
The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

To Migrate or to Wait: Bandwidth-Latency Tradeoff
In Opportunistic Scheduling of Parallel Tasks

Ting He*, Shiyao Chent, Hyoil Kim+, Lang Tongt, and Kang-Won Lee*
*IBM T.J. Watson Research Center, Yorktown, NY, USA. Email: {the.kangwon}@us.ibm.com

tSchool of ECE, Cornell University, Ithaca, NY, USA. Email: {sc933.lt35}@cornell.edu
+School of ECE, Uisan National Institute of Science and Technology, Korea. Email: hkim@unist.ac.kr

Abstract-We consider the problem of scheduling low-priority
tasks onto resources already assigned to high-priority tasks. Due
to burstiness of the high-priority workloads, the resources can be
temporarily underutilized and made available to the low-priority
tasks. The increased level of utilization comes at a cost to the low
priority tasks due to intermittent resource availability. Focusing
on two major costs, bandwidth cost associated with migrating
tasks and latency cost associated with suspending tasks, we aim
at developing online scheduling policies achieving the optimal
bandwidth-latency tradeoff for parallel low-priority tasks with
synchronization requirements. Under Markovian resource avail
ability models, we formulate the problem as a Markov Decision
Process (MDP) whose solution gives the optimal scheduling policy.
Furthermore, we discover structures of the problem in the special
case of homogeneous availability patterns that enable a simple
threshold-based policy that is provably optimal. We validate the
efficacy of the proposed policies by trace-driven simulations.

I. INTRODUCTION

Cloud-based service model often promises to provide infinite
scalability in satisfying computing requests on demand. To
guarantee the satisfaction of their service level agreement
(SLA) with clients, the providers are forced to plan their
physical capacity for the peak. load, thus leaving much of the
resource under-utilized during normal periods of operation.

A common remedy is to perform "valley filling", i.e.,
filling the under-utilized periods left by Jrontend tasks (e.g.,
web applications) with backend tasks (e.g., high performance
computing applications) that can be suspended in case the
frontend loads increase. Such overlaying resource allocation
can improve resource utilization without sacrificing the SLA
for frontend tasks. The drawback is that the performance of
the backend tasks cannot be guaranteed since they only have
intermittent access to resources, especially for synchronized
parallel tasks. Synchronized parallel tasks abound in scientific
computing, Pregel [1], and MapReduce [2] applications, where
the data dependency between computation steps requires the
tasks to progress almost simultaneously. In the sequel, we will
only focus on backend tasks and simply refer to them as tasks.

Advances in virtualization technology have provided tools
to manage these tasks more intelligently. In addition to
suspension of tasks during execution (via VM suspension),
most hypervisors also support live migration of tasks with

This work was supported by the U.S. National Institute of Standards and Technology
under Agreement Number 60NANB 100003.

negligible ('" seconds) interruption in their execution. This
means that instead of waiting indefinitely at one server during
busy periods, we may choose to migrate the affected backend
task to another server with lighter loads. The savings in
waiting time come at the cost of significant traffic loads on
the cloud network due to high volumes of data/code transfer,
which in turn adds to the operation cost of the cloud. Given a
pool of intermittently available resources, what is the optimal
way of scheduling suspendable/migratable tasks onto them?
How do we trade off the bandwidth cost due to migration and
the latency cost due to suspension? And how do the answers
depend on the availability behaviors of these resources? These
are the main questions we seek to answer in this paper.

A. Related Work

The problem of resource sharing has been a main theme of
computer scheduling, where techniques such as cycle stealing
[3] have been proposed to transparently share computing re
sources among jobs of different priorities. Being non-intrusive
to high-priority jobs, these techniques postpone low-priority
jobs to avoid conflicts, and many efforts have since been made
to minimize such sacrifice.

Existing work can be divided into three categories: (i)
complete control, where both types of jobs are scheduled
jointly [4], (ii) one-sided control with complete knowledge,

where the scheduler of low-priority jobs faces fluctuating
resources but has full knowledge of the fluctuations throughout
time [5], and (iii) one-sided control with partial knowledge, as
in this paper, where the knowledge of resource fluctuations is
limited to past observations and long-term statistics. The last
case is most generally applicable due to its non-intrusiveness
and minimalistic assumption, but it also suffers the most
performance loss. Approaches to improving the performance
include building sophisticated resource models [6] and leverag
ing advanced tools. Migration, in particular, is a powerful tool
provided by virtualization that allows the movement of jobs at
run time. It is, however, a costly operation that must be used
with caution to balance job performance and operation cost.

