = %%, i.e., the SRC
always attains a % fraction of the space efficiency of an
(n,k) MDS code, for the same reliability, but with simple
and low cost node repair. We perform single node repairs in
the same manner as the f = 2 case: to repair a chunk, we
access f nodes and perform a simple addition. For any f, the
communication overhead to repair a single chunk is a fraction
% of tha file size and the number of chunk reads and disk
accesses is f, which can be constant and not necessarily a
function of k. The repair of a single node failure costs (f +
1)% in repair bandwidth and we prove that the total number
of disk accesses needed for a single node failure is exactly 2- f.
We proceed by introducing the general code construction and
showing its properties.

A. Encoding, Erasure Resilience, and Rate

Let a file f, of size M = fk, that is subpacketized in f
parts,

f— [f(l) . ..f(f)] : 7

with each £, j € [f], having size k. We encode each of the
f file parts independently, into vectors x(V) of length n, using
an outer (n, k) MDS code. That is, we have

x =@, < = fH g (8)

where G is the n x kK MDS generator matrix.

Remark 2: The outer MDS code can be any scalar or array
(n, k) MDS code, i.e., we pose no requirements on its design
or finite field size.

We generate a single parity sum vector from all the coded

vectors
f
s= " x0. ©)
i=1

This process yields a total of fn coded chunks in the x(*)
vectors and n parity chunks in s, i.e., we have an aggregate
of (f + 1)n chunks available to place in n nodes.



We will circularly place these (f + 1)n chunks in n storage
nodes, with each node storing f coded chunks and 1 parity
sum chunk, hence each node expends

f+1M

= 1=21-

asrc = [+ ok

in storage capacity. The placement will again obey the property

that enables easy repair: no two chunks within a storage node

should share the same subscript. To ensure successful repair

we also require that f < n. Below we state the circular
placement of chunks in the i-th node, for i € [n]

20

1
(2)
Tip1

(10)

; (1)

)
Tig(r-1)

Siof

which results in the following array of n storage nodes

node 1 | node 2 node n — 1 node n
mgl) xél) 1751121 xg)
mg) wgz) ng) ﬁng)
m§3) xf) x§3) xé3)
w | e || 2B | #iBey
Sfo1 Sf@2 Sfa(n—1) Sfén

Then, we have the following theorem.

Theorem 3: The (n,k, f)-SRC can tolerate any combina-

tion of n — k node erasures and has coding rate ﬁ : %

Proof Sketch: The f MDS pre-codes guarantee perfect file
reconstruction posterior to any n — k erasures. The file can
always be reconstructed by connecting to any k nodes: any
collection of k£ nodes contain fk distinct coded chunks, k of
each file part. Each of these k-tuples of coded chunks can give
back the information chunks of a single file part due to the f
outer MDS codes.

The effective coding rate of the (n,k, f)-SRC is equal to
the ratio of the initial file size to the expedited storage, that is
[k

= . 12
storage spent  (f+1)-n (12)

file size

Rsre =

O
By the above theorem we can claim that the rate of the SRC
is a fraction % of the coding rate of an (n, k) MDS code,
hence is upper bounded by

13)

d

In Fig. we show how the effective coding rate of a

(20,16, f) SRC scales as a function of f, and compare it

with that of a (20,16) MDS code. Both codes can tolerate 4

failures. We observe that as f increases the coding rate of the
SRC approaches that of the MDS code.
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Fig. 4. Rate comparison of a (20, 16, f)-SRC and a (20, 16)-MDS Code.

B. Repairing Lost Elements

In this subsection we prove the repair properties of the SRC,
which are summarized in the following theorem.

Theorem 4: The repair of a single chunk of the (n,k, f)-
SRC, where each node stores asrc = I %, costs % in
repair bandwidth and f in chunk reads, and disk accesses. The
repair of a single node failure costs
(14)

ysre = (f + 1)%

in repair bandwidth, f(f + 1) = (f 4+ 1)4% in chunk reads,
and

dSRC = mm(2f, n — 1) (15)

in disk accesses.

