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Abstract—The problem of opportunistic spectrum access in are unknown to the player. The objective is to minimiegret,
cognitive radio networks has been recently formulated as aon-  defined as the gap between the expected reward that can be
Bayesian restless multi-armed bandit problem. In this prolem, 5chieved by a suitably defined genie that knows the paraseter

there are N arms (corresponding to channels) and one player . . . o
(corresponding to g secopndary guser). The st)ate of eacr;] grm and that obtained by the given policy. As stated before, fiigudi

evolves as a finite-state Markov chain with unknown parametes. ~ the optimal policy, which is in general non-stationary, is P
At each time slot, the player can selectKk < N arms to SPACE hard even if the parameters are known. So we use

play and receives state-dependent rewards (correspondirntg the  jnstead a weaker notion of regret, where the genie always

throughput obtained given the activity of primary users). The  gg|acts the most rewarding arms that have highest stationary
objective is to maximize the expected total rewards (i.e.,otal .
rewards when activated.

throughput) obtained over multiple plays. The performance of . ) .
an algorithm for such a multi-armed bandit problem is measured We propose a sample mean-based index policy without
in terms of regret, defined as the difference in expected rewd information about the system. We prove that this algorithm

compared to a model-aware genie who always plays the be&f  achieves regret arbitrarily close to logarithmic unifoyml
arms. In this paper, we propose a new continuous exploratioand over time horizon. Specifically, the regret can be bound by

exploitation (CEE) algorithm for this problem. When no infor- o
mation is available about the dynamics of the arms, CEE is the Z1G(n)Inn + ZyInn + Z3G(n) + Zs, wheren is time,

first algorithm to guarantee near-logarithmic regret uniformly ~ Zi, ¢ = 1,2, 3,4 are constants an@_(n)_can be any divergent
over time. When some bounds corresponding to the stationary non-decreasing sequence of positive integers. Since tdvettyr

state distributions and the state-dependent rewards are kown, speed ofG(n) can be arbitrarily slowly, the regret of our

we show that CEE can be easily modified to achieve logarithmic 54 5rithm is nearly logarithmic with time. The significance
regret over time. In contrast, prior algorithms require add itional f h b-li Hi t b d is that the fi
information concerning bounds on the second eigenvalues tifie of such a sub-linear time regret bound 1S tha e time-

transition matrices in order to guarantee logarithmic regret. averaged regret tends to zero (or possibly even negatice sin
Finally, we show through numerical simulations that CEE is the genie we compare with is not using a globally optimal

more efficient than prior algorithms. policy), implying the time-averaged rewards of the policy
will approach or even possibly exceed those obtained by the
stationary policy adopted by the model-aware genie.
Multi-arm bandit (MAB) problems are widely used to make If the some bounds corresponding to the stationary state dis
optimal decisions in dynamic environments. In the classirbutions and the state-dependent rewards are known, @ sh
MAB problem, there areV independent arms and one playetthat the algorithm can be easily modified and achieves loga-
At every time slot, the player selecfs(> 1) arms to sense rithmic regret over time. Compared to prior wolk [6] [7]114]
and receives a certain amount of rewards. In the classic nawr algorithm requires the least information about theesyst
Bayesian formulation, the reward of each arm evolves id.i.i.in particular, we do not require to know the second largest
over time and is unknown to the player. The player seeks éigenvalue of transition matrix or multiplicative symnies-
design a policy which can maximize the expected total rewaribn matrix. Moreover, our simulation results show that our
One interesting variant of multi-armed bandits is the esstl algorithm obtains the lowest regret compared to previously
multi-arm bandit problem (RMAB). In this case, all the armsroposed algorithms when the parameters just satisfy the
whether selected (activated) or not, evolve as a Markovchaheoretical boundaries.
at every time slot. When one arm is played, its transition Research in restless multi-arm bandit problems has a lot
matrix may be different from that when it is not played. Evepf applications. For instance, it has been applied to dynami
if the player knows the parameters of the model, which can bpectrum sensing for opportunistic spectrum access inicogn
referred to as the Bayesian RMAB since the beliefs on eatite radio networks, where a secondary user must séleof
arm can be updated at each time based on the observatiéfhghannels to sense at each time to maximize its expected
in this case, the design of the optimal policy turns to be reward from transmission opportunities. If the primary ruse
PSPACE hard optimization probleml [2]. occupancy on each channel is modeled as a Markov chain with
In this paper, we consider the more challenging nomnknown parameters, then we obtain an RMAB problem. We
Bayesian RMAB problems, in which parameters of the modebnduct our simulation-based evaluations in the contettisf
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particular problem of opportunistic spectrum access. when no knowledge about the system is available. Conclasion
The remainder of this paper is organized as follows: ion multi-arm selections are given inl [7]. However, they only
Section[I], we briefly review the related work on MABgive the upper bound of regret at the end of a certain time
problems. In Sectiof Ill, we formulate the general RMABoint referred aspoch. When noa priori information about
problem. In Sectiof IV and Sectign V, we introduce a sampthe system is known, their analysis of regret gives the upper
mean based policy and provide a proof for the regret uppeound over time only asymptotically, not uniformly.
bound separately for single and multiple channel selectionin our previous work[[5], we adopted a stronger definition
cases. In Sectidn VI, we evaluate our algorithm and comparef regret, which is defined as the reward loss with the optimal
via simulations with the RCA algorithm proposed in[[14] angbolicy. Our policy achieve a near-logarithmic regret witha
the RUCB proposed in_[6] for the problem of opportunistiprior of the system. It applies to special cases of the RMAB,
spectrum access. We conclude the paper in Seciign VII. in particular the same scenario as|in|[10] arid [11].