A related problem is scheduling with switching cost, where
a server is scheduled among multiple jobs. As an extension of
Multi-Armed Bandits (MAB), this problem has received much
attention due to its broad applicability [7]. Specific results in
clude index-based policies to handle switching costs/delays and

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2871

precedence relations; see [8] and references therein. Our prob
lem is a dual in that we schedule tasks among multiple servers,
with three crucial differences: (a) our scheduler does not have
to fully utilize all the servers; (b) while unattended jobs remain
the same, unutilized servers can change states due to frontend
activities; (c) in contrast to independent jobs in previous work,
we consider parallel tasks that must run simultaneously.

B. Summary of Results

We consider the opportunistic scheduling of parallel tasks
onto stochastically available servers, focusing on the tradeoff
between bandwidth (migration) and latency (waiting). We
unify the two metrics into a single cost that can capture a
range of tradeoff requirements. Our goal is to develop online
scheduling policies that can minimize the total cost. Our main
contributions include the following:

Optimal solution based on MDP: Under the assumption that
server availability processes can be modeled as independent
ON/OFF Markov chains, we show that the optimal policy is
the solution to an MDP, which has exponential complexity in
the number of servers.

Closed-form optimal solution in a special case: We develop
an efficient, closed-form policy that guarantees optimality in
the case when all servers behave homogeneously (with i.i.d.
availability processes) and there are always sufficient available
servers to run the tasks. The policy is a threshold policy that
will wait (migrate) if the number of available servers among
those currently hosting tasks is below (above) a threshold,
where the threshold is determined by the per-migration cost
and a precomputed partition of the cost range.

Evaluation on traces: We evaluate the proposed policies
on traces from a real data center. The simulations verify
that the threshold policy is near optimal in near-homogeneous
cases. Compared with a heuristic solution (myopic policy), the
threshold policy is provably optimal when the servers exhibit
homogeneous availability without increasing the complexity,
although we observe that the two policies can perform similarly
as the number of parallel tasks increases.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III presents our scheduling
policies. Section IV shows the evaluation results. Then
Section V concludes the paper.

II. PROBLEM FORMULATION

We will focus on the scheduling of a single set of parallel
tasks. Our solution can be applied repeatedly to schedule
multiple sets of tasks, although it is beyond our scope to study
the order of scheduling.

A. Workload Modeling

We model a set of parallel tasks as a tuple (n, T), where n is
the number of tasks, each running on a separate server (or VM),
and T the number of time slots required per task, assuming dis
crete time. We assume strong synchronization where the tasks
must run simultaneously, i.e., all the n tasks have to be sus
pended if any server hosting one of them becomes unavailable.

In practice, a weaker requirement may suffice, but we focus on
strong synchronization to ensure that the resulting schedule is
feasible under arbitrary synchronization requirements.

B. Server Resource Modeling

Given a pool of N > n servers, each with time-varying
available resources depending on the frontend workloads, we
model their capability of hosting the backend tasks by binary
ON/OFF processes, where a server is ON if and only if its
available resource satisfies the requirement of a backend task.
Without loss of generality, we assume each server can host at
most one task; in cases when a physical server can host multiple
tasks, we predivide servers into task-sized partitions and simply
refer to these partitions as "servers". We refer to a server as a
"host" if it is selected to host a task. Note that a host can be
either ON or OFF. Denote the server availability processes by
{at}�l' where at = (ah,t)i':=l E {O, l}N are the indicators
for each server h to be ON at time t.

C. Bandwidth-Latency-Optimized Scheduling

We want to schedule the parallel tasks onto the pool of
intermittently available servers so that they can be finished with
minimum bandwidth-latency cost. We measure the bandwidth

cost by the number of migrations m (i.e., the total number
of times that each of the tasks is migrated) in a linear form:
Cm (m) = "(m, where "(2:: 0 denotes the cost per migration
due to the communication load for data/code transfer. The
latency cost is measured by the total waiting time w that
the tasks spend waiting for available resources from arrival
until completion, again assumed to be linear: cw (w) = w (the
scaling factor is incorporated into "(). We hasten to note that our
approach can handle more complicated cost functions including
those modeling SLA penalties; details are omitted due to space
limit. The total cost is thus c(m, w) = w + "(m. We say that
a scheduling policy achieves the optimal bandwidth-latency

tradeoff if it minimizes the total cost c(m, w).
The inherent tradeoff between bandwidth and latency implies

that the scheduler needs to decide how aggressively it should
migrate tasks to achieve the desirable tradeoff, controlled by
the parameter "(. For example, the extreme values "(= 0 and
"(= 00 will lead to no waiting or no migration scheduling. In
general, we have the following qualitative relationship. All the
proofs in this paper are given in [9].

