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Abstract

Greedy Maximal Scheduling (GMS) is an attractive low-complexity scheme for scheduling in wireless networks.

Recent work has characterized its throughput for the case when there is no fading/channel variations. This paper

aims to understand the effect of channel variations on the relative throughput performance of GMS vis-a-vis that

of an optimal scheduler facing the same fading. The effect isnot a-priori obvious because, on the one hand, fading

could help by decoupling/precluding global states that lead to poor GMS performance, while on the other hand

fading adds another degree of freedom in which an event unfavorable to GMS could occur.

We show that both these situations can occur when fading is adversarial. In particular, we first define the notion

of a Fading Local Pooling factor (F-LPF), and show that it exactly characterizes the throughput of GMS in this

setting. We also derive general upper and lower bounds on F-LPF. Using these bounds, we provide two example

networks - one where the relative performance of GMS is worsethan if there were no fading, and one where it is

better.

Index Terms

Local Pooling factor, Greedy Maximal Scheduling, Throughput Region, Channel Fading.

I. INTRODUCTION

This paper analytically investigates the effect of fading on the throughput performance of a natural and popular

scheduling algorithm: Greedy Maximal Scheduling (GMS) [12], [4], [3], [5]. As with any scheduling algorithm,

GMS is a way to determine which wireless links can transmit atany given time, based on their mutual interference

characteristics and their current level of fading. In particular, GMS involves first associating a weight with each

This work was partially supported by NSF Grants CNS 1017549,0963818, and 0721380. An earlier version of this paper appears in the

Proceedings of IEEE Infocom, Orlando, FL, March 2012 [13].
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link – which depends on the load of the link and its channel condition. Then, GMS involves iteratively turning on

the heaviest link that does not interfere with links alreadyturned on. This is repeated every time slot.

GMS has empirically shown to have very good throughput and delay performance; recent theoretical advances

[8], [5], [15], [1], [7], [10] characterize its throughput.All of these works assume that there is no fading; ie that

the rate a link can support is invariant as long as all the links that interfere with it are not simultaneously on. Our

work investigates what happens to this performance in the more realistic setting with intrinsic channel fading as

well. In particular, we compare the relative throughput of GMS as compared to that of an optimal scheduler.

Our results demonstrate that the effect of fading is quite subtle; in particular, in some instances fading can

degrade the relative performance of GMS, while in other cases it can improve it. The former reflects the fact that

fading provides an extra degree of freedom and complexity inthe system, which GMS may not be able to handle

as well as in a system without this fading. The latter reflectsthe, perhaps more subtle, fact that the sub-optimality

of GMS (even without fading) is tied to the existence of special global system configurations that result in poor

performance. The presence of fading “breaks up” these global configurations – not allowing them to occur too

often – allowing GMS to perform relatively better.

Specifically, our contributions are as follows: For a given wireless network with fading channels,

1) We define a new quantity, called Fading-Local Pooling Factor (F-LPF), analogous to LPF defined in [5]

that characterizes the performance of Greedy Maximal Scheduling (GMS) in wireless networks with fading

channels. Furthermore, we show that Fading-LPF is a lower bound on the fraction of throughput that can be

stabilizable by the GMS when the arrivals and channels are independent and identically distributed over time.

2) With arbitrary arrival and channel state process, we showthat Fading-LPF is an upper bound on the fraction

of throughput that can be stabilizable by the greedy schedule. More specifically, we construct an adversarial

arrival and channel process with long term averages that lieoutside the scaled throughput region and show

that GMS policy cannot stabilize the queues.

3) We further provide lower and upper bounds on Fading-LPF that are easy to evaluate. We provide two example

networks with specific fading structure and use the derived bounds to demonstrate that fading can either

enhance or degrade the relative performance of GMS as compared to the non-fading scenario.

4) With fading, we can represent the channel model as a collection of global channel-states, where each state

is associated with an independent set and an occurance probability. A natural question that arises is the

following: Is the acheivable rate-region with fading simply the (channel-probability weighted) average of the

per-statescaledrate regions, with the scaling parameter simply being the conventional LPF for each state?

We show that this is in general not true. However, we derive a region thatcan be stabilized by the GMS in

wireless networks with fading channels. This region is characterized based on the interference degree of the

subgraphs (generated from original network) and the fadingdistribution.
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A. Related Work:

Transmission scheduling has been a key challenge in modern wireless systems. The MaxWeight algorithm,

proposed in [14], has been the inspiration for many approaches to address this in various wireless systems (see [4]

for several variants). However, this algorithm suffers from centralization as well as computational complexity.

Thus, there has been significant research in finding sub-optimal (i.e., achieving a subset of the throughput region)

distributed scheduling algorithms with low complexity. The authors in [12] propose one such policy called Greedy

Maximal Scheduling, whose time complexity is linear in the number of links, and has a distributed implementation

[8]. There are other sub-optimal, randomized algorithms that have been proposed with similar performance as GMS

[11], [6].

The authors in [3] have been the first to study the performanceof GMS under a general interference model.

They have identified conditions (so called ’Local Pooling’)under which there is no loss in the network throughput

region with GMS. The notion of Local Pooling has been extended to a multi-hop regime by [15].