Il. RELATED WORK I1l. PROBLEM FORMULATION

In 1985, Lai and Robbins proved that the minimum regret W& consider a time-slotted system with one player and
grows with time in a logarithmic order [12]. They alsoY mdependent arms. At each time slc_>t, the player selects
proposed the first policy that achieved the optimal logarith (activates)k' (< N) arms and gets a certain amount of rewards
regret for multi-armed bandit problems in which the rewardcording to the current state of the arm. Each arm is modeled
are i.i.d. over time. Their policy only achieves the optimdlS & discrete-time, irreducible and aperiodic Markov chain
regret asymptotically. Anantharaghal. extended this result to with finite state space. We assume the arms are independent.

multiple simultaneous arm plays, as well as single-paramef>€nerally, the transition matrices in the activated moael a
Markovian rested reward§l[4]. Auet al. developed UCB1 the passive model are not necessarily identical. The player
policy in 2002, applying to i.i.d. reward distributions tvit C&" only see the state of the sensed arm and does not know

finite support, achieving logarithmic regret over time heat the transitions of the arms. The player aims to maximize_ its
than only asymptotically in time. Their policy is based oe th€XPected total reward (throughput) over some time horizon
sample mean of the observed data, and has a rather sinfflech00sing judiciously a sensing poligy that governs the
index selection method. channel selection in each slot. Here, a policy is an algarith

One important variant of classic multi-armed bandit prable @t Specifies arm selection based on observation history.
is the Bayesian MAB. In this casa priori probabilistic ~ L€tS* denote the state space of afnenoter; the reward
knowledge about the problem and system is required. Gitif8t@ined from state: of arm ¢, « € S*. Without loss of
and Jones presented a simple approach for the rested bagerality, we assume, < vz € 5%, Vi. Let ; denote the
problem, in which one arm is activated at each time arftftive transition matrix of arm and @; denote the passive
only the activated arm changes state as a known Markl@nsition matrix. Letr = {m;,« € S'} denote the stationary
process([8]. The optimal policy is to play the arm with highedlistribution of arms in the active model, wherer; is the
Gittins' index. The restless bandit problem was posed by stationary probability of arm being in stater (under F)).
Whittle in 1988 [1], in which all the arms can change stat

d he stationary mean reward of arindenoted by, is the
The optimal solution for this problem has been shown (0

pected reward of armunder its stationary distribution:
be PSPACE-hard by Papadimitriou and Tsitsiklis [2]. Whuittl

proposed an index policy which is optimal under certain = Z T @)
conditions|[9]. This policy can offer near-optimal perfante _ _ z€S*
numerically, however, its existence and optimality arequar- ~ Consider the permutation ¢fi, - - - , N'} denoted a#, such

anteed. The restless bandit problem has no general solufid@t ) > ;7@ > ;7@ > ... ;7(N) We are interested in

though it may be solved in special cases. For instance, whégsigning policies that perform well with respecttegret,

each channel is modeled as identical two-state Markov chativhich is defined as the difference between the expected dewar

the myopic policy is proved to be optimal if the channelhat is obtained by using the policy selectiigbest arms and

number is no more than 3 or is positively correlafed [10] [11}hat obtained by the given policy. The best arm obtains the
There have been a few recent attempts to solve the restlBigdhest stationary mean reward.

multi-arm bandit problem under unknown models. [n1[14], LetY®(t) denote the reward obtained at tithevith policy

Tekin and Liu use a weaker definition of regret and propo§e The total reward achieved by policy is given by

a policy (RCA) that achieves logarithmic regret when certai .

knowledge_about the system is known. However, the algorithm RY(t) = Z Y2 () )

only exploits part of observing data and leaves space to pa

improve performances. In[6], Haoyang Lat al. proposed

a policy, referred to as RUCB, achieving a logarithmic régre

over time when certain system parameters are known. The K

regret they adopt is the same aslinl/[14]. They also extend the r®(t) = tZu”(” —E(R®(t)) (3)

RUCB policy to achieve a near-logarithmic regret over time i=1

and the regret®(t) achieved by policyd is given by



The objective is to minimize the growth rate of the regret. SinceB; > 1, it is obvious thatG(n) < B,,,Vn. Note that
since B; can be any arbitrarily slow non-decreasing diverging
sequence(=(n) can also grow arbitrarily slowly.