Proposition 11.1. Under the optimal scheduling policy, the

number of migrations m decreases and the waiting time w
increases monotonically with the increase of "(.

Here "(is a system-dependent parameter that depends on the
task size, the cloud network capability, the penalty for delayed
completion, etc. In the sequel, we will assume "(is given and
focus on developing the cost-optimal scheduling policy.

III. SCHEDULING POLICIES

In each slot, the scheduler faces multiple decisions: if some
of the current hosts become unavailable, should it suspend
all the tasks and wait for the hosts to be available again, or

2872

should it migrate the interrupted tasks to other available servers
so that the tasks continue running? In the case of migration,
which servers should the tasks migrate to? The answers to these
questions clearly depend on the future availability behaviors of
the hosts and the candidate servers. Since such information
is generally unavailable, the scheduler has to make decisions
based on the availability history, leading to online scheduling.

In this section, we propose a simple statistical model for server
behaviors, based on which we develop an optimal solution for
the general case and an efficient, closed-form solution for a
special case with practical relevance.

A. Server Availability as ON/OFF Markov Chains

We examine the utilization traces of a real data center to
extract statistical models of server behaviors. Using processor
time as the key resource, we quantize the fractional utilization
traces by a given threshold (to generate ON/OFF availability
traces (ON if utilization :::; O. Parameter fitting shows that the
lengths of ON/OFF intervals roughly follow the Geometric
distribution, as illustrated in Fig. 1 (a). This motivates us to
model the server availability processes by ON/OFF Markov
chains, whose ON/OFF intervals are exactly geometrically
distributed. For simplicity, we assume the Markov chains to
be independent across servers, and the transition probabilities
(PtkjE{O,I} for each server h = 1, . . . , N are known. This
model does incur some error; see Fig. 1 (b) for the distribution
of the error as measured by the Kolmogorov-Smirnov
statisticl. Using this model as an approximation allows us
to develop efficient scheduling policies that capture temporal
dependencies in server availability. Our later evaluations show
that this approximation has minimal impact on scheduling
performance (see Section IV).

0.'
�5
U'

0.'

°0��--7-�--��--�
interval length

(a)
0.6 07 0.8

Fig. I. Geometric fitting of ON/OFF intervals: (a) fitting for a single server;
(b) distribution of fitting error over all servers ((= 15%).

B. A General Solution by Markov Decision Process

To achieve the optimal tradeoff, each migration decision
needs to take into account a window of future server avail
ability. This need of lookahead naturally leads to a dynamic
programming approach, where the problem can be formulated
as a Markov Decision Process (MDP) [10] as follows.

The MDP evolves slot by slot on a joint state (Tt, Xt, at),
where Tt is the residual workload (TO = T), Xt the current
hosts, and at the states of all the servers, all at slot t. Here Xt =

10nly servers with enough (2: 50) ON/OFF intervals are considered.

(Xh,t){;=l ' where Xh,t is an indicator that server h is selected as
a host at time t, with values in X � {x E {O, I}N : L�=l Xh =
n}. Let C(Tt, Xt, at) denote the minimum expected cost starting
from state (Tt, Xt, at). The optimal schedule is the solution to
the following recursion:

C(Tt, Xt, at) =min [w(at, x) +'Ym(xt, x) xEX
+ IE[C(Tt+l , Xt+l , at+dl] , (1)

where w(at, x) � 1 - l� L�=l Xhah,d is the waiting
indicator, and m(xt, x) � � L�=l IXh,t - xhl the number
of migrations to change hosts from Xt to x. Note that the
l·J operator reflects the synchronization requirement, as
w(at, x) = 0 only if all the selected hosts (i.e., Xh = 1)
are ON (i.e., ah,t = 1). Under action x, the state transits to
Tt+l = Tt - 1 + Wt+l - Wt and Xt+l = x, and the expectation
is over the next server state at+l . The boundary condition is
C(O, Xt, at) = O. This formulation implies a finite state space
of size T (�) 2N, and can be solved by standard MDP solvers.

