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Abstract-We consider the problem of scheduling low-priority 
tasks onto resources already assigned to high-priority tasks. Due 
to burstiness of the high-priority workloads, the resources can be 
temporarily underutilized and made available to the low-priority 
tasks. The increased level of utilization comes at a cost to the low
priority tasks due to intermittent resource availability. Focusing 
on two major costs, bandwidth cost associated with migrating 
tasks and latency cost associated with suspending tasks, we aim 
at developing online scheduling policies achieving the optimal 
bandwidth-latency tradeoff for parallel low-priority tasks with 
synchronization requirements. Under Markovian resource avail
ability models, we formulate the problem as a Markov Decision 
Process (MDP) whose solution gives the optimal scheduling policy. 
Furthermore, we discover structures of the problem in the special 
case of homogeneous availability patterns that enable a simple 
threshold-based policy that is provably optimal. We validate the 
efficacy of the proposed policies by trace-driven simulations. 

I. INTRODUCTION 

Cloud-based service model often promises to provide infinite 
scalability in satisfying computing requests on demand. To 
guarantee the satisfaction of their service level agreement 
(SLA) with clients, the providers are forced to plan their 
physical capacity for the peak. load, thus leaving much of the 
resource under-utilized during normal periods of operation. 

A common remedy is to perform "valley filling", i.e., 
filling the under-utilized periods left by Jrontend tasks (e.g., 
web applications) with backend tasks (e.g., high performance 
computing applications) that can be suspended in case the 
frontend loads increase. Such overlaying resource allocation 
can improve resource utilization without sacrificing the SLA 
for frontend tasks. The drawback is that the performance of 
the backend tasks cannot be guaranteed since they only have 
intermittent access to resources, especially for synchronized 
parallel tasks. Synchronized parallel tasks abound in scientific 
computing, Pregel [1], and MapReduce [2] applications, where 
the data dependency between computation steps requires the 
tasks to progress almost simultaneously. In the sequel, we will 
only focus on backend tasks and simply refer to them as tasks. 

Advances in virtualization technology have provided tools 
to manage these tasks more intelligently. In addition to 
suspension of tasks during execution (via VM suspension), 
most hypervisors also support live migration of tasks with 
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negligible ('" seconds) interruption in their execution. This 
means that instead of waiting indefinitely at one server during 
busy periods, we may choose to migrate the affected backend 
task to another server with lighter loads. The savings in 
waiting time come at the cost of significant traffic loads on 
the cloud network due to high volumes of data/code transfer, 
which in turn adds to the operation cost of the cloud. Given a 
pool of intermittently available resources, what is the optimal 
way of scheduling suspendable/migratable tasks onto them? 
How do we trade off the bandwidth cost due to migration and 
the latency cost due to suspension? And how do the answers 
depend on the availability behaviors of these resources? These 
are the main questions we seek to answer in this paper. 

A. Related Work 

The problem of resource sharing has been a main theme of 
computer scheduling, where techniques such as cycle stealing 
[3] have been proposed to transparently share computing re
sources among jobs of different priorities. Being non-intrusive 
to high-priority jobs, these techniques postpone low-priority 
jobs to avoid conflicts, and many efforts have since been made 
to minimize such sacrifice. 

Existing work can be divided into three categories: (i) 
complete control, where both types of jobs are scheduled 
jointly [4], (ii) one-sided control with complete knowledge, 

where the scheduler of low-priority jobs faces fluctuating 
resources but has full knowledge of the fluctuations throughout 
time [5], and (iii) one-sided control with partial knowledge, as 
in this paper, where the knowledge of resource fluctuations is 
limited to past observations and long-term statistics. The last 
case is most generally applicable due to its non-intrusiveness 
and minimalistic assumption, but it also suffers the most 
performance loss. Approaches to improving the performance 
include building sophisticated resource models [6] and leverag
ing advanced tools. Migration, in particular, is a powerful tool 
provided by virtualization that allows the movement of jobs at 
run time. It is, however, a costly operation that must be used 
with caution to balance job performance and operation cost. 