In this section, we focus on the situation wh&h= 1. In In this subsection, we show that the regret achieved by our
this case, the player selects one arm each time. We first shalgorithm has a near-logarithmic order. This is given in the
an algorithm calledContinuous Exploration and Exploitation following Theoren{lL.

(CEE) and then prove that our algorithm achieves a near-Theorem 1. Assume all arms are modeled as finite state,
logarithmic regret with time. irreducible, aperiodic and reversible Markov chains. Alét

_ . states (rewards) are positive. The expected regret witlo-Alg
A. The CEE Algorithm for non-Bayesian RMAB rithm 1 aftern time slots is at mos; G(n)Inn + Zy Inn +

Our CEE algorithm (see Algorithm 1) works as follows.Z3G(n) + Z4, whereZ,, Zs, Z3, Z, are constants only related
We first process the initialization by selecting each arm fao P;,i = 1,2,--- , N, explicit expressions are at the end of
certain time slots (we call these time slatsp), then iterate proof for Theoreni 1.
the arm selection by searching the index that maximizes theThe proof of Theorenil1l uses the following fact and two
equation shown in lin€]8 in Algorithm 1 and operating thifemmas that we present next.
arm for onestep. A key issue is how long to operate each Fact 1: (Chernoff-Hoeffding bound) LetXy,---, X, be
arm at each step. It turns out from the analysis we presentrithdom variables with common rangdé, 1] and such that
the next subsection that it is desirable to slowly incredee tE[X;|X,,---,X; 1] = p. Let S, = X; +---+ X,,. Then
duration of each step using any (arbitrarily slowly) divemty for all a > 0
non-decreasing sequence of positive intedess} 2,

IV. ANALYSIS FORSINGLE ARM SELECTION

2 2

A list of notations is summarized as follows: P{Sn = npta} < e >/ P{S, <nu—a} <72 (5)
o N:time. The first lemma is a non-trivial variant of the Chernoff-
e B;: duration ofiy, step. Hoeffding bound, first introduced in our recent woik [5],
o Ai(ij): sample mean of the;, step armi being that allows for bounded differences between the conditiona

selected. expectations of sequence of random variables that we exyeal
. X sum of sample mean in all the steps afnbeing sequentially:

selected Lemma 1. Let Xy, -, X, berandom variables with range

[0,0] and such thatE[X;| Xy, -+, X 1] —p| < C. Cis a
Algorithm 1 Continuous Exploration and Exploitation (CEE)constant number such that< C' < u. Let S, = X1 + --- +

Single Arm Selection X,,. Then for alla > 0,
1: // INITIALIZATION _o(alu=0)yz
2: Play armi for B; time slots, denot 1(1) as the sample P{Sn > n(p+C)+a} <e 0070 (6)
mean of thes&B; rewards;; = 1,2,--- , N and
3IX A(),’L—12N 2(a/b)?/n
A P{S, < C)—a} < 7
oyl {Su<n(p—0C)—a} <e )
55i=N+1,4;=1,j=1,2,--- N Proof: We first prove[(5). We generate random variables
6: // MAIN LOOP Xl,XQ, o X as follows:
7: while 1 do X, = (M + C)
Llnn Xl]’
8: Find j such thatj = arg max =% % L4+, /=22(L can be X2 (h+0)z
any constant greater than 2) X2‘X1]
9: ’LJZ’LJ+1 . Xt (M+C) Xt ) )
10: Play armj for B; slots, letA;(i;) record the sample  Ngte that EXe| X0 X, K]
mean of these&3; rewards
11: Xj = Xj + Aj (ZJ) |E[Xt|X1, s X 1] ,u| <C
12: 1=14+1 S h
13: n=n+ B;; 0 we have
14: end while IE[X| X1, -, Xieq]—pl < C
Since Xf is at least 1, at mostﬂ—c, X1, X0, , X
B. Regret Analysis have f|n|te support (they are in the ran@eb“*c]) Besides,
We first define the discrete functi@#(n), which represents [Xt|){1, AthlA] p+C, V.
the value ofB;, at then!” time step in Algorithm 1: Let S, = X1+ Xo+ -+ + X, then for alla > 0,
! P{S, > n(u+C) +a} < P{S, > n(u+C) +a}
G(n) = min B; s.t.ZBi >n (4) wlu—C) (8)
1 2(5¢tTey)*/n