A case of particular interest is that of long-lasting tasks (T »
1), where the problem can be simplified by focusing on the
long-term cost rate. To minimize the discounted cost rate with
discount factor f3 E (0, 1), the optimal schedule is given by:

C(Xt, at) = min [w(at, x) + 'Ym(xt, x) xEX
+ f3IE[C(Xt+I' at+dl] , (2)

starting from Xl = arg minxEx C(x, ad. Average cost rate
can be addressed analogously. The size of its state space is
now reduced to (�)2N.

Remark: Unfortunately, even in the simpler case (2), the
complexity of the MDP is still exponential in N. One remedy is
to use a suboptimal policy, e.g., the myopic policy. The myopic
policy greedily minimizes the immediate cost w(at, x) +
'Ym(xt, x), yielding a threshold decision: if the number of
hosts that are OFF is less than 1/1' and there are enough
ON servers, migrate all the tasks on OFF hosts to unused
ON servers; otherwise, suspend the tasks and wait. This policy
can be substantially suboptimal, which motivates us to explore
efficient policies with better performance as presented next.

C. Closed-Form Solution for Homogeneous Servers

Consider the case of long-lasting tasks (2). We resolve
the complexity issue in the special case where the server
availability processes are i.i.d. across servers, and there are
always enough (i.e., � n) ON servers. This case usually occurs
for a pool of servers running the same frontend application,
where the load balancer of the application naturally induces
i.i.d. loads. In this section, we derive the optimal policy in
closed form based on a sequence of simplifications.

Our first simplification is by noting that it is sufficient to only
remember the number of ON hosts, i.e., the servers currently
hosting tasks and being ON, at each slot. This is because we
do not need to remember which servers are selected as hosts

2873

since all servers in the same state are identical. Denote by s�
the number of ON hosts at slot t before migration, and St the
same after migration. Note that St may be different from s�
as the migration action may change which servers serve as
hosts. We can represent an arbitrary (stationary, randomized)
scheduling policy by a matrix M = (Mij)i,j=o , where
Mij = Pr{ St = jls� = i} is the probability that the policy
will modify the number of ON hosts from i to j by migration,
satisfying L,7=0 Mij = 1 for all i. Let P = (Pij)i,j=o denote
the transition probability of the number of ON hosts without

migration: Pij � Pr{s� = jlst-l = i}. Using the single-server
transition probabilities (Pij)i,jE {O,l} , we can compute P by

min(i,j) (.) (.)
'" t k i-k n - t ..J-k n-i-j+k Pij = � k

PllPlO . _ k flO 1 PO� . (3)
k=(j-n+i)+ J

Define Q = (Qij)i,j=O' with Qij � Ii - jl being the minimum
number of migrations to change the number of ON hosts from
i to j. Denote the initial distribution by A = (Ai)i=o with
Ai = Pr{s� = i}.

The computation of the optimal policy now becomes M* =
arg maxM RM(r) for2

RM(r) � 7rn - 'Y(AT + ,8rrTp) . diag(MQ), (4)

where rrT = ATM(I - ,8PM)-l. Here rr = (7ri)i=o denotes
the discounted long-term distribution of St, defined as 7ri =
JE[L,:l ,8t-l :n. st =i]. It has to satisfy the equilibrium equation
7rj = L,�=o AiMij + ,8 L,� k=O 7riPikMkj, which is used to
compute rr. The objective function RM(r), called the total

reward, represents the complement of the total cost, which is
given by l/(l-,8)-RM(r). Here 7rn is the expected discounted
task processing time, capturing the synchronization requirement
since only the time that all the n hosts are ON is considered,
and (AT + ,8rrTp) . diag(MQ) is the expected discounted total
number of migrations. This formulation reduces the MDP to
an O(n2)-variable optimization over M.

Our second simplification is due to the following fact.

Lemma 111.1. There is no need to migrate any task in a slot

in which the tasks will wait.

This lemma implies that the optimal policy should only
migrate tasks if they will run as a result. Thus, it suffices to
restrict M to the form: Mii = Pi, Min = 1 - Pi, and Mij = 0
otherwise for i = 0, . . . , n - 1 (Mnn = 1). Moreover, it is
known that randomization does not improve performance of
MDP [10], which means Pi E {O, I}, i.e., the optimal policy
will either "wait" (if Pi = 1) or "migrate" (if Pi = 0) at a given
state s� = i, with a finite number (2n) of possibilities.

