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Abstract—Data collection is one of the major traffic pattern
in wireless sensor networks, which requires regular source nodes
to send data packets to a common sink node with limited end-
to-end delay. However, the sleep latency brought by duty cycling
mode results in significant rise on the delivery latency. In order
to reduce unnecessary forwarding interruption, the state-of-the-
art has proposed pipeline scheduling technique by allocating
sequential wakeup time slots along the forwarding path. We
experimentally show that previously proposed pipeline is fragile
and ineffective in reality when wireless communication links
are unreliable. To overcome such challenges and improve the
performance on the delivery latency, we propose Robust Multi-
pipeline Scheduling (RMS) algorithm to coordinate multiple
parallel pipelines and switch the packet timely among different
pipelines if failure happens in former attempts of transmissions.
RMS combines the pipeline features with the advantages brought
by multi-parents forwarding. Large-scale simulations and test-
bed implementations verify that the end-to-end delivery latency
can be reduced by 40% through exploiting multi-pipeline sched-
uled forwarding path with tolerable energy overhead.

I. INTRODUCTION

Wireless sensor networks (WSN) is supposed to be used

in a wide range of applications, such as habitat and envi-

ronmental monitoring [1], target tracking [2] [3], scientific

exploration [4], etc. In these applications, one common traffic

pattern is convergecast, which is also known as many-to-one

data collection. Under such traffic scenario, a set of sensor

nodes conventionally send data packets to a common sink

based on tree routing topology.

Additionally, large number of applications in WSN are also

time-urgent. Those applications require the sink to have a

snapshot of the network efficiently in limited time and thus

strict delay constraint is usually imposed on the end-to-end

packet delivery latency. However, in duty cycling network,

such end-to-end delivery latency can be exacerbated signifi-

cantly with the consequence of sleep latency [5] [6] that is

introduced in schedule-based duty-cycling sensor network. In

such network model, a sender has to hold the transmission and

wait until the receiver wakes up based on its schedule.

In order to diminish the end-to-end delivery delay, certain

techniques such as staggered wake up schedule [7], fast path

algorithm [8], streamline schedule [9] are designed to wake

up nodes along the data forwarding path at exactly the right

time slots. All of those techniques present pipeline features

to deliver data packets and ensure that each forwarding of

a packet can catch up perfectly the wakeup time slot of the

forwarder. However, most of such techniques only consider

single predetermined route or fixed packet forwarder. This

works fine only when all communication links are reliable and

perfect, thus the end-to-end delay can be minimized. However,

when the links becomes worse and unreliable, challenges arise

and the delivery latency could increase significantly. Once

a transmission fails, a node has to wait until the next time

the specific forwarder wakes up, which indicates that the

scheduled pipeline is essentially interrupted by unsuccessful

transmissions. The situation can be even worse when the

duty cycle is extremely low. This restriction is imposed by

using only single and fixed parent in the data gathering

tree. However, such restrictions could be removed if multiple

parents are exploited to forward the packet. In this case, the

route is actually a dynamic path instead of predetermined one.

Instead of unnecessarily persisting in waiting for a spe-

cific forwarder/parent to wake up, using multiple parents

to forward the packet can decrease the sleep latency. Such

idea originates from our experimental observation that single

scheduled pipeline in the data gathering tree is always fragile

due to the unreliable links. Therefore, we propose to switch

the packet from one pipeline to another timely when failure

is encountered in previous pipeline forwarding. Essentially,

multiple pipelines are exploited to handle regular failure and

interruption in pipeline forwarding. However, this alteration

impacts the formation of staggered schedule of each pipeline.

For single forwarder case, traffic all flows following a pre-

determined pipeline to decrease the delivery delay; while for

multiple forwarders case, failures of transmission on one for-

warder can make packet switch to another candidate forwarder

and traffic thus change essentially from one pipeline to another.

The allocation of wakeup slots has to be custom-designed to

coordinate multiple pipelines and ensure the pipeline features

are still maintained.

In this paper we attempt to design a robust multi-pipeline

scheduling (RMS) algorithm which combines the staggered

wakeup scheduling and the multi-parents forwarding scheme.

First, RMS maintains the feature of pipeline so that it could

minimize end-to-end packet delivery latency. On the other

side, RMS coordinates multiple pipelines and utilizes the

property of multi-parents data forwarding so that it could

handle unreliable links and failures of transmission by timely

switching packets among multiple pipelines. Specifically, the

major contributions of this work are as follows:

• We experimentally reveal the frangibility of traditional

single pipeline and illustrate that unreliable communi-
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cation links could impair the effectiveness of pipeline

scheduling in reducing delivery latency.