This condition being identified as too restrictive, the authors in [5] have defined a new quantity called Local

Pooling Factor (LPF) that exactly characterizes the fraction of throughput region achieved by GMS, and show that

over tree networks with aK−hop model for interference, GMS achieves the entire throughput region. Additional

characterizations, including a per-link LPF [9] and boundsto characterize the stability region [10], have been

proposed in literature.

The authors in [1] exactly characterize, using graph theoretic methods, the set of network graphs (with only the

primary interference constraints) where GMS is optimal (LPF = 1). Finally, the authors in [7] have studied the

performance of GMS with the SINR interference model, and have shown that GMS exhibits zero LPF in the worst

case.

All the above results assume that there are no channel variations (fading). In this paper, we study the effect of

channel variation on the performance of GMS.

II. SYSTEM MODEL AND BACK GROUND

We consider a wireless network consisting ofK links labeled as{1, 2, 3, ...,K}. Let K denote the set of links

in the network. Each linkl consists of a transmitter and receiver. We assume time to be slotted. Each time slot is

composed of two parts. The first (control) part is reserved for making the transmission decision and second part

for transmitting the packet. At time slott, we denote the channel capacity of link byCl[t]. We assume that the

capacity varies from slot to slot, and is constant during a time slot. We consider collision interference/protocol

model and denote the set of links that interfere with linkl by Il. We say that the transmission on linkl at time t

is successful, if no link in theI l transmits during the same timet. The maximum number of packets that can be

successfully transmitted in time slott on link l is bounded byCl[t].

We assume single hop flows in the network. LetAl[t] denote the number of packets that arrive at transmitter of

link l at time slott. We assume that arrival processes is bounded and average rate of arrivals for linkl is denoted
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by λl.

For simplicity we first consider ON/OFF channels (i.eCl[t] = 0or1) and later show that our results can be

extended to channels with finite number of channel states. For the ON/OFF setting, global state (GS) refers to

specifying the set of links that are in ’ON’ state. LetGS(t) denote the set of links that are in ’ON’ state in time

slot t. Let π(J) denote the fraction of time the network is in global channel stateJ , where links in setJ are ’ON’

and links in the setK\J are in ’OFF’ state. Letπ := {π(J), J ⊂ K} denote thefading structure.

Assumptions. :

A1 (Long-term Averages):We assume that the long-term time averages of arrivals and channel states satisfy the

following:

1

T

T
∑

t=0

Al[t] → λl as T → ∞. (1)

and
1

T

T
∑

t=0

1GS(t)=J → π(J) as T → ∞. (2)

A2 (Randomness):We assume that arrivals are mutually independent i.i.d processes withλl = E[Al[t]]. Similarly

the channels are independent across time and form a stationary process withπ(J) = E[1GS(t)=J ].

While both assumptions A1 and A2 specify the same long-term averages, we note that assumptions in A1 allow

for arrival and channel state processes to bedependent across time and across linksin a deterministic, and possibly

adversarial manner. The necessity for the above sets of assumptions will be clear as we state our main results in

Section III.

A. Preliminaries

As discussed earlier, there is a rich history of analysis of GMS algorithms for the non-fading case [3], [5], [9],

[10], [1], [7]. In this section we build on this notation in literature to allow for time-varying (fading) channels.

We define Interference graphIG for a set of links as follows: Each link is represented by a node and an edge

is drawn between two nodes if transmissions on the corresponding links in the original graph interfere with each

other. This model captures many existing wireless models and is quite general. We define the Independent set on

this graph as set of nodes with no edges between them. LetQl[t] denote the number of packets present at the

transmitter at timet waiting to get scheduled on linkl. Let Sl[t] ∈ {0, 1} denote the schedule decision for linkl at

time t. At each timet, a schedule~S[t] is determined based on the global queue state and channel state information

at timet, that is( ~Q[t]), ~C[t]). We also assume that arrivals occur at the end of time slot, thus we have the following

queue dynamics:

Ql[t+ 1] = (Ql[t]−Cl[t]Sl[t])
+ +Al[t], (3)

wherea+ = max(0, a).
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Given the arrival traffic rate{λl}l∈L and a scheduling policy, we say that the network isstableunder scheduling

policy if the mean of the sum of queue lengths is bounded. We say that an arrival rate vector{λl}l∈L is supportable

if there exists any scheduling policy that can make the network stable. We call the set of all arrival vectors that

are supportable bythroughput regionand denote it asΛf , wheref denotes that the channels are fading.

We say that a scheduling policy is throughput optimal if it can stabilize the network for all arrival rates inside

the throughput region.

Definition 1: ([5]) The interference degreedI(l) of link l is the maximum number of links in the set{l∪Il}that

can be active at the same time with out interfering with each other. The interference degreedI(G) of a graph

G = {V,E} is the maximum interference degree across all its links inE

Consider a wireless system with 4 links. LetI1 = {2}, I2 = {1, 3, 4}, I3 = {2, 4} and I4 = {2, 3}. The

interference graph is shown in theFigure 1with the correspondingdI(l). The interference degree of this example

graph is 2.

3 4

2

d (1) = 1

d (2) = 2I

I

I

1

d (3) = 1

Fig. 1. Interference Graph where nodes denote the links and edges denote the interference constraints.