Our last simplification is due to the following property.

Lemma 111.2. The optimal policy is a threshold policy Ti for

some i E {O, . . . , n} , which will wait if s� < i and migrate

otherwise (including no migration if s� = n).

2Here diag(A) denotes the diagonal of matrix A, and I the identity matrix.
All vectors are column vectors.

This lemma simplifies the solution space from all the 2n
candidate policies to the n + 1 threshold policies To, . . . , Tn.
Let Pi � 7rnl7i and Mi � (AT + ,8rrTP)diag(MQ)I7i be the
processing and the migration metrics under policy Ti (i
0, . . . , n). Then they satisfy the following order.

Lemma m.3. Among the threshold policies, we have Po >
PI � . . . � Pn and Mo � Ml � . . . � Mn.

Together, these simplifications specify the optimal policy in
closed form.

Theorem 111.4. There exist thresholds 'Yi � (Pi-Pi-l)/(Mi
Mi-l) (i = 1, . . . , n) such that the threshold policy Ti is

optimal if and only if 'Y E bi ' 'YHl] ('Yo � 0, 'Yn+l � (0).

Proof' Since To is optimal at 'Y = 0 and Tn optimal
at 'Y = 00, the ordering of threshold policies together with
Proposition ILl implies that the optimal policy is To, . . . , Tn
in this order as 'Y increases. Given the reward Ri(r) for Ti
as defined in (4), it is easy to see that the transition between
policies must occur at the intersecting points between Ri (r) 's.
Since Ri(r) = Pi - 'YMi, the intersecting point between
Ti-l and Ti is given by 'Yi = (Pi - Pi-l)/(Mi - Mi-d
(i = 1, . . . , n). •

The final result gives a fully closed-form, optimal solution
based on a partition of the range of 'Y, as illustrated in Fig. 2 (a),
which maps each interval of the partition to one of the threshold
policies (boundary point 'Yi is mapped to either Ti-l or Ti).
Compared with the exponential-complexity MDP solution in
Section III-B, this solution significantly reduces the complexity
to (pseudo) constant in N (O(N) in general) since it only needs
to examine the states of the n hosts and find k ::::: n replacement
hosts in the case of migration.

Recall that the myopic policy also has a threshold structure
(Section III-B). In particular, it leads to a partition on 'Y
by thresholds 'YiY = l/(n - i + 1) (i = 1, . . . , n) and
'YoY � 0, 'Y�+l � 00 such that the myopic policy is reduced to
the threshold policy Ti for 'Y E biV, 'Yi.tl]' as illustrated in
Fig. 2 (b). We observe that 'YiY converges to 'Yi as POI and Pll
converge and diverges otherwise, consistent with the fact that
myopic policy is optimal if server states are i.i.d. both across
servers and over time.

" r--����-;===;=��=i1 - threshold policy

]3

"r-r��� I ')'�Y m 0 i c polle
I I MY 'Y2
. ��t

° 1,<JD-jJi, .. 1'L,J3_� :�lb-� �
1.5 , 2 2_5 3 3.5 1.5 , 2 2.5

(a) (b)
Fig. 2. Threshold structure of the optimal policy (a) and the myopic policy
(b) (n = 3, (3 = 0.9, POI = 0.1, Pll = 0.9, .>. = (0, 0, 0, l)T).

Remark: Although we have assumed the system to always
have enough ON servers, our solution applies naturally to the

2874

'POl
(a)

�70
> 60
Q) �50 c: '-"0 0

Zoo
0"

" 0

..
'"
6' 0> o 0

0'" o

°0 0 0 �O 0 00 a 0
00 O� 00

,., avaIlability
(b)

Fig. 3. Selected servers: totally 232 servers (0); near-homogeneous subsets
of servers with low (0), medium (), and high (+) availability, 6 each.

other cases, with the modification that the policy will only
migrate if the total number of ON servers is at least n.

IV. PERFORMANCE EVALUATION

We evaluate the proposed policies by simulating them on
availability traces derived from real measurements. We collect
CPU utilization traces from a pool of servers hosting business
users at 15-minute intervals and convert them into availability
traces using a threshold (see Section III-A; (= 15%). All the
simulations last for at least 1000 slots (only traces � 1000
slots are considered). Assume f3 = 0.999.