• To the best of our knowledge, this is the first work

to propose a multi-pipeline scheduling protocol which

considers the combined effect of unreliable radio links

and the pipeline feature of packet forwarding. We further

conduct large-scale simulations and realistic test-bed ex-

periments to verify the effectiveness of RMS in reducing

the end-to-end delivery latency in data collection.

The rest of the paper is organized as follows: Section II

presents the related work briefly. Section III describes the

motivation of our design. Section IV introduces the model

and related assumptions. Section V gives the detailed design

of multi-pipeline scheduling. Simulation and implementation

results are provided in Section VI and Section VII, respec-

tively. Finally, Section VIII concludes the paper.

II. RELATED WORK

Due to the significance of energy efficiency in WSN, a

bunch of scheduling algorithms have been investigated based

on different objectives such as sensing coverage, network

connectivity, throughput and etc. Another crucial category

of scheduling algorithm is to minimize the delivery latency,

especially in data collection. One of the most representa-

tive methodologies proposes to use pipeline feature in the

scheduling. DMAC [7] is designed to allow continuous packet

forwarding by giving the sleep schedule of a node an offset

that depends upon its depth on the data gathering tree. It

uses staggered wakeup schedules to create a pipeline for data

propagation to reduce the latency of data collection. Cao et

al. [9] proposes a similar technique denoted as streamlined

wakeup. The idea is to synchronized duty cycles of nodes into

a streamlined sequence to pipe the collecting data efficiently.

Li et al. [8] investigate a fast path algorithm which provides

fast data forwarding paths by adding additional wake-up peri-

ods on the nodes along paths from sources to sinks. However,

all of the above works overlook the unreliable and unstable

property of wireless radio channel and thus their efficiency

could be undermined in the realistic environment.

As far as we know, no prior work has comprehensively

considered maintaining both the pipeline feature of schedules

and handling the regular transmission failures. We attempt

to deal with this challenge by coordinating slots of different

pipelines and switching packet among multiple cooperative

pipelines.

III. MOTIVATION

This section demonstrates two sets of experimental re-

sults collected from our indoor TinyOs/MicaZ test-bed. In

our implementation, we observe the efficiency of tradi-

tional pipeline/streamline scheduling design in data collection.

Specifically, we investigate the impact of link quality and duty

cycle on the pipeline scheduling design in decreasing the end-

to-end delivery latency.

A. Impact of Link Quality on Pipeline Scheduling

Representative works [7][9] on pipeline scheduling illus-

trate their superiority in decreasing end-to-end packet delivery

latency. The network topology is organized as a tree when

data collection is conducted. Each node has exactly one parent

which helps to forward the packet to the upper level in the tree

until the packet reaches the sink. Nodes on the routing path

wake up sequentially to forward the packet to the next hop.

However, these singly-pipelined scheduling designs ignore the

fact that the link quality in reality is highly unreliable so that

the announced efficiency could not necessarily be achieved

when the link is imperfect.
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Fig. 1: Impact of Unreliable Link

To reveal this phenomenon, we construct a small scale of

sensor network with 40 MicaZ motes. The sink is placed in the

center of our test-bed and all other motes form a data gathering

tree with depth of four. Each node in the network generates

a packet designated to the sink. We record the end-to-end

delivery latency for those packets received by the sink and

the results are compared with varying link conditions. Fig. 1

shows that as the link quality become worse, the traditional

pipelined schedule cannot guarantee small delivery latency

in data collection since the pipeline is highly possible to be

broken with bad communication links. For example, when the

average link quality equals 0.78, 90% of nodes in the network

have the delivery latency less than 7 seconds; while the same

percentage of nodes has delivery latency less than 23 seconds

if the average link equals 0.29.

B. Impact of Duty Cycle on Pipeline Scheduling

The impact of link quality on pipeline scheduling could

be more severe when duty cycle goes lower. Another set of

implementation results leads us to such conclusion. In this

set of experiments, we change the duty cycle on each mote

while maintaining similar link conditions. Fig. 2 illustrates

the deficiency of singly-pipelined scheduling design could be

much more evident when motes have lower duty cycle.