Definition 2: Given an interference graph, an independent set corresponds to set of nodes (links in the original

graph) such that there is no edge between any two nodes in the set (no two links interfere in the original graph).

Further, it is maximal if it is not a subset of any other independent set. For a set of linksL, define a matrixML

whose columns represent the maximal independent sets on thesetL, with |L| rows one for each link. We assume

links are naturally ordered and rows inML are assigned according to the defined order. ForJ ⊂ L, let MJ,L denote

the matrix with|L| rows and is constructed fromMJ as follows: columns fromMJ are used and zero row vectors

are added for links which do not belong to setJ. Let CH(MJ,L) denote the convex hull of all column vectors of

matrix MJ,L.

For the above example with 4 links, letJ = {1, 2, 3} andL = {1, 2, 3, 4}, we have

MJ =











1 0

0 1

1 0










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and

MJ,L =

















1 0

0 1

1 0

0 0

















Note that the setΛL := {~λ : ~λ < ~µ; ~µ ∈ CH(ML)} characterizes the throughput region of set ofL links if no

fading were present. We now define the throughput region withthe fading structure,

Definition 3: The throughput regionΛf for a given network with fading patternπ(J) is described as follows,

Λf =
{

~λ : ~λ > 0, ~λ ≤
∑

J

π(J)~ηJ where~ηJ ∈ CH(MJ,K)
}

.

Definition 4: ([5]) The efficiency ratioγ∗pol under a given scheduling policy is defined as follows,

γ∗pol = sup
{

γ : the policy can stabilize for allthe arrival rate vectorsλ ∈ γΛf

}

.

Definition 5: Givenx(J) ∈ [0, 1], we define a new regionΛf (~x) as follows,

Λf (~x) =
{

~λ : ~λ > 0, ~λ ≤
∑

J

x(J)π(J)~ηJ where~ηJ ∈ CH(MJ,K)
}

.

Note that throughput region is same asΛf (1).

B. GMS Algorithm [12]

We now describe the Greedy Maximal Scheduling(GMS) Algorithm. GMS essentially finds a maximal schedule

in a greedy fashion. Each node in the interference graph is assigned weight equal tof(Ql(t)Cl(t)), wheref(.)

is a strictly increasing function that is zero at0 and tends to infinity asQl(t)Cl(t) → ∞. It then proceeds as

follows: it finds the node with maximum weight in the whole network and adds it to GMS schedule (ties are

broken arbitrarily), it further discards all the neighboring nodes along with the selected node and repeats the above

procedure on the reduced graph, till there are no more nodes left in the interference graph.

III. M AIN RESULTS

In this paper, we characterize the performance of GMS algorithm for wireless networks with time-varying

channels. We define the fading local pooling factor,σ∗
L(π), for a set of linksL(⊆ K) with fading structureπ

as follows:

σ∗
L(π) = inf{σ : ∃ ~φ1, ~φ2 ∈ Φ(L) such thatσ ~φ1 ≥ ~φ2}, (4)

where,

Φ(L) = {~φ : ~φ =
∑

J :J⊆K

π(J)~ηJ where~ηJ ∈ CH(MJ∩L,L)}, (5)

andFading-Local Pooling Factor (F-LPF)for a networkG, σ∗
G(π), with fading structureπ as follows:

σ∗
G(π) = minL:L⊆Kσ

∗
L(π), (6)
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Note that the above definition reduces to the known definitionof LPF for a graph [5] when there is no fading,

i.e, whenπ(K) = 1.

The F-LPF can be understood as follows: Consider arrivals only to links of setL (assume arrivals to other links

are 0); when the links in setJ are ’ON’ (others are ’OFF’), GMS will pick a maximal scheduleamong the ’ON’

links, i.e. a column ofMJ∩L,L. Thus vector~ηJ is the long run average of these maximal schedules when system

is in stateJ ; so~ηJ ∈ CH(MJ∩L,L). ThusΦ(L) is the set of all long-run average service vectors that couldappear

due to GMS when the arrivals are restricted only to set of links in L. For any two vectors~φ1, ~φ2 ∈ Φ(L), it may

thus happen that GMS results in~φ2 service vector, when it should have been~φ1 (for the optimal case). Thusσ∗
L(π)

is the worst possible ratio difference among all the possible service vectors ofΦ(L).

Dual Characterization and Implications: In the same spirit as [3], [9], theFading- Local Pooling Factor has a

dual characterization, as noted in Lemma 3, and displayed below. The F-LPF,σ∗
L(π), is given by the solution to

the following optimization problem:

σ∗
L(π) = max

x,a(J),b(J)

∑

J :J⊆L

πL(J)a(J) (7)

s.t : x′MJ,L ≥ a(J)e′ ∀J ⊆ L

x′MJ,L ≤ b(J)e′ ∀J ⊆ L
∑

J :J⊆L

πL(J)b(J) = 1, (8)

where e is a column vector of all ones,(·)′ is the vector transposition operation andπL denotes the marginal

distribution on set of linksL induced byπ.

Observe that each fading stateJ inducesa network defined by ON edges (i.e., all OFF links are removed from

the network). Thus, one could ask if with fading channels, the F-LPF can be determined simply by computing

the “standard” LPF (denoted byσ∗(J)) for each of these induced networks, and then averaging these quantities

(weighted by the steady-state fractions of times for each ofthe fading states) over all possible fading states? In

other words,is the following true?