i=1 <e



The first inequality stands becau% > 1,vt. The second where

inequality stands because of Fact 1. Cp = max {(min 7)~* Z s}
The proof of [T) is similar. We generate random variables 1SN eest s€S
Xl,AXQ, X! as foIIows Let
Xi= (u C)
.. Ct,s = (L 1nt)/s
X’ (n—O)g T Cp
E[Xn |X{, X5, X], )] w* = q(ue® — =5) (11)
Note that B,
E[X:| X1, -, X, <C and _
| [ t| 1 t— 1] :u| wi_ MU(Z)_CP/B ( (z)+CP _1) (12)
So we have T e Cr/B, B,
E[XGXT, -, X{ 4] —pul < C Next we will show that it is possible to define* such that
A L f 1)i lected fi *) steps, th
% is at most 1, at Ieastj;—g,_thereforeXl,Xz,'" 7_Xn Tamo(l) is selecte ors(>;1 ) steps en4
have finite support (they are in the rang&b]). Besides, exp(—2(w* —scrs)° /(s —q)) <t % (13)
E[X{|X{, - X[ \]=p—C, vt
Let § — X!+ X} +---+ X', then for alla > 0, In fact, whens > max {q, [w*/(vVL — v/2)]?}, we have
P{Sp <n(p—C)-a} <P{S, <n(u-C)—a} ViIs— w2 /2(s —q)
< e~2a/t)’/n Consider
The first inequality stands becau% < 1,vt. The second f(t) =VLslnt —w* —/2(s —q)Int, Vt>e
inequality stands because of Fact 1. [ | : : - : :
Lqemm:z\/ 2: [4] Consider an irreducible, aperiodic Markov Sincef(#) is an increasing function anf(e) = 0, we have
chain with state space S, matrix of transition probabditi ft)>0,vt>e

an initial distribution g which is positive in all states, and
stationary distribution7(rs is the stationary probability of i-€-VLslnt—w* > /2(s —¢)Int. And this equals to
state s). The state (reward) at timés denoted bys(¢). Let u * 2 —4
denote the mean reward. If we play the chain fo(r an arbitrary exp(=2(w” —ser) /(s —a)) <t
time T, then there exists a valuf < (minsesm) "' > ,.gs Thus at least we can set
such thatE[>"" | s(t) — uT) < Ap. § §

Lemmzﬂ[@%ﬁoi/vs( t)hat if ; player keeps selecting the optimal o =1+ [max{g, [w*/(VL - V2)P*}] (14)
arm, the difference between the expected reward and thg-or the similar reason, we could define
highest stationary reward is bounded by a constant. Hence . .
if the player switches from the optimal arm to one another, o =1+ [max {q, [w'/(VL — v2)]*}] (15)
the reward loss caused by switching can be bounded.

Based on these two lemmas, we can give the proof
Theoren{]l show as below. —2(w' + scps)? B

Proof: SinceK = 1, o(!) is the index of the optimal arm. eXp((quy)) <t (16)

The regret comes from two parts: the regret when selecting an
arm other than arnr(V); the difference betweep”™) and Moreover, we will show that there exists
E(Y®(t)) when selecting arrr(M), From LemmaZR, we know
that each time when we switch from amm') to one another, ~ = [max{(N — 1)(4a* + 1) + a*, (N — 1)e**"/F 4+ o*,
at most we lose a constant value from the second part of i i a0t /L i
the regret. If the number of selections of one arm other than 2<za’<)§V{(N — Do’ +1) + o, (N = 1)e**/* +a'}]

o™ in lined is bounded byO(Inn), the first part of regret (17)
can be bounded b®(G(n)Inn) and the second part can be
bounded byA,O(Inn), and the total regret can be bounde
by O(G(n)Inn). So next we will show this is true.

For ease of exposition, we discuss the time slotsuch
thatG||n, whereG||n denotes the time is the end of certain

%lflCh that if armo (i) is selected fos(> of) steps,

uch that for the timer, if G(n) > B,, then armo(1) is
Selected at least* times and arnv (i) is selected at least’
times.

In fact, if arm o (1) has been selected less thah times,
consider arny being selected for the most steps. Consider the

step. : . , i
We defineg as the smallest index such that last time selecting arnj, denote that time ag there must be
20 C X, X;
B, >fmax{ P P 1=1,2,---,N}] (10) ()—FCtzU(l)S—‘i‘CtzJ

ORI

20(1) 25



Since armj has been selected the most times, we haveNote that X o(1),s1 = Ao’(l) 1+ Ao’(l) o+ -+ Aa(n,sl,
;> max{4a* + 1, ela” /LY. Noting that "“) >0, X <1, WhereA (1),i 1S sample average reward for thg, step