The rational is that once a transmission on the pipelined

path fails, the packet forwarding has to wait until the next time

the receiver wakes up. Lower duty cycle implies the interval

between consecutive attempts of transmissions is larger and

thus the delivery latency becomes greater.
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Fig. 2: Impact of Duty Cycle

IV. MODEL AND ASSUMPTIONS

This section first describes the schedule-based low-duty-

cycle wireless sensor network model. After that, assumptions

made in our design will be given.

A. Schedule-based Low-Duty-Cycle Network Model

A sensor node in low-duty-cycle network is in either active

state or dormant state. Active nodes can transmit packets or

sense and receive packets from neighbors. In order to wake

up at a proper time instance to send out a packet, the sender

should be aware of the time when the receiver is in active state.

All sensor nodes maintain a local neighbor table to record

working schedules for one-hop neighbors.

Sensor nodes determine their active/dormant states based on

wakeup schedules. Since the schedule is normally periodic for

sensing purpose, we use a circle to represent the time line of

each working period as shown in Fig. 3. Although the length of

a period varies depending on individual node, common length

of period T can still be found (e.g., least common multiple of

cycle for all nodes). T is further divided equally into multiple

units, called time slots, in which sensor node is either active or

dormant. To simplify, the length of each time slot is assigned

equally to round-trip packet transmission time (including data

and ACK). This assumption can be achieved by increasing

time granularity. If multiple packets can be transmitted within

single wakeup slot, multiple consecutive wakeup slots are

regarded as being selected. Under such scenario, for node i,
wakeup schedule Γi can be uniquely represented as a set of

wakeup slots,Γi = {ti1, t
i
2, t

i
3, ..., t

i
N}, where tij denotes the j

th

wakeup slot for node i.
For example, in Fig. 3 where T = 100 is denoted as the

length of a working period, node i is scheduled to wake up

at time slot:12, 30, 63, then node i’s wakeup schedule can be

uniquely represented as Γi = {12, 30, 63}.

B. Topology Model and Traffic Model

Each node in the network is aware of its hop count away

from the sink. Such hop count can be determined in the

initialization phase. The sink starts to broadcast notification

packets with hop count equaling 0. Then each node who

receives such packets selects the minimum hop count as its

updated value, adds one to the hop count and then broadcasts

100T

Wakeup Slot

2 30it3 63it

1 12it

{12,30,63}i

iFor node:   

Fig. 3: Periodic Schedule

the packet to all its neighbors except the one where it originally

comes from. This phase works similarly to breadth-first-search

(BFS) until convergence is achieved. Nodes with hop count

equalling k are named as level k node and finally a level-by-

level network topology is generated, as showed in Fig. 4a.

In traditional data gathering tree, a level k node chooses

only one of its neighbors in level k− 1 as its parent and thus

form a tree-based network topology. Fig. 4a gives a simple

example of such data gathering tree. We note that node i(k) in
level k is only connected to single node j(k−1) in level k− 1,
which is denoted as parent[i(k)] = {j(k−1)}. Our network

topology in this paper is modified based on the data gathering

tree model. Instead of being connected to only one node in the

upper level, node i(k) in level k has multiple parents in level

k − 1 and thus we have parent[i(k)] = {j
(k−1)
1 , j

(k−1)
2 , ...}.

Fig. 4b is an example of our data gathering network topology

modified based on corresponding data gathering tree.

(a) Traditional Data Gathering Tree (b) Data Gathering Topology

Fig. 4: Topology

The traffic model discussed in this paper is focused on

unidirectional data traffic. The traffic pattern consists of data

collected from regular nodes to a common sink. Such traffic is

also the major traffic pattern utilized in the applications such

as event detection, periodic sampling and etc. In conclusion,

the data traffic flows through aforementioned data gathering

topology until it reaches the sink. Our goal is to minimize the

average packet delivery latency given this traffic model.

C. Assumptions

The following assumptions are made in our design:

• Locally Synchronized. The clocks on each sensor in the

neighborhood are synchronized, which denotes that given

the schedule of the receiver, a potential sender is aware of

the time to transmit the packet. FTSP in [10] proposed to

exchange a few bytes of packets among neighbors every

15 minutes to achieve clock synchronization accuracy as
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(a) Pipeline Scheduling Tree (b) Multi-Parents Forwarding (c) Multi-Pipeline Scheduling

Fig. 5: Data Gathering Example

much as 2.24µs. Since the period of one active time

instance is normally 2000µs to 20, 000µs, FTSP can

provide sufficient accuracy.