σ∗
L(π)

?
=
∑

J :J⊆L

πL(J)σ
∗(J)

whereσ∗(J) is the standard LPF [5] for the network that is induced by state J.

An important insight that emerges from the dual characterization is that suchaveraging does necessarily not

hold, in particular because the possibly adversarial nature of the fading channel does not permit averaging. Note

that the adversarycannotchange the long-term fractions of the global states – it can merely change the temporal

correlations. Inspite of this, averaging does not hold, as clearly shown in Example B in Section III-B).

In a tree network with fading as in Example B (see Section III-B), while the LPF for each state is ’1’, the F-LPF

is less than4/5 which is lower thanany convex averaging of the states! This discussion implies that the regular
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LPF does not immediately extend to the case with fading. Thismotivates us to explicitly develop the local pooling

factor in the presence fading, and understand its implications.

Contributions:

A. Characterization in terms of F-LPF:

Our first contribution, Theorem 1, characterizes the efficiency ratio of GMS algorithm in the presence of fading.

Theorem 1. a) (Upper Bound) Under a given network topology and channel state distribution with Assumption

A1 on the arrivals and fading channels, the efficiency ratio of GMS (γ∗) is less than or equal toσ∗
G(π).

b) (Achievability) Under a given network topology and channel state distributionπ with Assumption A2 on the

arrivals and fading channels, the efficiency ratio of GMS (γ∗) is greater than or equal toσ∗
G(π).

Implications: The above result enables us to understand the performance ofGMS compared to the optimal

scheduler in the presence of fading. In particular, computing bounds onσ∗
G(π) leads to insights on the positive

and negative aspects of fading (discussed further in Theorems 2 and 3). Observe first that as long as the long-term

averages on the arrivals and channels are satisfied (Assumption A1), we can construct an arrival and channel process

that ensures that the efficiencycannotexceed the F-LPFσ∗
G(π). Further, fortypical arrival and channel processes

with sufficient randomness (in this paper i.i.d. assumptions have been imposed, however this can be weakened),

the converse holds whereinσ∗
G(π) is achievable.

Proof Discussion:For the first part, we extend the ideas in [5], to construct an adversarial arrival andfading

process pattern when arrival rates are outside the(σ∗
G(π) + ǫ)Λf and show that a set of queues are unstable

under GMS policy. For the second part, we use the approach in [3], [5] as follows: we show that if~λ is inside

(σ∗
G(π) − ǫ)Λf then GMS policy can stabilize all the queues in the network. We look at the deterministic fluid

limit of the system and exhibit a Lyapunov function whose drift is negative under the GMS policy. We have that

fluid model is stable and therefore that the original system is stable.

Theorem 2 (Upper Bound). For everyJ ⊆ K and any(~µJ , ~νJ ,HJ) such that~µJ , ~νJ ∈ CH(MJ), ~νJ ≤ HJ~µJ , we

have that

σ∗
G(π) ≤ maxl

∑

J⊆K π(J)HJµJ(l)
∑

J⊆K π(J)µJ(l)
,

whereµJ(l) = 0 if l /∈ J.

Implications:While σ∗
G(π) is defined only though an optimization problem, the upper bound permits an explicit

solution. This bound is useful, as evidenced in Example B provided in Section III-B. In particular this upper bound

is useful to illustrate that the F-LPF is not a simple convex combination of the standard LPF averaged over the

fading states, and that adversarial fading can indeed worsen the performance of GMS.

Proof Discussion:Though the proof follows from straightforward algebraic computations, the value of the theorem

lies in the smart selection of(~µJ , ~νJ ,HJ) vectors that satisfy the inequality stated in the above theorem. In the
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worst case the bound yields 1; however we can use the existingresults in literature [1] to get good bounds. Thus,

the tightness of the upper bound depend up on the ability to identify good vectors that satisfy the above constraints.

Theorem 3 (Lower Bound).

σ∗
L(π) ≥

∑

J⊆L πL(J)n(MJ)
∑

J⊆L πL(J)N(MJ )
, (9)

wheren(M) = minj
∑

iMij , N(M) = maxj
∑

i Mij. πL denotes the marginal distribution on set of linksL

induced byπ and can be computed as follows,

πL(J) =
∑

I:I⊆K,I∩L=J

π(I)

.

Implications: The ability to compute a lower bound leads to the interestingobservation that fading can help

improveefficiency. This is because, by turning links ’OFF’, fading “breaks up” some of the bad global states that

can lead to poor GMS performance. This is explicitly broughtout in Example A in the context of a six-link network.

Proof Discussion:The lower bound is derived using the dual formulation of the F-LPF, see (7). We find a point

in the dual search space that satisfies all the constraints inthe dual characterization, thus yielding a lower bound

on the primal problem. Observe thatn(MJ) corresponds to the minimum number of links that needs to be ’ON’

in any maximal schedule on set ofJ links andN(MJ ) denotes the maximum number of links that could be ’ON’

among all the maximal schedules on set ofJ links. Thus, the lower bound can be computed easily and can be

shown to be tight for some wireless networks. As an interesting aside, note that the lower bound provided is always

better than the inverse of the interference degree of graphG (see Corollary 1).