To test homogeneous scenarios, we select three representative
server sets with low, medium, and high availability, respectively,
as illustrated in Fig. 3, keeping the servers in each set relatively
homogeneous. To test heterogeneous scenarios, we randomly
select N servers from a larger pool of heterogeneous servers.
Since many traces are degenerate, we filter out servers with
too goodlbad availability or too few ON/OFF fluctuations, as
shown in Fig. 3, to focus on the dynamic cases.

Due to the high complexity of MDP, the optimal policy in the
general case can only be computed for small Nand n. Thus,
we perform a small-scale simulation with n = 2 and N = 6 to
compare the alternative policies, the threshold policy and the
myopic policy, with the optimal. We compare the overall costs
as "'(increases for selected servers with various availability3
and heterogeneity; see Fig. 4. All the policies are able to adapt
to the change of "'(. The threshold policy shows near-optimal
performance in the near-homogeneous case (Fig. 4 (a)), but
incurs performance loss at large "'(in the heterogeneous case
(Fig. 4 (b)), mostly because of its random selection of new
hosts (since all the ON servers are considered identical). The
myopic policy shows a similar trend because it also has a
threshold structure (see Fig. 2), although it performs worse than
the threshold policy, especially in the heterogeneous case.

We have also increased the scale of the simulation to n = 10
and N = 100, and evaluate only the threshold and the myopic
policies; see Fig. 5. We see that the two policies perform
similarly when averaged over different sets of N servers
(Fig. 5 (a)), with slightly better performance for the threshold
policy on some server sets (Fig. 5 (b)). While this observation
suggests comparable asymptotic performance for the myopic

3Fig. 4 (a) is for servers with low availability; see [9] for the cases of
mediumlhigh availability.

+ • •••

"'('
(b) heterogeneous servers

"'('
(a) near-homogeneous servers

Fig. 4. Small-scale simulations.

policy, we point out that the threshold policy has the same
complexity and is thus still preferable due to its guaranteed
optimality.

:tL---�----�--�7---� , "'); -, --=7-��--;---:'----"�07--o
"'(' "'(

(a) average of 100 server sets (b) a particular server set
Fig. S. Larger scale simulations.

We repeat these simulations on synthetic availability pro
cesses generated by Markov chains parameterized according to
the traces. The synthetic simulations yield observations similar
to the above, which validates our availability model; see [9].

V. CONCLUSION

We study the problem of opportunistic scheduling of parallel
backend tasks with focus on the tradeoff between migration and
waiting. Although it is generally hard to compute the optimal
policy for large server pools, we give an efficient threshold
policy that is provably optimal for homogeneous servers.

REFERENCES

[I] G. Malewicz, M. Austem, A. Bik, J. Dehnert, I. Hom, N. Leiser, and
G. Czajkowski, "Pregel: A System for Large-Scale Graph Processing," in
PODC,2009.

[2] "Introduction to Parallel Programming and MapReduce,"
http://code.google.comJeduJparallel/mapreduce-tutorial.html.

[3] K. D. Ryu and J. K. Hollingsworth, "Unobtrusiveness and Efficiency in
Idle Cycle Stealing for PC Grids," in IPDPS, 2004.

[4] D. Carrera, M. Steinder, I. Whalley, 1. Torres, and E. Ayguade, "Enabling
Resource Sharnig between Transactional and Batch Workloads Using
Dynamic Application Placement," in MIDDLEWARE, 2008.

[5] V T. Chakaravarthy, V Pandit, Y. Sabharwal, and D. P. Seetharam,
"Varying Bandwidth Resource Allocation Problem with Bag Constraints,"
in IPDPS, 2010.

[6] B. Favadi, D. Kondo, 1.-M. Vincent, and D. P. Anderson, "Discovering
Statistical Models of Availability in Large Distributed Systems: An
Empirical Study of SETI@home," Trans. PDS,2011.

[7] T. Jun, "A Survey on the Bandit Problem with Switching Costs," De
Economist, 2004.

[8] K. D. Glazebrook and D. Ruiz-Hemandez, "A Restless Bandit Approach
to Stochastic Scheduling Problems with Switching Costs," 2005, preprint.

[9] T. He, S. Chen, H. Kim, K.-W. Lee, and L. Tong, "Bandwidth-Latency
Tradeoff in Opportunistic Task Scheduling: Supporting Materials," IBM,
Tech. Rep., 2011, http://researcher. ibm.comJfiles/us-the/rc071 10 1. pdf.

[10] M. L. Puterman, Markov Decision Processes. Wiley, 1994.

2875