• Unreliable and Measurable Links. Wireless radio links

between neighbors are imperfect, which means failures of

transmissions always exist in the process of data collec-

tion. Besides, we also assume link qualities of neighbors

can be measured. In practice, the 4-bit estimator proposed

in [11] addresses link dynamics by actively using data

packets and periodic beacons to measure link quality.

• Forwarding Constraint. A node is aware of neighboring

hop count and only forwards the packet to nodes with

smaller hop count. This assumption is used to avoid

forwarding loop in data collection.

V. MAIN DESIGN

A. Design Overview

Given data gathering tree, traditional pipeline scheduling

algorithm requires wakeup time slots along the forwarding

path to be consecutive. Fig. 5a shows a simple example in

which there are two forwarding paths A → B → C → S and

D → E → S. The schedule of each node is also pipelined as

{4} → {5} → {6} and {7} → {8}. This works perfectly fine

if no transmission failure happens in data collection. However,

if node A fails to send the packet to B at {5} and still insists

on forwarding along the pipelined path, it has to wait until

{105} when node B wakes up again(suppose T = 100).
Instead of persisting on waiting for a single parent, Fig. 5b

utilize multi-parents to help forward the packet so as to avoid

unnecessary standby time. This method takes advantage of

the latest transmission results to search a preferable route to

forward the packet. As showed in Fig. 5b, after encountering

the failure at {5}, node A decides to try D immediately.

Once the packet arrives at D at {7}, it still can catch up

the pipeline along D → E → S. Similar scenario could

also happen on link B → E. We note the introduction of

link A → D and B → E successfully switches the packet

among parallel pipelines and mitigates the influence of broken

pipeline. However, we also take notice of linkD → C. Though

node C is D’s neighbor, D cannot catch up the wakeup slot

of C if the transmission between D and E has failed. D has

to wait until next period to try either node C or node E. The

rational is that different pipelines have not been coordinated

to cooperate with each other even packet can be forwarded by

multiple parents.

Fig. 5c shows a possible better scheduling result which

bridges the merits demonstrated in Fig. 5a and Fig. 5b. In

this case, not only links A → D,B → E but also link

D → C can be fully utilized to switch the packet timely

among pipelines. In our design, we attempt to combine the

pipeline feature in Fig. 5a and the advantages brought by

multi-parents forwarding in Fig. 5b. To achieve this, we need

to coordinate parallel pipelines so that packet forwarding can

be switched among different pipelines. Overall, RMS consists

of three major steps:

• Selection of Virtual Forwarding Set. Each node de-

cides its virtual forwarding set (refer to Section V-B)

based on the link quality to its potential forwarders and

predetermined one-hop delivery ratio. Packet could be

forwarded opportunistically to any node resides in the

virtual forwarding set. The selection of virtual forwarding

set is to prepare for the further decision on scheduling.

• Propagative Scheduling. After having hop count ready,

schedules of nodes are decided based on minimizing

the expected delay of packet forwarding between two

consecutive levels. The decision making phase propagates

from the sink to other nodes in a level-by-level manner.

• Overlapping Resolution. Since each node makes

scheduling decision distributively, a node could have

multiple parents wake up at the same time slot. In order

to fully utilize the opportunities to catch up potential

pipelines, simultaneous wakeup slots of parents can be

adjusted slightly and a technique called On-the-fly Shift-

ing can be resorted to resolve such overlapping conflict.

B. Virtual Forwarding Set

Compared with merely using predetermined single routing

path, our design exploits the property of opportunistic forward-

ing. In other words, the routing path is decided dynamically

based on the timely transmission results. For a node i(k) in

level k, its forwarding set includes any node in upper level

who could be a potential forwarder so as to decrease the sleep

latency of packet between level k and level k− 1. Apart from
forwarding set, each node also maintains a virtual forwarding
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Fig. 6: Vitural Forwarding Set Vs. Forwarding Set

set, which is a subset of the forwarding set, for the purpose of

multi-pipeline scheduling. The rational of introducing virtual

forwarding set is that packets will be mainly (with high

probability) forwarded by one of nodes in this set. As a

consequence, the schedule of a child node should be primarily

pipelined based on the schedule of nodes that are in its virtual

forwarding set.