We now present two examples: A and B, one in which fading reduces the relative performance of GMS and the

other in which fading enhances the relative performance of GMS respectively to illustrate the value of the above

results.

B. Examples: Benefit and Detriment with Fading

Example A: A network where fading structure improves the relative performance of GMS: Consider a graph

with six links K = {a, b, c, d, e, f}. The interference graph for the six links is shown in the Figure III-B. Each

link is either is state ’ON’ or ’OFF’. We consider the following fading structure,π, for J ⊆ K

π(J) = p|J |(1− p)6−|J |,

where|J | denotes the size of setJ . Note thatp = 1 corresponds to the no-fading case.

Using our results, we compute the lower bound and upper bounds on local pooling factorσ∗
G(π) and is plotted

in Figure III-B.

It is known [5] that the non-fading LPF for the above example is equal to 2/3. From the graph, we observe

that for smaller values ofp, F-LPF for above hexagon network with fading is greater thanLPF with out fading
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Fig. 2. Interference graphs for the two example networks
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Fig. 3. Bounds on the fading local pooling factor for the Hexagon network

structure. As p tends to zero, the fraction of time network remains a cycle also tends to be small and it is known

that GMS is optimal for tree networks. Therefore, it fits wellwith intuition to see that fading enhances the F-LPF

for graphs with cycles.

Example B: A network where fading structure worsens the relative performance of GMS: Consider the graph

with 3 links a, b, c as shown above. The interference sets for each link is:Ia = {b},Ib = {a, c}andIc = {b}. We

assume each link is either in state ’ON’(1) or ’OFF’(0). So the global channel state′110′ denotes that linka and

b are in ’ON’ state and linkc is in ’OFF’ state. The fading structure is defined as follows:π(′110′) = π(′011′) =

π(′111′) = 1/3.

For each global channel state, the possible maximal independent sets are as follows:
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Mab,abc =











1 0

0 1

0 0











and

Mbc,abc =











0 0

1 0

0 1











and

Mabc =











1 0

0 1

1 0











Any vector that belongs toΦ({abc}) can be represented as follows,

~φ =
1

3
Mab[α 1− α]′ +

1

3
Mbc[β 1− β]′ +

1

3
Mabc[γ 1− γ]′. (10)

Let ~φ1 be obtained using(α, β, γ) = (1, 0, 0) and ~φ2 be obtained using(α, β, γ) = (1/2, 1/2, 3/4). Evaluating

the above expression using the above values, we have~φ1 = 1
3 [1 1 1]

′ and ~φ2 = 5
12 [1 1 1]

′. Observing the fact that

4
5
~φ2 = ~φ1, using Theorem 2, we have that local pooling factor for the wireless network with the above fading

structure is less than or equal to45 . But, it is known that the local pooling factor of GMS for treenetworks (with

no fading) is 1.

This result though sounds counter-intuitive, stems from the fact that we allow the fading to be arbitrary. Thus

fading can act as adversary and as demonstrated, can degradethe performance of GMS algorithm.

C. Characterization in terms of Interference degree

So far, we have characterized the performance of GMS througha single scaling factor of the entire throughput

region. Note that each fading stateJ induces a network defined on the set of edges that are in ’ON’ state and

GMS can stabilize the network if arrivals are inside the region σ∗(J)ΛJ . It is natural to ask for the fading scenario,

i.e. network with distributionπ(J), if GMS could stabilize the region
∑

J π(J)σ
∗(J)ΛJ? We answer the above

question in two parts.

In the first part, we show the interesting result thatGMS cannot stabilizethe above averaged region. In other

words, there exists an arrival process with rate outside theregionΛf (~x) for x(J) = σ∗(J) (standard LPF) that can

make the network unstable under GMS algorithm. We illustrate this using a simple example described below.

Counter Example: Consider the network with 3 nodes as in Example B. Note that the standard LPF [1] for all the

three fading states is1. Thus the regionΛf (σ
∗(J)) is exactly same as the actual throughput regionΛf . However,
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we have shown earlier that F-LPF is strictly less than0.8. Thus there exists an arrival process with rates outside

the region0.8Λf that cannot be stabilized by the greedy maximal schedule.

Given the previous negative result, in the second part we show that GMS can stabilize the regionΛf (
1

dI(J)
).

Note that this region is strictly inside the regionΛf (~x) with x(J) = σ∗(J). More formally, our result is as follows:

Theorem 4. Under a given network topology and channel state distribution with Assumption A1 on the arrivals and

fading channels, GMS can stabilize the network if the arrival rates are inside the regionΛf (~x), wherex(S) = 1
dI(S)

.

Implications:The above theorem provides an elegant characterization of the rate region that can be stabilizable

by the GMS algorithm. Also, we find that that the above region is not a subsetof the achievable region stated in

Theorem 1b (i.eσ∗
G(π)Λf ). We illustrate the above observation through a simple example described below.