Proof: Let node i € [n] fail. A newcomer node can reconstruct

the lost chunk xz(g(zq) by accessing all f nodes in the set

Sh={ie(f-1+D,ie(f-2+1),...,i01}\i. (16)
and downloading the chunk of each node that has the same

subscript ¢ @ (I — 1) as the lost chunk. For example to
we need to perform the following steps:

)

i

reconstruct x,;

Step | Repair chunk x

@
2
(3)

i

1 Access Disk i©1 and download x

2 Access Disk i©2 and download z

Access Disk 16 (f —1) €3]

and download z;
f Access Disk 16 f and download s;
f+1 restore x; := 8§; — {:2 xgl)

Hence, repairing a single coded chunk requires f = % chunk
downloads, reads, f and disk accesses. To reconstruct the
parity sum chunk s;g¢, we need to connect to the f nodes

that contain the chunks xgg > L € [f] which generate it.



(n,k)-MDS | (n,k,d =n—1)-MSR | (n,k,d =k)-MBR | (n,k,d=n—1)-MBR | (n,k, f)-SRC
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Fig. 5. (m,k, f)-SRC Performance Comparison

To repair a single node failure we need to communicate and
read (f+1)f = (f+1)4% symbols. The total number of disk
accesses for a single node repair is given by the number of
distinct indices in the set

a7

To enumerate the distinct indices in S;, we first count the
number of distinct indices between sets S;(I) and S;(I + 1)
for all [ € [f]. We observe that

Si(HUS;(I+1) ={ie(f-1+D),ie(f—24+1),...,i0(1-1)}\i
and
ISi(HUS(I+1)]=f+1, (18)

that is, for any two “consecutive” chunk repairs, we need to
access [ + 1 storage nodes. Starting with f disk accesses for
the first chunk repair, each additional chunk repair requires an
additional disk access, with respect to what has already been
accessed. The total number of disks accessed is

dsrc = (# of disks accesses for chunk :cgl))

+ (# of disks accesses for chunk :c%)l)

+ (# of disks accesses for chunk s;q )
=f+1+14+...+41 =2-f
—_———

fadditional disks accesses

19)

Therefore, to repair a single node failure an aggregate of 2 f
disk accesses is required, when 2f < n —1. If 2f >n—1
then the number of total disk accesses is n — 1. ]

In Fig. [5] we give a comparison table between MDS, MSR,
MBR, and Simple Regenerating Codes, with respect to 1)
storage capacity per node «, 2) repair bandwidth per single
node repair 7, 3) number of disk accesses per single node
repair d, and 4) effective coding rate R. We consider MSR
and MBR codes that connect to d = {k,n — 1} remaining
nodes for a single node failure. Observe that the number of
disk acceses in the SRC is a design parameter that can be
set to a constant by appropriately choosing f, which can be
orders less than k.

Remark 3: Regenerating Codes [4]] have the property that
a single node failure can be repaired by any subset of d
remaining nodes, and k£ < d < n — 1 is fixed by the specific
code design. In sharp contrast, SRCs are look-up repair codes:
for a single node failure, only a specific dsgc subset of the

remaining nodes can reconstruct the file and dsgc can be a
constant, or a function of % that potentially grows much slower
than ©(k).

C. Asymptotics of the SRC and links to MDS codes

In this subsection, we consider the asymptotics of the SRC.
What happens if we fix R = % and let the degree of parities
f grow as a function of k? Let for example

f =log(k).

Then, the repair of a single node costs ysgc = (log(k) +
1)M /k, with dsgc = 2f = 2log(k). In comparison, a single
node failure of an (n, k) MSR code costs ymsg = 2= M /k.
If we let k£ and n grow and fix R = % we obtain

sk _ log(k) +1  log(k) +1

(20)

= = = O(log(k)). (21)
n—1 1/Rk—1
“TMSR n—k AR
The effective coding rate of the SRC is given by
1 %
f k_ log(k) ko R 22)

f4+1n  log(k)+1n

Therfore, compared to repair optimal MDS codes, i.e. MSR
codes, SRCs with f = log(k) sacrifice asymptotically negli-
gible coding rate and have a logarithmic overhead compared
to minimum bandwidth node repair, when at the same time
they attain very easy repair based on simple XORs, with
logarithmic in k£ number of disk accesses.

IV. SIMULATIONS

In addition to our theoretical analysis, we evaluate SRCs
in a realistic cloud storage simulator. We only tested SRCs
with f = 2 in this paper. This case allows the most efficient
repair but at somewhat high storage overhead. We leave the
exploration of other choices of f and the involved tradeoffs
as future work.