The virtual forwarding set could be decided based on the

link quality to nodes in the forwarding set and predetermined

one-hop packet delivery ratio which can be configured as a

system parameter. Fig. 6 illustrates how the virtual forwarding

set can be determined. First, node i sort the links to all neigh-

boring nodes in the forwarding set, suppose the link quality is

{qi1, qi2, ...qin} where qi1 > qi2 > · · · > qin. In order to min-

imize the expected sleep latency of a packet, node i is expected
to choose better links to send packet first. Suppose the thresh-

old of one-hop packet delivery ratio is given as φ, the prob-

ability that the transmission is successful at least once within

the first k attempts is 1− (1− qi1)(1− qi2) · · · (1− qik), so
in order to satisfy the threshold of one-hop delivery ratio, the

first M best links are included in the virtual forwarding set of

node i:

1−

M−1
∏

k=1

(1 − qik) < φ (1)

and

1−
M
∏

k=1

(1 − qik) > φ (2)

The selection of virtual forwarding set essentially affects the

decision on picking which forwarder to pipeline. Note that the

virtual forwarding set is used merely for scheduling purpose,

once the schedule is fixed, each node follows the forwarding

set to do the data forwarding. Also note that since the routing

algorithm is to use every wakeup slot in the forwarding set

to attempt retransmission, the size of forwarding set actually

reflects the trade-off consideration between energy cost and

delivery latency. In one extreme case, the forwarding set could

contain all neighboring nodes in upper level, then the average

energy cost could be significant since certain bad links are

also used to try transmissions. Another extreme case is that the

forwarding set is equivalent to virtual forwarding set, which

means the size of forwarding set is exactly large enough to

guarantee the one-hop delivery ratio requirement. This could

avoid retransmissions with low success probability and thus

save energy, however, it could also increases the standby time

waiting until the next time a forwarder wakes up.

C. Propagative Scheduling

In this step, each node decides its wakeup schedule dis-

tributively with the purpose of minimizing the expected delay

of packet between two consecutive levels leading to smaller

end-to-end delay. After the virtual forwarding set has been

determined in each node, the scheduling phase propagates in

a level-by-level manner starting from the sink. For those nodes

in the first level, the sink can hard-allocate the schedule. In this

case, the sink is able to control the most suitable time when it

expects the incoming of packets. For nodes in other levels, we

derive a recursive and distributive scheduling algorithm. Since

the scheduling phase propagates from sink to deeper levels,

the core problem converts to how to decide a child’s schedule

given the schedules of its parents in the virtual forwarding set.

Fig. 7: Select Candidate Slot During Propagative Scheduling

Fig. 7 is an example used to explain how the recursive

scheduling algorithm works. Node A has three parents in

its virtual forwarding set, which have wakeup time slot at

{t1}, {t2} and {t3} respectively. At the first glance, it seems

that the wakeup time slot of A can be arbitrary all over the

period of schedule. However, we can prove that the optimal

allocation of time slot for node A can only be selected from a

limited candidate time set in order to minimize the expected

delay of packet between two consecutive levels. For example,

the pentagram in Fig. 7 represent the candidate time set

{t1 − 1, t2 − 1, t3 − 1} for node A’s optimal slot. We first

give our conclusion and then prove it by contradiction.

LEMMA 1: For node i, given its parents’ wakeup time slots

t1, t2, ..., tm, where t1 6 t2, ... 6 tm, in order to reduce the

expected delivery delay of packet forwarding between node i
and its upper level, the optimal time slot for node i can only

be selected from a limited candidate time set {t1 − 1, t2 −
1, ..., tk − 1}.

Proof: Since the parents’ wakeup time slots divide one

period of schedule into several intervals, that is t1 −→
t2, t2 −→ t3..., tm−1 −→ tm, the wakeup slot of node i
(denoted as t(i)) must lie in one of these intervals, suppose

t(i) lies in the interval tk −→ tk+1. Note that the variable

of delay from node i to its neighbors is a discrete random

variable depending on the real transmission result, the value of
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Fig. 8: Computation of Expected Delay

delay can be: |tk+1−t(i)|T , |tk+2−t(i)|T , ..., |tm−t(i)|T , |t1−
t(i)|T , ..., |tk − t(i)|T , where |t1 − t2|T is the modular delay

and is defined as

|t1 − t2|T =

{

t1 − t2 t1 ≥ t2;
t1 + T − t2 t1 < t2.