Consider the wireless network with 3 nodes and fading distribution similar to example B. Note that the interference

degree for fading state′110′ is dI(
′110′) = 1, for state′011′ is dI(

′011′) = 1 and for the fading state′111′ is

dI(
′111′) = 0.5. Any arrival rate vector that belongs to the new region definedusing the interference degree can

be expressed as below,

~λ =
1

3
Mab[α 1− α]′ +

1

3
Mbc[β 1− β]′ +

1

3

1

2
Mabc[γ 1− γ]′, (11)

whereα, β andγ are positive constants that are bounded by1. Using (α, β, γ) = (0, 1, 0), we have that rate vector

(0, 56 , 0) is inside the new region characterized by the interference degree. However, note that we have shown the

F-LPF is upper bounded by45 for example B network. Thus, all arrival rates that are inside the region45Λf satisfy

the constraint thatλ2 <
4
5 and hence rate vector(0, 56 , 0) belongs to the new region and not the region characterized

by F-LPF.

Proof Discussion:We consider the continuous time model with deterministic arrival and channel state processes.

We then exhibit a Lyapunov function, sum of squares of queue lengths, whose derivative is strictly less than zero

under the GMS policy whenever the arrival rate is strictly inside the new region. Therefore, the fluid model is

stable and thus using the results from [2] we conclude that the original network model is stable.

IV. PROOFS OFRESULTS

Theorem (1). a) (Upper Bound) Under a given network topology and channel state distribution with Assumption

A1 on the arrivals and fading channels, the efficiency ratio of GMS (γ∗) is less than or equal toσ∗
G(π).

b) (Achievability) Under a given network topology and channel state distributionπ with Assumptions A1 and

A2 on the arrivals and fading channels, the efficiency ratio of GMS (γ∗) is greater than or equal toσ∗
G(π).

Proof: The proof follows the method developed by the authorsin [5], [3] for the non-fading case; however

we have extended it to take in to account the fading structure. First, for the converse (to show instability for

arrivals outside the stability region), we explicitly construct an adversarial channel variations pattern that satisfies

the time-averages imposed by the fading assumption, and this is used in conjunction with the adversarial arrival
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process. The achievability part is more straightforward – we augment the analysis in [3], [5] to include the fluid

limit of the channel fading process.We now provide the proof more detail:

Proof (Theorem 1. a): The result follows from the following general lemma.

Lemma 1. If there exists a subset of linksL(⊆ K), a positive numberσ and two vectors~µ, ~ν ∈ Φ(L) such that

σ~µ > ~ν, then for arbitrary smallǫ > 0, there exists a traffic pattern with offered load~ν+ ǫ~eL and a fading pattern,

such that system is unstable under greedy maximal schedule.

Proof (Lemma 1): The idea of the proof is as follows – we construct a traffic pattern and channel variations

pattern with offered load~ν + ǫ~eL and show that under this traffic/channel fading pattern, thequeue lengths go to

infinity under GMS, thus making the system unstable.

As remarked earlier, this proof technique was introduced in[5], where authors only needed to construct adver-

sarial arrival process that makes the queues in the system tooverflow. However, in our setting, we need to account

for the fading process and construct both arrival and channel fading pattern that makes the network unstable.

Since~ν ∈ Φ(L), there exist vectors~wJ such that~ν can be expressed as,

~ν =
∑

J⊆L

πL(J)
(

MJ,L ~w
J
)

. (12)

Fix δ > 0, we then find a vector~rJ in the set of rational numbers,Q, such that‖~rJ − ~wJ‖ < δ.

Assume packets arrive to a link at beginning of the time slot.Let the queues of all the links inL are empty

at t = 0. Let TJ be the smallest integer such that for alli, rJi TJ is an integer. LettJi = rJi TJ . Also, there exists

integersn1, n2, ...n2L such that
∣

∣

nJTJ
∑

S:S⊆L nSTS
− πL(J)

∣

∣ ≤
δ

2L
. (13)

Let us definẽπL(J) ∈ Q as follows,

π̃L(J) :=
nJTJ

∑

S⊆L nSTS
. (14)

Using the rational quantities̃πL(J) and~rJ , we define~νr as follows,

~νr =
∑

J :J⊆L

π̃L(J)
(

MJ,L~r
J
)

. (15)

Consider a total time period of
∑

J nJTJ . We assume that channel state remains inJ state forTJ time slots

(denoted as a time frame). It is easy to observe that with the above described fading pattern, we achieve the same

channel state distribution as̃πL(J) on links of setL. We now describe the arrival pattern forTJ time slots when

the channel is in stateJ .

Assume that all the queue lengths (of links inL) are equal at the beginning ofTJ time slots. We now construct

arrival pattern that keeps the queue lengths of all links in set L equal at the end ofTJ time slots under the GMS

policy. The arrival process is as follows:
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1) The time frame ofTJ slots is further divided in totJ1 , t
J
2 , ....t|ISJ | time slots, wheretJi = rJi TJ and |ISJ |

denotes the number of columns inMJ .

2) During thetJi , i 6= |ISJ | time slots, apply one packet to each link that is ’ON’ in theith column ofMJ . For

the lasttJ|ISJ | time slots, apply one packet to each link that is ON in the lastcolumn ofMJ at the beginning

of the time slot except for the last one time slot. For the lastone time slot, with probability1− ǫ we do the

same as described before and with probabilityǫ, we apply two packets to each link that is ON in the last

column ofMJ and 1 packet to rest of links inL.

Note that the arrival process is modified compared to one proposed in [5] so as to ensure that all queues remain

equal afterTJ time slots.