A related problem is scheduling with switching cost, where 
a server is scheduled among multiple jobs. As an extension of 
Multi-Armed Bandits (MAB), this problem has received much 
attention due to its broad applicability [7]. Specific results in
clude index-based policies to handle switching costs/delays and 
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precedence relations; see [8] and references therein. Our prob
lem is a dual in that we schedule tasks among multiple servers, 
with three crucial differences: (a) our scheduler does not have 
to fully utilize all the servers; (b) while unattended jobs remain 
the same, unutilized servers can change states due to frontend 
activities; (c) in contrast to independent jobs in previous work, 
we consider parallel tasks that must run simultaneously. 

B. Summary of Results 

We consider the opportunistic scheduling of parallel tasks 
onto stochastically available servers, focusing on the tradeoff 
between bandwidth (migration) and latency (waiting). We 
unify the two metrics into a single cost that can capture a 
range of tradeoff requirements. Our goal is to develop online 
scheduling policies that can minimize the total cost. Our main 
contributions include the following: 

Optimal solution based on MDP: Under the assumption that 
server availability processes can be modeled as independent 
ON/OFF Markov chains, we show that the optimal policy is 
the solution to an MDP, which has exponential complexity in 
the number of servers. 

Closed-form optimal solution in a special case: We develop 
an efficient, closed-form policy that guarantees optimality in 
the case when all servers behave homogeneously (with i.i.d. 
availability processes) and there are always sufficient available 
servers to run the tasks. The policy is a threshold policy that 
will wait (migrate) if the number of available servers among 
those currently hosting tasks is below (above) a threshold, 
where the threshold is determined by the per-migration cost 
and a precomputed partition of the cost range. 

Evaluation on traces: We evaluate the proposed policies 
on traces from a real data center. The simulations verify 
that the threshold policy is near optimal in near-homogeneous 
cases. Compared with a heuristic solution (myopic policy), the 
threshold policy is provably optimal when the servers exhibit 
homogeneous availability without increasing the complexity, 
although we observe that the two policies can perform similarly 
as the number of parallel tasks increases. 

The rest of the paper is organized as follows. Section II 
formulates the problem. Section III presents our scheduling 
policies. Section IV shows the evaluation results. Then 
Section V concludes the paper. 

II. PROBLEM FORMULATION 

We will focus on the scheduling of a single set of parallel 
tasks. Our solution can be applied repeatedly to schedule 
multiple sets of tasks, although it is beyond our scope to study 
the order of scheduling. 

A. Workload Modeling 

We model a set of parallel tasks as a tuple (n, T), where n is 
the number of tasks, each running on a separate server (or VM), 
and T the number of time slots required per task, assuming dis
crete time. We assume strong synchronization where the tasks 
must run simultaneously, i.e., all the n tasks have to be sus
pended if any server hosting one of them becomes unavailable. 

In practice, a weaker requirement may suffice, but we focus on 
strong synchronization to ensure that the resulting schedule is 
feasible under arbitrary synchronization requirements. 

B. Server Resource Modeling 

Given a pool of N > n servers, each with time-varying 
available resources depending on the frontend workloads, we 
model their capability of hosting the backend tasks by binary 
ON/OFF processes, where a server is ON if and only if its 
available resource satisfies the requirement of a backend task. 
Without loss of generality, we assume each server can host at 
most one task; in cases when a physical server can host multiple 
tasks, we predivide servers into task-sized partitions and simply 
refer to these partitions as "servers". We refer to a server as a 
"host" if it is selected to host a task. Note that a host can be 
either ON or OFF. Denote the server availability processes by 
{at}�l' where at = (ah,t)i':=l E {O, l}N are the indicators 
for each server h to be ON at time t. 