(3)

Besides, suppose the probability mass function (pmf) of delay

is fD(d). By contradiction, if the above lemma does not

hold, which means t(i) /∈ {t1 − 1, t2 − 1, ..., tk − 1}, then the

expected delay between node i and its’ upper level can be

reduced further by adjusting t(i). To show such decrease, we

adjust t(i) from it original position to tk+1−1. Note that such
adjustment happens within the same interval so that it would

not change the pmf of delay since the sequence of transmis-

sions maintains the same. However, the value of delay is now

reduced to |tk+1−(tk+1−1)|T , |tk+2−(tk+1−1)|T , ..., |tm−
(tk+1 − 1)|T , |t1 − (tk+1 − 1)|T , ..., |tk − (tk+1 − 1)|T . So
such adjustment can decrease the expected delay of packets

generated by node i, which contradicts our assumption.

In order to show how to select the best slot from the

aforementioned candidate time set, we use Fig. 8 to illustrate

the computation of expected delay for packet generated by

node i to reach the upper level. In Fig. 8, t1, t2, ..., tm are the

wakeup slots for node i’s neighbors. Suppose node i select one
of slot t(i) = tk+1 − 1 from its candidate set. Since a packet

from node i (no matter the packet is generated by itself or

forwarded from its children) can only generated at t(i), so node
i would try to send the packet to neighbor k+1 first. Then the

probability for such packet to be delivered successfully at the

first attempt is p1 = qk+1, where qk+1 denotes the link quality

from node i to neighbor k + 1. If the first attempt fails, then

node i would try neighbor k + 2 subsequently. Generally, the

probability Pr(n) that the packet transmission by node i fails
at the first n− 1 times while is successful at the nth attempt

is:

Pr(n, k) =

n−1
∏

j=1

(1− qk+j)qk+n (4)

where suppose node i selects neighbor k + 1 to pipeline, that

is t(i) = tk+1 − 1.
Small probability event may happen when the first Rmax all

fails. In this case, the packet would be dropped by node i. Note
that the probability for the packet is transmitted successfully

at the nth attempt is under the condition that the packet is

delivered successfully within Rmax attempts. The conditional

probability can be represented as:

Pr(n, k)Cond =

∏n−1
j=1 (1− qk+j)qk+n

1−
∏Rmax

j=1 (1− qk+j)
(5)

Fig. 8 also shows the delay value for the packet to be received

successfully. For example, delay to reach neighbor k + 1 is

d1 = tk+1 − (tk+1 − 1); delay to reach neighbor k + 2 is

d2 = tk+2 − (tk+1− 1). Generally, the delay for the packet to

be delivered successfully at the nth attempt is:

dn = tk+n − (tk+1 − 1) (6)

Thus, if node i selects neighbor k+1 to pipeline which means

t(i) = tk+1 − 1, then the expected delay for a packet from

node i to reach upper level is:

Ei(k) = ΣRmax

j=1 dj Pr(j, k)Cond (7)

Consequently, for node i, given the wakeup slots of parents,

the candidate time set can be determined by lemma 1.

However, due to the energy budget on the mote, one optimal

slot needs to be selected from the candidate time set. Then

based on Eq. 7, the expected delay for one candidate slot

can be computed, thus one traversal of the candidate set is

enough to find out the optimal slot which leads to minimum

expected delay for a packet to reach upper level. The essence

of choosing optimal slot from candidate set is to coordinate

multiple pipelines and specifically, it select one parent in the

virtual forwarding set to pipeline while ensuring the packet

could be switched as promptly as possible to another pipeline

if the former attempts fail. For the computation complexity,

Equ. 7 can be accomplished with O(R2
max). Suppose the

number of neighbors is bounded by a constant C, so the

overall complexity for the iteration through candidate time

set is O(CR2
max). Note that more candidate slots could be

selected by node i depending on local support of duty cycle.

D. Avoid Simultaneously Wakeup Parents

1) Simultaneous Wake-Up: Section V-C has gone through

the procedure of propagative scheduling. This section tackles

some practical issues and presents optimization on propagative

scheduling in a further step.

One phenomenon in our experiments shows that multi-

parents of the same child node could wake up simultaneously,

which may contradict the expectation to reduce sleep delay

using multi-parents forwarding. Fig. 9a gives such an example.