It is now easy to see that at the end ofTJ time slots, all the queue lengths are equal and increase by 1 with

probability ǫ. Thus the above arrival and channel variation pattern make the system unstable under GMS schedule.

We now show that the arrival rate is same as~ν + ǫ~eL.

Let~ei denote the vector of all zeros except fori th position which is set to one. Let
∑

J =
∑

J⊆L for the remaining

part of the proof. For the constructed adversarial arrival process, the arrival rate is given by the following,

~λadv =

∑

J nJ(
∑|ISJ |

i=1 tJi MJ~ei + ǫ~e)
∑

J nJ(
∑|ISJ |

i=1 tJi )
(16)

Rewriting the above expression in terms ofπ̃L(J), we have that

~λadv =
∑

J

π̃L(J)(

|ISJ |
∑

i=1

rJi MJ~ei) + ǫ
(

∑

J

π̃L(J)

TJ

)

~e (17)

Thus we have,

~λadv =
∑

J

π̃L(J)
(

MJ,L~r
J
)

+ ǫ(
∑

J

π̃L(J)

TJ
)~e (18)

We choose small enoughδ so that the arrival rate is strictly less than~ν + ǫ~eL.

Proof (Theorem 1. b): This proof is a simple extension of that in [5], [3], however modified to include the fluid

limit arising due to the channel fading process. Thus, we have provided a detailed sketch and refer to [5], [3] for

full details.

We consider the fluid limit of the queuing process and we provide a Lyapunov function and show negative drift

under GMS schedule whenever arrival rate~λ ∈ (σ∗
G(π)− ǫ)Λf .

Consider a sequence of systems1
n
~Qn(nt) (scaled in time and space by a factor ofn), where ~Qn(.) denotes the

queue lengths of original system, satisfying
∑

Qn
l (0) ≤ n at time t = 0. Let us index the sequence of systems

by n = {1, 2, ....}. We apply the same arrival processes to all the above defined systems (i.e~An(.) = ~A(.)) and

assume that queues are served according to greedy maximal schedule. Let~An(t) and ~Dn(t) denote the cumulative

arrival and departure process of systemn up to timet.

Using the results from [2], it can be shown that the sequence of processes( ~Qn(.), ~An(.), ~Dn(.)) as n → ∞

converges to a fluid limit almost surely along a subsequence{nk} in the topology of uniform convergence over

compact sets,
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1

nk

Ank

l (nkt) → λlt, (19)

1

nk
Dnk

l (nkt) →
∑

J

π(J)
(

∫ t

0
µJ
l (s)ds

)

, (20)

1

nk
Qnk

l (nkt) → ql(t). (21)

Also, the fluid limits(ql(t), µJ
l (t)) satisfy the following equality:

ql(t) = ql(0) + λlt−
∑

J

π(J)
(

∫ t

0
µJ
l (s)ds

)

. (22)

Moreover, fluid limits are absolutely continuous, and at regular times t (i.e., those points in time where the

derivatives exist) we have the following condition satisfied:

d

dt
ql(t) =







λl − µl(t) if ql(t) > 0

(λl − µl(t))
+ if ql(t) = 0,

whereµl(t) =
∑

J π(J)µ
J
l (t) satisfies the GMS properties. LetL0 denote the set of links with the longest queues

at time t,

L0(t) =
{

i ∈ K|qi(t) = maxj∈Kqj(t)
}

(23)

Let L(t) denote the set of links with the largest derivative of queue length among the links inL0(t),

L(t) =
{

i ∈ L0(t)|
d

dt
qi(t) = maxi∈L0(t)

d

dt
qi(t)

}

(24)

Lemma 2. Under the greedy maximal schedule, the service rate satisfies ~µ(t)|L(t) ∈ Φ(L(t)), where~u|L denotes

the projection of vector onu on to set of linksL.

The proof of the above lemma is similar to one in [3], [5] and ispresented in appendix. The idea, roughly is

that, queues in the setL(t) will remain the longest for small enough amount of time pastt and GMS picks the

maximal schedule restricted to links inL(t) that are in ’ON’ state.

Since the arrival rates are strictly with inσ∗
L(π)Λf , there exists a service vector~ν ∈ Φ(L) and~ν < σ∗

L(π)Λf

such that~λ(L) ≤ ~ν, where~λ(L) is projection of arrival vector on to the setL. Given any two vectors in setΦ(L),

note that one vector never dominates the other one in all the dimensions by a factor more thanσ∗
L(π). Therefore

we have thatd
dt

maxi∈L(t)qi(t) is strictly negative when ever maxqi(t) > 0.

Let V (t) = maxql(t) denote the Lyapunov function used for the fluid system. Sincewe have a negative drift for

the Lyapunov function, using the results from [2], we have that fluid system is stable (i.e there existst0 > 0 such

that ql(t) = 0∀t > t0). Therefore from [2], we have that the queues in the originalqueuing system are stable.
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Theorem (2). For everyJ ⊆ K and any(~µJ , ~νJ ,HJ) such that~µJ , ~νJ ∈ CH(MJ ), ~νJ ≤ HJ~µJ , we have that

σ∗
G(π) ≤ maxl

∑

J⊆K π(J)HJµJ(l)
∑

J⊆K π(J)µJ(l)
,

whereµJ(l) = 0 if l /∈ J.