A. Simulator Introduction

We first present the architecture of the cloud storage system
that our simulator is modeling. The architecture contains one
master server and a great number of data storage servers,
similar to that of GFS [23] and Hadoop [24]]. As a cloud
storage system may store up to tens of petabytes of data, we
expect numerous failures and hence fault tolerance and high
availability are critical. To offer high data reliability, the master
server needs to monitor the health status of each storage server
and detect failures promptly.



In the systems of interest, data is partitioned and stored as a
number of fixed-size chunks, which in Hadoop can be 64MB
or 128MB. Chunks form the smallest accessible data units
and in our system are set to be 64MB. To tolerate storage
server failures, replication or erasure codes are employed to
generate redundant chunks. Then, several chunks are grouped
and form a redundancy set [25]]. If one chunk is lost, it can
be reconstructed from other surviving chunks. To repair the
chunks due to a failure event, the master server will initiate
the repair process and schedule repair jobs.

We implemented a discrete-event simulator of a cloud
storage system using a similar architecture and data repair
mechanism as Hadoop. To provide accurate simulation results,
our simulator models most entities of the involved components
such as machines and chunks. When performing repair jobs,
the simulator keeps track of the details of each repair process
which gives us a detailed performance analysis.

B. Simulator Validation

We first calibrated our simulator to accurately model the
data repair behavior of Hadoop. During the validation, we ran
one experiment on a real Hadoop system. This system contains
16 machines, which are connected by a 1Gb/s network.
Each machine has about 410GB data, namely approximately
6400 chunks. Then, we manually failed one machine, and let
Hadoop repair the lost data. After the repair was completed, we
analyzed the log file of Hadoop and derived repair time of each
chunk. Next, we ran a similar experiment in our simulator.
We also collected the repair time of each chunk from the
simulation. We present the CDF of the repair time of both
experiments in Fig. [
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Fig. 6. CDF of repair time

Fig. [6] shows that the repair result of the simulation matches
the results of the real Hadoop system very well, particularly
when the percentile is below 95. Therefore, we conclude that
the simulator can precisely simulate the data repair process of
Hadoop.

C. Storage Cost Analysis

Now we observe how storage overhead varies when we grow
(n,k). We compare three codes: 3-way replication, Reed-
Solomon (RS) codes, and SRC. To make the storage overhead
easily understood, we define the cost of storing one byte as
the metric of how many bytes are stored for each useful byte.
Obviously, high cost results in high storage overhead. As 3-
way replication is a popularly used approach, we use it as the
base line for comparison. The result is presented in Fig.
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Fig. 7. Storage cost comparison

Fig. [/| shows that when n — k is fixed, the normalized cost
of both the RS-code and the SRC decreases as n grows. When
(n, k) grows to (50, 46), the normalized cost of SRC is 0.54,
and that of RS-code is 0.36. In other words, (50,46, 2) SRCs
need approximately half the storage of 3-way replication. It is
worth noting that the cost of SRCs will further reduce if we
use larger values of f, but at the cost of slower repair.

D. Repair Performance

In this experiment, we measure the throughput of repairing
one failed data server. The experiment involves a total of 100
machines, each storing 410GB of data. We fail at random one
machine and start the data repair process. After the repair
is finished, we measure the elapsed time and calculate the
repair throughput. The results are shown in Fig. |8} Note that
the throughput of using 3-way replication is constant across
different (n, k) since there is no such dependency on these
parameters.

From Fig. [§] we can make two observations. First, 3-
way replication has the best repair performance followed by
SRC, while the RS-code offers the worst performance. This
is not surprising due to the amount of data that has to be
accessed for the repair. Second, the repair performance of
SRC remains constant on various (n, k), but the performance
of RS-code becomes much worse as n grows. This is one of
the major benefits of SRC, i.e., the repair performance can be
independent from (n, k). Furthermore, the repair throughput
of SRC is about 500MB/s, approximately 64% of the 3-way
replication’s performance.