Node A’s virtual forwarding set consists of two nodes, node

B and node C, which wake up at the same time slot {5}.
In this case, due to simultaneously wakeup parents, node A

can only utilize one parent, either B or C, to help forward

the packet. Once the transmission fails, A has to wait for

the next working period. Whereas, if node B and node C

could wake up at different time, then A would have two

opportunities each period to catch up the pipeline. The reason

inducing simultaneous wakeup problem is because node B and

node C select their optimal time slot independently from their
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Fig. 9: Simultaneous Wakeup Parents

candidate time set, however, their candidate time set may share

the same slot. For example, in Fig. 9a, both B and C select

node E to pipeline and thus choose {5} as their wakeup slots.

2) On-the-fly Shifting: In order to avoid simultaneously

wakeup parents, we utilize a technique called on-the-fly shift-

ing. This technique can shift simultaneous wakeup slots on-

the-fly while maintaining the advantages brought by prop-

agative scheduling. Take Fig. 9b as an example, due to

simultaneous wakeup slots of B and C, node A selects one

of them to forward the packet, say, C is selected. Then when

the transmission from A to C is happening, since B is within

the communication range, so B can actually overhear such

transmission and discover the target id is not itself. As a

result, B knows there must be another node which also wakes

up at the same slot {5}. Then node B decides to back-off

and shift its schedule one slot ahead to {4} so as to remove

the overlapping of wakeup slots with other nodes. Note that

such back-off process may need continue if node B overhear

another similar transmission again at {4} and it would stop

when no overlapping exits any more. Once a node finishes

shifting, it need to advertise its children its new wakeup slot

then its children can recompute their optimal wakeup slots. In

the above example, node A is advertised and it reselects {3}
as its optimal slot.

VI. SIMULATION AND EVALUATION

In this section, we provide the performance results of our

proposed RMS algorithm under numerous network settings. In

order to show the efficiency of our design, we also compared

RMS with two other baseline solutions:

• Single Pipeline: In order to show the fragility of

traditional staggered wakeup scheduling (or streamline

scheduling) and the efficiency of RMS in reducing the

end-to-end delay, we implement single pipeline schedul-

ing design in which each node has only one forwarder

(with best link) and the wakeup slots along the forwarding

path are pipelined as proposed in [7] [9].

• RMS-Random: Section V-C gives the design on the

selection of wakeup slot from limited candidate set,

which essentially coordinates the schedule among mul-

tiple pipelines. We also implement a second baseline

design called RMS-Random which randomly selects

wakeup slot from the candidate set instead of selecting

the optimal slot based on computation given by Eq. 7.

A. Simulation Setup

We deploy a large number of nodes in a 200m × 200m
square field and randomly generate the network topology. The

network size varies from 200 to 600 nodes and the sink is

placed in the center of the field. The links among nodes are

simulated according to the radio model proposed in [12]. For

each simulation setting, statistical results are collected from

50 runs with different seeds. Each node sends 50 packets to

the sink in the phase of data collection and average data is

reported in the next section.

B. Performance Evaluation

This section compares end-to-end delivery latency, energy

consumption per packet and packet delivery ratio among RMS,

RMS-Random and Single Pipeline under different network

configurations.

1) Impact of Network Size: In order to show the impact

of network size and scale of data gathering topology on our

design, we simulate RMS under different number of nodes and

length of field. We change the total number of nodes from 200
to 600 while expanding the length of field from 140m to 245m
to keep similar network density.

Fig. 10a shows that RMS reduces end-to-end delay by

40% ∼ 50% compared with single pipelined scheduling

design. Such reduction mainly results from two aspects: RMS

1) switches packet transmissions among multiple pipelines by

utilizing multi-parents forwarding; 2) coordinates wakeup slots

among multiple pipelines. Also, RMS can reduce the delay

up to 23% compared with RMS-Random, which verifies the

effectiveness of selection of optimal wakeup slot based on

minimizing expected delivery delay among two consecutive

levels in the data gathering topology. For all of these three

designs, the end-to-end delay would increase as the data

gathering topology grows. Fig. 10b reports that RMS has a

little bit energy overhead compared with Single Pipeline. The

rational is that Single Pipeline design could attempt to send

packet only to the forwarder which has the best link, while

for RMS, it might also try worse links in order to switch the

packets among pipelines if a failure happens. So RMS actually

reduces the end-to-end delay by adding a little bit energy

overhead, which is admissible in time-urgent applications. We

also note the delivery ratio can maintain above 90% for all

three designs, as showed in Fig. 10c.

2) Impact of Link Quality: Previous work showed that

wireless links are dynamic over time. Fig. 11 tests the effec-

tiveness of RMS with different link quality settings. Fig. 11a

shows Single Pipe is fragile and the delay could increase

significantly when the link is unreliable, while RMS can

improve the delay performance by resorting to multiple links.