igy < @ —1,i; > 4a* + 1, we have selecting army(1). From LemmdR, we have
Lint <1 Lint 1 OP R 1 CP
1" Vi1 u"”—ESE[ALZ—]gu”(HE Vi>q (22
Consider Then applying Lemmal]1, and the results[inl(13) dnd (16),
Lint Lint :
g(t)=1+\/ n _\/ n wehaye.
da* +1 a* —1 X C
404 /L ]P)( U(l)’81 < NU(I) - _P — Ct 51)
Sincegy(t) is a decreasing function ard> Zz . B> S1 o B, '
da”/L A A
e , we haVe _ P(Ao'(l),l + + Ao’(l),81 S Mo‘(l) _ % _ Ct_sl)
g(t) < gle* /by =1+ \/ T \/ <o o1 Bo
- dor +1 ar—1 P(0+"'+0+Ao<1>,q+1 T+ Ao),s < po®
This contradicts the conclusion above. So arfi) has been N s1 -
played at least* times. _Cr )
If we replacea*® with of and replace arna(1) with arm B, bt
o (i), without changing the proof, we can conclude that arm < exp(—2(w* — scrs,)%/(s1—q)) <t*
o(i) has been played at least times. (23)
Next we will bound the number of times we fail to choose
the optimal arm. We will show that this number has a o (i
Pt Xo(j).s; o), Cp , 179 +Cp/B,
logarithmic order. P(——== > puoV) + + =5 s;)
DenoteT;(n) as the number of times we select asy) 5i By pr) = Cp/By
up to timen. Then, for any positive integér we have B ]P)(Ag(j),l +o 4 A ()55 > o 4 OP Cp
= XO’ 1 (t) K 1
Tj(n) =1+ Z H{ﬁ + Ctyiy ) o(4) 4 CP/B
=y, ol Y n_cP/B Ctss)
Xo(a)() T4+ 14 Ay + Ay c
——= + i, } <P ).at1 > 00 L 2P
U(])( ) ! - ( Sj =k + Bq
<l++ u9) + Cp/B,
n a(t)t=Bi+-+Ba) B(t),t=Bi++Bs) * ud(ﬂ')——(jp/cht’Sj)
Z Z Z —2(w’ + sct 5,)? _
t=B1+---+B,,G||t s1=a* sj=max(a’,l) < eXP(S—_q]) <t 4
~ ~ J
Xcr ,S Xcr 1),S ;4 24
1{ ;1), L ey < ;J% j +Ct,sj} (24)
1 J Denote),(n) as
J
whereI{z} is the index function defined to be 1 when the X;(n) = [(L(1 + Wﬂ) nn)/(ue® — po0)
predicater is true, and 0 when it is a false predicatg;; (t) pot) = Cp/B,
is the number of times we select amj) when up to time ~ _ QOP)Z]
t,Vj=2,---,N; Xo(;(t) is the sum of every sample mean B,
of arm o (j ) for is(j)(t) plays up to timet; XU(J) s; Is the (25)
sum of every sample mean fef times selecting arm(j) Forl > \;(n), (21) is false. So we get:
The condition{ X2t 4 ¢, - < X"(” —L + ¢y 6, } implies E(Tj(n)) < Aj(n) +v+ 552,50 _ 5L _ 2t
J = =1%s;=1%s;=1
that at least one of the following must hold: 5 (26)
T
Koty < o _ o 1) S N(n) ++ =
s1 B, b As we analysis before, the first part of the regret is bounded
~ . by
Xo().s; N Cp  u94+Cp/B N
__T\P7y > ,LLU(j) + — 4+ _—qc 85 (20) - (i
55 By w0 ~Cp/B, > BT (m)](Gn) (0" — p°P) + 2Cp)
c °U) + Cp/B =
o) _ZP o) 4 2P B TP/ Dq
K B, + B, +(1+ o) — CP/Bq)Ctvsi (21) and the second part is bounded Oy Z;V:g E(T}(n).



Therefore, we have:

r®(n) < G(n)+

N

> (G ~

Jj=2

71—2

3)

(27)

pe DY +30p)(Nj(n) + +

This inequality can be readily translated to the 5|mpI|f|ed

form of the bound given in the statement of Theorem 1, where

1“9 4 Cp /B2
N L(1 + 55t e
173 —Cp/B
Zy = (' — [ e eravd
; (‘ua'(l) — NU(J) — Qg—qp)Q
() 4o B,
20— 50 i( L(1+_#U(J)+Cl;§B )? ]
2 = P -
- (Na(l) — ‘LLU(J) — %)2
7T2 N 1 .
Zy =y ) YD = o) 41
=2

2
Zy=3(N-1)Cp(y + g)

C. Corollary

From the analysis above, we see that if sequence

{B} ©, Is constant andB; > fmax{m, UU),Z =

1,2,

over time. Specifically, we have the following corollary:
Corollary 1: The system model is the same as that

TheorentlL. In Algorithm 1, if

20p  Cp o,
7 — @ el = L2

s 2y,

N}|Vie N

B; = [max{

then the expected regret after n time slots is at most:

Zi{BiInn+ ZyInn+ Z4By + Z}, where

N p+Cp /B2
Zi _ Z(‘ua(l) U () |' L(l * N‘T(j)—CP/Bl) -|
- o o(g 2C
= (lu (1) — W ) — B_1P)2
N p’9+Cp/B
Zy=3Cp Y T L0t b cu/m,) ]
= > 2C
= (oW — o) — B—]P)Q
7T2 N 1 .
Zy=(m+ ?) Z(/L"( )ty 1
=2
/ m’
7= 3(V = 1)Cr(n + 1)

and herey, is obtained givery = 1 in (@4), (I5), [11), [(IR)
and [1T).