T T T T T
. 1000 - - -#-- RS-code ---%-- Replication
g —— SRC
= 800 [ eeeenrenn-s Weoeonnennn S TTTPP U EETTPp *
5
£ 600 -
=2
> *% 3¢ 3¢
o * * —x
E= 400 -
5
+.
& 200 - .
x T ..
O | | -:--- LCRCTE .T. ET I ...'.
&%) p 3y <o %)
Y Ny Ty T T
(n, K) configuration
Fig. 8. Repair performance comparison

E. Degraded Read Performance

In a real system, repair can take place in two situations.
One situation is when we need to repair a failed data storage
server. Another situation is when we wish to read a piece
of data, but it is stored in a storage server that is currently
unavailable. The two situations differ in whether the repaired
data is stored or not. The first situation is a regular repair
operation, which writes the repaired data back to the system.
The second situation repairs the data in the main memory and
then simply drops it after serving the read request. We call
the latter degraded read. The degraded read performance is
important, since clients can notice performance degradations
when servers have temporary or permanent failures.

We use a similar experimental environment to what we
presented in section The only difference is after a chunk
is repaired, we do not write it back. The performance results
are presented in Fig. [0}
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Fig. 9. Degraded read performance comparison

We can also make two observations from Fig. E} First,
for all three codes, the performance trend of degraded read

performance is similar to that of repair performance, shown in
Fig. 8] Second, for a code with the same (n, k), the degraded
read performance is higher than that of repair performance,
due to less accessed data. Again, SRC achieves approximately
60% degraded read performance of 3-way replication.

F. Data Reliability Analysis

Now we analyze the data reliability of an SRC cloud storage
system. We use a simple Markov model [26] to estimate the
reliability. For simplicity, failures happen only to disks and
we assume no failure correlations. We note that we expect
correlated failures to further benefit SRCs over replication
since they spread the data to more nodes and hence achieve
better diversity protection under correlated failure scenarios.
This, however, remains to be verified in a more thorough
experimental study of coded cloud storage systems.

We assume that the mean time to failure (MTTF) of a disk
is 5 years and the system stores 1PB data. To be conservative,
the repair time is 15 minutes when using 3-way replication
and 30 minutes for SRC, which is in accordance to Fig. E} In
the case of RS-code, the repair time depends on k of (n, k).
With these parameters, we first measure the reliability of one
redundancy set, and then use it to derive the reliability of
the entire system. The estimated MTTF of the entire storage
system is presented in Fig. [T0}
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Fig. [I0] shows that the data reliability of the 3-way repli-
cation is in the order of 10°. This is consistent with the
results in [26]]. We can observe that the reliability of SRCs
is much higher than 3-way replication. Even for the high rate
(low storage overhead) (50,46) case, SRCs are several orders
of magnitude more reliable than 3-way replication. This is
benefited from the high repair speed of SRCs. RS codes show a
significantly different trend. Although the reliability of (10, 6)
and (20, 16) are higher than 3-way replication, the reliability of
the RS-code reduces greatly when (n, k) grows. This happens
because their repair performance rapidly decreases as k grows.



V. CONCLUSIONS

We introduced a novel family of distributed storage codes
that are formed by combining MDS codes and simple locally
decodable parities for efficient repair and high fault tolerance.
We theoretically show that our codes have the (n,k) relia-
bility, have asymptotically optimal storage and are within a
logarithmic factor from optimality in repair bandwidth. One
very significant benefit is that the number of nodes that need
to be contacted for repair can be made a small constant, inde-
pendent of n, k. Further, SRCs can be easily implemented by
combining any prior MDS code implementation with XORing
of coded chunks and the appropriate chunk placement into
nodes.

We presented a comparison of the proposed codes with
replication and Reed-Solomon codes using a cloud storage
simulator. We have interest on relatively large values of (n, k)
because when we keep n — k constant, larger values of k
impose lower storage overhead (higher code rates). Standard
Reed-Solomon codes cannot operate in this regime since their
repair cost increases linearly in k. On the contrary, SRCs
require only a constant number of nodes involved in each
repair and can therefore achieve very good storage overhead
with good performance. As an example, if we compare a
(50, 46,2) SRC with 3-way replication we find that the SRC
requires approximately half the storage but has approximately
60% worse degraded read performance. The main strength
of the SRC in this comparison, however, is that it provides
approximately four more zeros of data reliability compared to
replication. The comparison with Reed-Solomon leads almost
certainly to a win of SRCs when slightly more storage is
allowed.

In conclusion we think that SRCs add new feasible points
in the tradeoff space of distributed storage codes. They deliver
comparable performance to 3-way replication and significantly
higher data reliability at a lower storage cost. Our preliminary
investigation therefore suggests that SRCs should be attractive
for real cloud storage systems.
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