The gap between RMS and Single Pipeline becomes smaller

with better links. This is because the transmission almost

always succeed within the first several attempts. RMS would

degrade to Single Pipeline if links are all perfect. As expected

in Fig. 11b, energy cost increase with worse links due to

multiple attempts in each one-hop delivery. Fig. 11c shows the

delivery ratio can retain above 90% in a large range of links,
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Fig. 10: Network Size
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Fig. 11: Link Quality
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Fig. 12: Duty Cycle

however, for those extremely bad links, delivery ratio could

be improved further by increasing the system parameter Rmax

(recall Rmax denotes the maximum number of retransmissions

within one-hop delivery, as mentioned in section V-C).

3) Impact of Duty Cycle: Fig. 12a proves the conclusion

that the superiority of RMS over Single Pipeline design is

more outstanding when the duty cycle is extremely low. For

example, the gap between these two designs with duty cycle

equaling 0.25% is much larger than that when duty cycle

equals 1%. Fig. 12b and Fig. 12c shows the average energy

cost and delivery ratio maintain almost the same for varying

duty cycle because though duty cycle has impact on sleep

latency, it will not change the expected number of transmission

in each hop.

4) Impact of Rmax: Rmax denotes the maximum number

of retransmissions allowed in each one-hop delivery. It is the

system parameter which trades off energy cost and delivery

ratio. Higher Rmax indicates more generous tolerance on the

failure of transmissions. Fig. 13a shows RMS outperforms

Single Pipeline design by around 40% for all Rmax settings.

Higher Rmax also increases the number of packets which are

delivered successfully to the sink with large delay. Thus the

average delay increases with larger Rmax. Results in Fig. 13b

and Fig. 13c reveal that greater Rmax can be selected if high

delivery ratio of the application is required though it could

consume more energy.

VII. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

Aside from large-scale simulations, we also implemented

a prototype of RMS in our indoor TinyOS/MicaZ test-bed

with 20 MicaZ nodes. As showed in Fig. 14, the motes are

organized to engender a 4-hop network. Our experiment is

composed of several phases including neighbor discovering

and neighbor table setup, initial synchronization, link mea-

surement, multi-pipeline scheduling, low-duty-cycle operation,

packet delivery and final report to sink. Each node in the

lowest level of the data gathering tree generates 10 packets
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Fig. 13: Max Num of Retransmissions

Fig. 14: In-door Test-bed

and sends to the sink. We report the delivery latency for these

packets since they actually indicate the end-to-end delay bound

of the whole network.

B. Performance Comparison
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Fig. 15: Performance Comparison

Fig 15a reports the CDF of delivery latency for RMS and

single pipeline design. In this experiment, each time slot

is chosen as 60 milliseconds and the length of a period

is T = 200, thus each working period takes up 12s. As

Fig 15a shows, for single pipeline design, more than 40 percent

of packets have the delivery latency beyond three working

periods. This is due to broken pipeline and interrupted data

forwarding. However, if RMS is applied, around 60 percent

of packets can be delivered to the sink within one period

because not only packets could be switched among different

pipelines to handle a broken pipeline, but also these parallel

pipelines are coordinated to reduce expected delivery latency.

Fig 15b presents the number of transmissions required for

these packets to be delivered to the sink. This figure verifies

our conclusion that single pipeline is always fragile in reality

since only 20 percent of packets can be delivered with four

transmissions (the maximum hop count in our test-bed is four).

As showed, although RMS could induce a little bit energy cost

due to occasional attempts of transmissions on certain bad

links, such overhead is almost tolerable especially considering

the benefit gained in the performance of delivery latency.

VIII. CONCLUSION

Unreliable links would cause staggered wakeup scheduling

or streamline scheduling design ineffective in data collection

due to the fragility of pipeline. To overcome this realistic chal-

lenge and reduce the end-to-end delivery latency, we propose

robust multi-parents scheduling (RMS) algorithm which com-

bines the pipeline feature with the advantage of multi-parents

forwarding. RMS can coordinate multiple pipelines and switch

packet transmissions timely among different pipelines to re-

duce standby time. To evaluate the effectiveness of our design,

we conduct large-scale simulations and in-door experiments

showing that RMS can reduce the end-to-end delivery latency

by around 40% ∼ 50% within tolerable energy overhead.
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