-, N}], then Algorithm 1 achleves (egarlthm|c regret

V. ANALYSIS FORMULTI-ARM SELECTION

In this section, we discuss the general case wh€ris a
known positive integer. We show a generalization of the CEE
algorithm and prove that it still achieves a near-logarithm
regret with time.

A. Algorithm Design

.The basic idea is similar to Algorithm 1: first initialize and
then find the optimal indices. The only difference is here we
have to selec# indices that obtain the greatest value in line
at one time. The definition of B;}3°, stays the same and
the details are shown in in Algorithid 2.

Algorithm 2 Continuous Exploration and Exploitation (CEE):
Multi-Arm Selection

1: // INITIALIZATION

2: Sequently playK arms B; times until every arm is
selected once; = 1,2,---, (%1. Denote Aj as the
sample mean of the correspondiBg rewards of arny ,
i=1,2,-,[%],j=12-- N

3 Xi=A;i=1,2-- N

4:n = Z[%W B;

. 1=1 7

s i=[R]+1,i=1j=12,,N

6: // MAIN LOOP

7: while 1 do .

DenoteF(j) = )f—j + %Z_‘"( L can be any constant

larger than 2)

in®: Find armjy, jo, - - , jx such that
F(j1) > F(j2) > - > F(jx) > F(])
VZg{jlanW" 7]K}

10: Z'jl:ijl—l—l,lngK

Select armjy, jo, - -+, jx and play for B; times, let
Aj, (i5,) record the sample mean of theBg rewards

12: X]L - X]L + A]z (ZJL)
13: t=1+1

14: n=n+ B;;

15: end while

B. Regret Analysis

In this subsection, we keep the definition®¢r) in () and
the definition ofregret in [@). We will show that the regret
achieved by Algorithnll2 has a near logarithmic order. This is
given in the following Theorerfl 2.

Theorem 2: Assume all arms are modeled as finite state,
irreducible, aperiodic and reversible Markov chains. Alét
states (rewards) are positive. The expected regret witlo-Alg

Remark: This corollary is just a special case for Theoremthm[2 aftern time steps is at mostsG(n)Inn + Zglnn +
[, but it reveals the fact that when certain knowledge of thé;G(n)+ Zs, whereZs, Zs, Z, Zs are constants only related

system is available (in this case, some bounds related to
stationary state distribution and state-dependent resyavee

can design an algorithm that achieves logarithmic regret ov

time.

theP;,i = 1,2,--- , N, explicit expressions are at the end of
proof for Theoreni 2.

Proof: The proof of Theoreni]2 is similar to that of
Theorent L. We still divide the regret into two parts and bound



them separately. We keep the denotatiorGofn and discuss
the time slots such tha®||n.
We defineq’ as the smallest index such that

2Cp Cp
By 2 [max{ ooy — e et = 1% VD
(28)
Let o
mi = (V) — ) 1< i< K (29)
q/
and
) o(i) _ B., _
mi — q/w(ﬂg(l)-i-CP/Bql—l),K—l-l <i<N

ue@ + Cp /By 0)
As shown in the proof of Theoreld 1, if we set
By =1+ [max{q', [m}/(VL - v2)]’}],1 <j < K (31)
8" = 1+[max{q, [m'/(VL-v2)]*}],K+1 <i < N (32)
and if s > §* ands > 3* we will have

—2(m;- — sct5)?

exp( - Yy <t (33)
s—(q
and ; )
exp(—_2(m * S:Ct’s) ) < 4. (34)
s—(q
Moreover, we will show that there exists
v = [max(lr%ax {(N=1)(56; +1) + 55, (N — 1)(e*Pi/k
B+ 8% max  {(N —1)(58"+1) + 8" (N—
1)(e*'/E 1 g% + 5]
(35)

such that for the times, if G(n) > B,/, then armo(j) is
played at leasp; times and army (i) is played at leasp?
times, wherel < j < K, K +1<i<N.

In fact, if arm o(j) has been played less thatj times,

then there exist an arm(l)(KX + 1 <! < N) that has been

played the most times. Consider the last time that afi is

487 /L
Sinceg* (t) is a decreasing function and> >>7 | B,

e*Pi/L we have

Y

. 4% 43
* *(,AB7 /LY _
g (t) < g'(e ) 1+\/4ﬁjj—1 \/ﬁ;_Jl

This contradicts the conclusion above. So arfy) has been
played at leasp; times.

If we repIaceB* with 3" and replace arnar(j) with arm

o (i), without changlng the proof, we can conclude that arm
o(i) has been played at least times, K +1 <i < N.

Based on the conclusions above, we can bound the expec-
tation of the number of non-optimal arm choices. We keep the
denotation off’;(n) andI{z} except that her& +1 < j < N.
Every time we select (j), there must exist an arm from(1)
to o(K) not being chosen. We denote that unknown arm as
o(r,t)(if more than one arm not chosen, pick any of them).