C. Bandwidth-Latency-Optimized Scheduling 

We want to schedule the parallel tasks onto the pool of 
intermittently available servers so that they can be finished with 
minimum bandwidth-latency cost. We measure the bandwidth 

cost by the number of migrations m (i.e., the total number 
of times that each of the tasks is migrated) in a linear form: 
Cm (m) = "(m, where "( 2:: 0 denotes the cost per migration 
due to the communication load for data/code transfer. The 
latency cost is measured by the total waiting time w that 
the tasks spend waiting for available resources from arrival 
until completion, again assumed to be linear: cw (w) = w (the 
scaling factor is incorporated into "(). We hasten to note that our 
approach can handle more complicated cost functions including 
those modeling SLA penalties; details are omitted due to space 
limit. The total cost is thus c( m, w) = w + "(m. We say that 
a scheduling policy achieves the optimal bandwidth-latency 

tradeoff if it minimizes the total cost c(m, w). 
The inherent tradeoff between bandwidth and latency implies 

that the scheduler needs to decide how aggressively it should 
migrate tasks to achieve the desirable tradeoff, controlled by 
the parameter "(. For example, the extreme values "( = 0 and 
"( = 00 will lead to no waiting or no migration scheduling. In 
general, we have the following qualitative relationship. All the 
proofs in this paper are given in [9]. 

Proposition 11.1. Under the optimal scheduling policy, the 

number of migrations m decreases and the waiting time w 
increases monotonically with the increase of "(. 

Here "( is a system-dependent parameter that depends on the 
task size, the cloud network capability, the penalty for delayed 
completion, etc. In the sequel, we will assume "( is given and 
focus on developing the cost-optimal scheduling policy. 

III. SCHEDULING POLICIES 

In each slot, the scheduler faces multiple decisions: if some 
of the current hosts become unavailable, should it suspend 
all the tasks and wait for the hosts to be available again, or 
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should it migrate the interrupted tasks to other available servers 
so that the tasks continue running? In the case of migration, 
which servers should the tasks migrate to? The answers to these 
questions clearly depend on the future availability behaviors of 
the hosts and the candidate servers. Since such information 
is generally unavailable, the scheduler has to make decisions 
based on the availability history, leading to online scheduling. 

In this section, we propose a simple statistical model for server 
behaviors, based on which we develop an optimal solution for 
the general case and an efficient, closed-form solution for a 
special case with practical relevance. 

A. Server Availability as ON/OFF Markov Chains 

We examine the utilization traces of a real data center to 
extract statistical models of server behaviors. Using processor 
time as the key resource, we quantize the fractional utilization 
traces by a given threshold ( to generate ON/OFF availability 
traces (ON if utilization :::; O. Parameter fitting shows that the 
lengths of ON/OFF intervals roughly follow the Geometric 
distribution, as illustrated in Fig. 1 (a). This motivates us to 
model the server availability processes by ON/OFF Markov 
chains, whose ON/OFF intervals are exactly geometrically 
distributed. For simplicity, we assume the Markov chains to 
be independent across servers, and the transition probabilities 
(PtkjE{O,I} for each server h = 1, . . .  , N  are known. This 
model does incur some error; see Fig. 1 (b) for the distribution 
of the error as measured by the Kolmogorov-Smirnov 
statisticl. Using this model as an approximation allows us 
to develop efficient scheduling policies that capture temporal 
dependencies in server availability. Our later evaluations show 
that this approximation has minimal impact on scheduling 
performance (see Section IV). 
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Fig. I. Geometric fitting of ON/OFF intervals: (a) fitting for a single server; 
(b) distribution of fitting error over all servers (( = 15%). 

B. A General Solution by Markov Decision Process 

To achieve the optimal tradeoff, each migration decision 
needs to take into account a window of future server avail
ability. This need of lookahead naturally leads to a dynamic 
programming approach, where the problem can be formulated 
as a Markov Decision Process (MDP) [10] as follows. 

The MDP evolves slot by slot on a joint state (Tt, Xt, at), 
where Tt is the residual workload (TO = T), Xt the current 
hosts, and at the states of all the servers, all at slot t. Here Xt = 

10nly servers with enough (2: 50) ON/OFF intervals are considered. 