Y Xar t
> H{z’(ii)((t)) N
=N Boae oY
Xo(i) (1)
io(j) (1)
And if we replaces(1) with o(r,t), according to the

deduction from[(19) to[(26), we conclude that
2

<0

Clyig(r,t) <

(36)

+ Ct,ij}

. . / 7T_
B(T;(n) <1+ max (\ij(n) +9/+ =) .
I (37)
=14+ Xgj(n)+7"+ 5
where
a(4)
5(n) = 2+ Cr/By s o(i) _ 1,00
)\z,](n) - (L(l + m) lnn/(,u — U
2C
- )
ql
Therefore, we have:
N
rP(n) < KGm)+ Y (Gn) (™ — p7))+
j=K+1 (38)
/ w2
3CP)(Ax(n) +7"+ =)

selected and armi(j) is not selected, and denote that time as Equivalently, we have the simplified form of the bound

t; Then it must be true that

XU( ) XU(l)
T T S 7
a(j) a(l)

+ Ct,io ()

Since armo(l) has been played the most tlmes we have

iny > max{48;+1,¢*% /). Noting that3=@ > 0, F=0

Yo (4)

1L is(j) < B — Lioq) > 4587 + 1, we have

0+ Lint <14 Llnt
By —17 485 +1
Consider
Lint Lint
) =1+
9°(®) \/4ﬂ;+1 \/[3*—1

given in the statement of Theorem 2, where:

N . o(5) /B
Zs= > (W — L+ W—P/q)z o (K)
7 H V= OP/Bq/
j 2C
—_ (J) _ _P 2
W =g
1D 4Cp /By o
26:3013 i |_L(1+m) ]
e o) — o) — 302
2 N
Z7:(7’+?) Z ( o(K) u m)—i—K
j=K+1
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C. Corollary G305 0T 0TI

Similarly to Section 1V, when stationary distribution and ch4 ] 02,04 011

rewards are availablel3; in Algorithm [2 can be a constant ch5] 01,05] 011
sequence. In this way, Algorithid 2 achieves arbitrarilydeg TABLE |

rithmic regret over time. Specifically, we have Corollary® a  TRANSITIONPROBABILITIES AND REWARDS FORSCENARIOS
follows:
Corollary 2: The system model is the same as that in
Theorenf®. In Algorithni 2, if B,. For fairness of comparison, we set these parameters
20 Cp for all three algorithms to be just passing the theoretical
Bi = [max{————p, —gyo L = 1,2, N} bound. In RCA [14], the regret has a logarithmic order for
H K H L> 11252 r?rxaxﬁ—ﬁxax/emin’ WhereSmax = IaXi<;<N |SZ|,

Vie N _maxm i A _ , i
Tmax = MaXze i 1<i<N Iy Tmax —_maXIGS*.,lgigN{Wm, 1-—
then the expected regret after n time slots is at most},enmin = mini<;<x €’ and ¢ is the eigenvalue gap
ZiBiInn + Zglnn + Z; B, + Z§, where of the multiplicative symmetrization of the transition pro

ability matrix of the ith arm. In the scenario we set,

N (i
Zt = Z (™ — pONL(1 + M)Q o(K) 112852, .72 72 ./ €min IS 414.8148. We sef 415 in RCA.
K41 pe) — Cp/By In CEE Algorithm , we prove that iB; meets the requirement
Gy 20p ., stated in[(ID) and. > 2, the regret has a logarithmic upper
—p7 = B—l) 1 bound over time. In scenario S, the lower bound[in] (10) is
o)1 Op /B 48.89. We sefl 2.1 andB; therefore to 49. In the RUCB al-
N L+ et ) ithm [€], it ired that > L (42%maxSmas 1 10,2
7t = 3Cp Z i - p/Bé 1 gorithm [€], it is require > =( At o ax)
iy (el — pol) — 2pe)2 and D > o= Goeryz - The lower bounds are 3125.2 and
s N 171480 and we accordingly sét = 3126 and D = 171520
m o o(j i
Zh = (2 + ?) Z (oI — oDy 4 K in RUC.B.
K41 We simulate RCA, CEE and RUCB over 10 runs to calculate
2 the regret. The time horizon is 100 million. We also show the
Zy=3(N - K)Cp(y2 + ?) first 8 million time slots of regret to compare the converging

speed between RCA and CEE. In order to access the stability
of each algorithm, we also present the variances of rewards
over 100 runs for RCA, CEE and RUCB.