(Xh,t){;=l ' where Xh,t is an indicator that server h is selected as 
a host at time t, with values in X � {x E {O, I}N : L�=l Xh = 
n}. Let C( Tt, Xt, at) denote the minimum expected cost starting 
from state (Tt, Xt, at). The optimal schedule is the solution to 
the following recursion: 

C(Tt, Xt, at) =min [w(at, x) +'Ym(xt, x) xEX 
+ IE[C( Tt+l , Xt+l , at+dl ] , (1) 

where w(at, x) � 1 - l� L�=l Xhah,d is the waiting 
indicator, and m(xt, x) � � L�=l IXh,t - xhl the number 
of migrations to change hosts from Xt to x. Note that the 
l·J operator reflects the synchronization requirement, as 
w( at, x) = 0 only if all the selected hosts (i.e., Xh = 1) 
are ON (i.e., ah,t = 1). Under action x, the state transits to 
Tt+l = Tt - 1  + Wt+l - Wt and Xt+l = x, and the expectation 
is over the next server state at+l . The boundary condition is 
C(O, Xt, at) = O. This formulation implies a finite state space 
of size T (�) 2N, and can be solved by standard MDP solvers. 

A case of particular interest is that of long-lasting tasks (T » 
1), where the problem can be simplified by focusing on the 
long-term cost rate. To minimize the discounted cost rate with 
discount factor f3 E (0, 1), the optimal schedule is given by: 

C(Xt, at) = min [w(at, x) + 'Ym(xt, x) xEX 
+ f3IE[C(Xt+I' at+dl ] , (2) 

starting from Xl = arg minxEx C(x, ad. Average cost rate 
can be addressed analogously. The size of its state space is 
now reduced to (�)2N. 

Remark: Unfortunately, even in the simpler case (2), the 
complexity of the MDP is still exponential in N. One remedy is 
to use a suboptimal policy, e.g., the myopic policy. The myopic 
policy greedily minimizes the immediate cost w(at, x) + 
'Ym(xt, x), yielding a threshold decision: if the number of 
hosts that are OFF is less than 1/1' and there are enough 
ON servers, migrate all the tasks on OFF hosts to unused 
ON servers; otherwise, suspend the tasks and wait. This policy 
can be substantially suboptimal, which motivates us to explore 
efficient policies with better performance as presented next. 

C. Closed-Form Solution for Homogeneous Servers 

Consider the case of long-lasting tasks (2). We resolve 
the complexity issue in the special case where the server 
availability processes are i.i.d. across servers, and there are 
always enough (i.e., � n) ON servers. This case usually occurs 
for a pool of servers running the same frontend application, 
where the load balancer of the application naturally induces 
i.i.d. loads. In this section, we derive the optimal policy in 
closed form based on a sequence of simplifications. 

Our first simplification is by noting that it is sufficient to only 
remember the number of ON hosts, i.e., the servers currently 
hosting tasks and being ON, at each slot. This is because we 
do not need to remember which servers are selected as hosts 
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since all servers in the same state are identical. Denote by s� 
the number of ON hosts at slot t before migration, and St the 
same after migration. Note that St may be different from s� 
as the migration action may change which servers serve as 
hosts. We can represent an arbitrary (stationary, randomized) 
scheduling policy by a matrix M = (Mij )i,j=o , where 
Mij = Pr{ St = jls� = i} is the probability that the policy 
will modify the number of ON hosts from i to j by migration, 
satisfying L,7=0 Mij = 1 for all i. Let P = (Pij )i,j=o denote 
the transition probability of the number of ON hosts without 

migration: Pij � Pr{s� = jlst-l = i}. Using the single-server 
transition probabilities (Pij )i,jE {O,l} , we can compute P by 

min(i,j) ( .) ( .) 
'" t k i-k n - t ..J-k n-i-j+k Pij = � k 

PllPlO . _ k flO 1 PO� . (3) 
k=(j-n+i)+ J 

Define Q = (Qij)i,j=O' with Qij � Ii - jl being the minimum 
number of migrations to change the number of ON hosts from 
i to j. Denote the initial distribution by A = (Ai)i=o with 
Ai = Pr{s� = i}. 

The computation of the optimal policy now becomes M* = 
arg maxM RM(r) for2 

RM(r) � 7rn - 'Y(AT + ,8rrTp) . diag(MQ), (4) 

where rrT = ATM(I - ,8PM)-l. Here rr = (7ri)i=o denotes 
the discounted long-term distribution of St, defined as 7ri = 
JE[L,:l ,8t-l :n. st =i]. It has to satisfy the equilibrium equation 
7rj = L,�=o AiMij + ,8 L,� k=O 7riPikMkj, which is used to 
compute rr. The objective function RM(r), called the total 

reward, represents the complement of the total cost, which is 
given by l/(l-,8)-RM(r). Here 7rn is the expected discounted 
task processing time, capturing the synchronization requirement 
since only the time that all the n hosts are ON is considered, 
and (AT + ,8rrTp) . diag(MQ) is the expected discounted total 
number of migrations. This formulation reduces the MDP to 
an O(n2)-variable optimization over M. 

Our second simplification is due to the following fact. 

Lemma 111.1. There is no need to migrate any task in a slot 

in which the tasks will wait. 

This lemma implies that the optimal policy should only 
migrate tasks if they will run as a result. Thus, it suffices to 
restrict M to the form: Mii = Pi, Min = 1 - Pi, and Mij = 0 
otherwise for i = 0, . . .  , n - 1 (Mnn = 1). Moreover, it is 
known that randomization does not improve performance of 
MDP [10], which means Pi E {O, I}, i.e., the optimal policy 
will either "wait" (if Pi = 1) or "migrate" (if Pi = 0) at a given 
state s� = i, with a finite number (2n) of possibilities. 

Our last simplification is due to the following property. 

Lemma 111.2. The optimal policy is a threshold policy Ti for 

some i E {O, . . .  , n} , which will wait if s� < i and migrate 

otherwise (including no migration if s� = n). 

2Here diag(A) denotes the diagonal of matrix A, and I the identity matrix. 
All vectors are column vectors. 

This lemma simplifies the solution space from all the 2n 
candidate policies to the n + 1 threshold policies To, . . .  , Tn. 
Let Pi � 7rnl7i and Mi � (AT + ,8rrTP)diag(MQ)I7i be the 
processing and the migration metrics under policy Ti (i 
0, . . .  , n). Then they satisfy the following order. 

Lemma m.3. Among the threshold policies, we have Po > 
PI � . . .  � Pn and Mo � Ml � . . .  � Mn. 

Together, these simplifications specify the optimal policy in 
closed form. 

Theorem 111.4. There exist thresholds 'Yi � (Pi-Pi-l)/(Mi
Mi-l) (i = 1, . . .  , n) such that the threshold policy Ti is 

optimal if and only if 'Y E bi ' 'YHl] ('Yo � 0, 'Yn+l � (0). 

Proof' Since To is optimal at 'Y = 0 and Tn optimal 
at 'Y = 00, the ordering of threshold policies together with 
Proposition ILl implies that the optimal policy is To, . . .  , Tn 
in this order as 'Y increases. Given the reward Ri(r) for Ti 
as defined in (4), it is easy to see that the transition between 
policies must occur at the intersecting points between Ri (r) 's. 
Since Ri(r) = Pi - 'YMi, the intersecting point between 
Ti-l and Ti is given by 'Yi = (Pi - Pi-l)/(Mi - Mi-d 
(i = 1, . . .  , n). • 

The final result gives a fully closed-form, optimal solution 
based on a partition of the range of 'Y, as illustrated in Fig. 2 (a), 
which maps each interval of the partition to one of the threshold 
policies (boundary point 'Yi is mapped to either Ti-l or Ti). 
Compared with the exponential-complexity MDP solution in 
Section III-B, this solution significantly reduces the complexity 
to (pseudo) constant in N (O(N) in general) since it only needs 
to examine the states of the n hosts and find k ::::: n replacement 
hosts in the case of migration. 

Recall that the myopic policy also has a threshold structure 
(Section III-B). In particular, it leads to a partition on 'Y 
by thresholds 'YiY = l/(n - i + 1) (i = 1, . . .  , n) and 
'YoY � 0, 'Y�+l � 00 such that the myopic policy is reduced to 
the threshold policy Ti for 'Y E biV, 'Yi.tl]' as illustrated in 
Fig. 2 (b). We observe that 'YiY converges to 'Yi as POI and Pll 
converge and diverges otherwise, consistent with the fact that 
myopic policy is optimal if server states are i.i.d. both across 
servers and over time. 