VI. NUMERICAL RESULTS The regret performance for all three algorithms are shown

In this section, we simulate our algorithm and compare ff Figure[1(8) and Figure 1(b). The reward variance for all
with two previously proposed policies for this problem ireth three algorithms is shown in Figufe J(c).
context of opportunistic spectrum access: (1) RCA proposgd
by Cem Tekinet al. [14] and (2) RUCB proposed by H. Liu i
et al. [6] [7]. We focus on two properties of the algorithms: First of all, we note from the figures that CEE shows
regret and variance, which show the efficiency and stahility SUPstantially better regret performance than both RCA and
the algorithms respectively. RUCB. This is becagse in CEE,_the selectlop of arm _depends
on the whole observing history, i.e. we exploit observintada
A. Channel Model and Parameters in every time slot. In RCA, however, the player chooses the
The arms are channels. The channel model is the commoatyn only based on data in the second part of each block
used Gilbert-Elliot model. The state of each channel ewlvésub-block 2, SB2). In this way, CEE uses data much more
as an irreducible, aperiodic Markov chain. Each channel hefficiently and the data sample means are much closer to their
two states, good and bad. We considér= 5 channels. At expectations. As for RUCB, in exploration epoch, the player
each time slot, the player activates 1 channelfie= 1). The selects every arm for certain times thus greatly reducimg th
active and passive transition matrix for each channel age tthances to play the optimal arm. It also shows the advantage
same, i.eP; = Q;,1 < j < N. For the ease of comparisonof continuous exploration and exploitation, which greatlys
we set the non-decreasing sequeféz}5°, in Algorithm 1  down the cost of observing and exploring.
a constant sequence. The second observation is thatgret/Ilntime converges
We simulate three algorithms under scenario S. The transitich more quickly in CEE than in RCA and RUCB. One
tion probabilities and rewards for this scenario are shown ieason is the regret in RCA is much greater than in Algorithm
tablell. 1 so it needs more time to reach the stationary point. Besides
Intuitively, in RCA and RUCB, the regret grows withas stated before, RCA exploits data less efficiently, as the
L. In our algorithm, the regret grows with both and sample means are based on only part of the observing history

and herey; is obtained givery = 1 in (29), (31), [32),[(3b)
and [30).

Discussion
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Fig. 1. Regret and variance performance for RCA, CEE and RUCB

so they converge to the expected value much more slowly. f&gsms of regret and convergence speed, and RCA in terms of
for RUCB, the parameteb is considerably large and it needseward variance.
guite a long time for the length of exploration epoch to grow

so that an exploitation epoch can appear. The speed of RUCB

is the slowest among these three algorithms. [1] P. Whittle, “Restless Bandits: Activity Allocation in @hanging World,”

Journal of Applied Probability, Vol. 25, 1988.
Lastly, we see that the performance of RCA are much m C. H. Papadimitriou and J. N. Tsitsiklis, “The Complgxi©Of Optimal

random than that in CEE and RUCB. The reward variances Queueing Network Control,Mathematics of Operations Research, \ol.
of RCA are much higher than CEE and RUCB. The reason is 24, 1994.

- . . ] K. Liu and Q. Zhao, “Indexability of restless bandit pteims and
that the number of time slots between two selection in RC optimality of Whittle index for dynamic multichannel acegs|EEE

is a random variable. The player stays in the same arm until & Trans. Inf. Theory, vol. 56, no. 11, November, 2010.
pre-specified state is observed. In different cases, trgthesf [4] V. Anantharam, P. Varaiya, J. Walrand, "Asymptoticalijficient Alloca-

tion Rules for the Multiarmed Bandit Problem with Multipldals-Part
every block may vary a lot. In CEE, however, the length of step Il: Markovian Rewards,”|EEE Transaction on Automatic Control, Vol.

is a constant number which greatly reduces the randomness.ac-32 ,No.11 ,pp. 977-982, Nov., 1987.
In RUCB, the length of each epoch is also a deterministiel W. Dai, Y. Gai, B. Krishnamachari, Q. Zhao, "The Non-Bajgn Restless

. . Multi-armed Bandit: A Case Of Near-Logarithmic RegreRyoc. of IEEE
number. Besides, RUCB makes much less choices than CEEInternationaj Conference on Acoustics, Speech, and Signal Processing

and RCA. For these two reasons, RUCB also maintains a high (cassp), May, 2011
stability, albeit with poor regret performance. [6] H. Liu, K. Liu, and Q. Zhao, "Logarithmic Weak Regret of NdBayesian

: - Restless Multi-Armed Bandit,Proc. of IEEE International Conference
In conclusion, CEE outperforms RCA and RUCB in two Acoustics, Speech, and Signal Processing (ICASSP), May, 2011

aspects, regret, and convergence speed. The reward \&8iang H. Liu, K. Liu, and Q. Zhao, "Learning and Sharing in A Clging
of RUCB and CEE are nearly the same, and much lower than World: Non-Bayesian Restless Bandit with Multiple Playefroc. of

. Information Theory and Applications Workshop (I TA), January, 2011.
RCA. Fma”y’ we should note that because the boundary J. C. Gittins and D. M. Jones, A dynamic allocation index $equential

parameterB; in (10) is much smaller than that of parameter” design of experimentsProgress in Satistics, Euro. Meet. Statis., vol. 1,
L in RCA andL and D in RUCB, if we modify RCA and pp. 241-266, 1972.

. : : : ] R. R. Weber and G. Weiss, On an Index Policy for Restless-Ba
RUCB to make them a non-Baysian algorithm, our algorlthﬁgi dits Journal of Applied Probability, vol. 27, no. 3, pp. 637-648, Septem-
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