" r--����-;===;=��=i1 - threshold policy 

]3 

"r-r��� I ')'�Y m 0 i c polle 
I I MY 'Y2 
. ��t 

° 1,<JD-jJi, .. 1'L,J3_� :�lb-� � 
1.5 , 2 2_5 3 3.5 1.5 , 2 2.5 

(a) (b) 
Fig. 2. Threshold structure of the optimal policy (a) and the myopic policy 
(b) (n = 3, (3 = 0.9, POI = 0.1, Pll = 0.9, .>. = (0, 0, 0, l)T). 

Remark: Although we have assumed the system to always 
have enough ON servers, our solution applies naturally to the 
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Fig. 3. Selected servers: totally 232 servers (0); near-homogeneous subsets 
of servers with low (0), medium ( ), and high (+) availability, 6 each. 

other cases, with the modification that the policy will only 
migrate if the total number of ON servers is at least n. 

IV. PERFORMANCE EVALUATION 

We evaluate the proposed policies by simulating them on 
availability traces derived from real measurements. We collect 
CPU utilization traces from a pool of servers hosting business 
users at 15-minute intervals and convert them into availability 
traces using a threshold (see Section III-A; ( = 15%). All the 
simulations last for at least 1000 slots (only traces � 1000 
slots are considered). Assume f3 = 0.999. 

To test homogeneous scenarios, we select three representative 
server sets with low, medium, and high availability, respectively, 
as illustrated in Fig. 3, keeping the servers in each set relatively 
homogeneous. To test heterogeneous scenarios, we randomly 
select N servers from a larger pool of heterogeneous servers. 
Since many traces are degenerate, we filter out servers with 
too goodlbad availability or too few ON/OFF fluctuations, as 
shown in Fig. 3, to focus on the dynamic cases. 

Due to the high complexity of MDP, the optimal policy in the 
general case can only be computed for small Nand n. Thus, 
we perform a small-scale simulation with n = 2 and N = 6 to 
compare the alternative policies, the threshold policy and the 
myopic policy, with the optimal. We compare the overall costs 
as "'( increases for selected servers with various availability3 
and heterogeneity; see Fig. 4. All the policies are able to adapt 
to the change of "'(. The threshold policy shows near-optimal 
performance in the near-homogeneous case (Fig. 4 (a)), but 
incurs performance loss at large "'( in the heterogeneous case 
(Fig. 4 (b)), mostly because of its random selection of new 
hosts (since all the ON servers are considered identical). The 
myopic policy shows a similar trend because it also has a 
threshold structure (see Fig. 2), although it performs worse than 
the threshold policy, especially in the heterogeneous case. 

We have also increased the scale of the simulation to n = 10 
and N = 100, and evaluate only the threshold and the myopic 
policies; see Fig. 5. We see that the two policies perform 
similarly when averaged over different sets of N servers 
(Fig. 5 (a)), with slightly better performance for the threshold 
policy on some server sets (Fig. 5 (b)). While this observation 
suggests comparable asymptotic performance for the myopic 

3Fig. 4 (a) is for servers with low availability; see [9] for the cases of 
mediumlhigh availability. 

+ • ••• . ............. . 

"'( ' 
(b) heterogeneous servers 

"'( ' 
(a) near-homogeneous servers 

Fig. 4. Small-scale simulations. 

policy, we point out that the threshold policy has the same 
complexity and is thus still preferable due to its guaranteed 
optimality. 

:tL---�----�--�7---� , "'); -, --=7-��--;---:'----"�07--o 
"'( ' "'( 

(a) average of 100 server sets (b) a particular server set 
Fig. S. Larger scale simulations. 

We repeat these simulations on synthetic availability pro
cesses generated by Markov chains parameterized according to 
the traces. The synthetic simulations yield observations similar 
to the above, which validates our availability model; see [9]. 

V. CONCLUSION 

We study the problem of opportunistic scheduling of parallel 
backend tasks with focus on the tradeoff between migration and 
waiting. Although it is generally hard to compute the optimal 
policy for large server pools, we give an efficient threshold 
policy that is provably optimal for homogeneous servers. 
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