Proof:

Since( ~µJ , ~νJ ,HJ) satisfy the inequality,

~νJ ≤ HJ~µJ (25)

Summing over all subsets with positive scaling constantsπ(J),

∑

J

π(J)νJ (l) ≤
∑

J

π(J)
(

HJµJ(l)
)

(26)

Using the maximum constant over all the inequalities, we have the following,

∑

J

π(J)~νJ ≤
(

maxl

∑

J π(J)HJµJ(l)
∑

J π(J)µJ (l)

)

∑

J

π(J)~µJ (27)

By observing the fact that(
∑

J π(J)~νJ ,
∑

J π(J)~µJ ) belong to theΦ(K), we have the result.

Theorem (3).

σ∗
L(π) ≥

∑

J⊆L πL(J)n(MJ)
∑

J⊆L πL(J)N(MJ )
, (28)

wheren(M) = minj
∑

i Mij , N(M) = maxj
∑

i Mij and πL denotes the marginal distribution on set of linksL

induced byπ.

Proof: We first state a lemma that describes the dual problem that finds the fading Local Pooling Factor as

the optimal solution. The dual characterization of Local Pooling Factor was presented previously in [3], [9]. We

now provide such characterization for F-LPF in Lemma 3 by generalizing the arguments in [9]. In particular, the

multiple global channel states due to fading each induce a different constraint – combining all of these appropriately

while satisfying the long-term average fractions{πL(J)} results in amaxmin problem, as detailed below. This

result is used to derive the lower bound.

Lemma 3. The following optimization problem characterizesσ∗
L(π) :

σ∗
L(π) = max

∑

J :J⊆L

πL(J)a(J)

s.t : x′MJ,L ≥ a(J)e′ ∀J ⊆ L

x′MJ,L ≤ b(J)e′ ∀J ⊆ L
∑

J⊆L

πL(J)b(J) = 1
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Proof: Consider the definition ofσ∗
L(π) in (4). The corresponding optimization problem is given by:

inf σ

s.t : σ
∑

J⊆L

πL(J)MJ,L~α(J) ≥
∑

J⊆L

πL(J)MJ,L
~β(J)

‖~α(J)‖ = 1 ∀ J ⊆ L

‖~β(J)‖ = 1 ∀ J ⊆ L

~α(J), ~β(J) ≥ 0

where‖.‖ is defined as the sum of all the elements of the vector. Let us define a new variable~γ(J) = σ~α(J).

Thus, we have:

inf σ

s.t :
∑

J⊆L

πL(J)MJ,L(~β(J)− ~γ(J)) ≤ 0

‖~γ(J)‖ = σ ∀ J ⊆ L

‖~β(J)‖ = 1 ∀ J ⊆ L

~γ(J), ~β(J) ≥ 0

For the above LP, let(~x, {y(J)}, {z(J)}) denote the dual variables associated with the constraints.The dual is

given by

max
~x,{y(J)},{z(J)}

min
σ,~α(J),~β(J)

σ+

L
∑

i=1

xi

(

∑

J⊆L

πL(J)[

|ISJ |
∑

j=1

MJ
ij(β

J
j − γJj )]

)

+

∑

J⊂L

y(J)
(

~γ(J)′e− σ
)

+

∑

J⊂L

z(J)
(

~β(J)′e− 1
)

s.t:~γ(J), ~β(J) ≥ 0

Rewriting the above dual optimization problem, we have

max
~x,{y(J)},{z(J)}

min
σ,~α(J),~β(J)

−
∑

J

z(J) + σ(1−
∑

J

y(J))+

|ISJ |
∑

j=1

βJ
j

[

πL(J)

L
∑

i=1

xiM
J
ij + z(J)

]

+

|ISJ |
∑

j=1

−γJj
[

πL(J)

L
∑

i=1

xiM
J
ij + y(J)

]

s.t:~γ(J), ~β(J) ≥ 0
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Equivalently, the above program can be reduced to

max
∑

J :J⊆L

−z(J)

s.t : πL(J)x
′MJ,L + z(J)e′ ≥ 0 ∀J ⊆ L

− πL(J)x
′MJ,L + y(J)e′ ≥ 0 ∀J ⊆ L

∑

J⊆L

y(J) = 1

Denoting −z(J)
π(J) by a(J) and y(J)

π(J) by b(J) we have the desired result.

From the above Lemma 3, we have thatσ∗
L(π) is equal to,

max
x,a(J),b(J)

∑

J :J⊆L

πL(J)a(J)

s.t : x′MJ,L ≥ a(J)e′ ∀J ⊆ L

x′MJ,L ≤ b(J)e′ ∀J ⊆ L
∑

J⊆L

πL(J)b(J) = 1

Observe that( 1∑
πL(J)N(MJ )

e, n(MJ)∑
πL(J)N(MJ )

, 1) is a valid point in the search space. Substituting the point in the

above function, we have the desired inequality.

Corollary 1: σ∗
G(π) ≥

1
dI(G)

Proof: Observing the fact thatn(MJ) ≥ 1
dI(G)N(MJ) and using the above lemma, we have the desired

inequality.

Theorem (4). Under a given network topology and channel state distribution with Assumption A1 on the arrivals and

fading channels, GMS can stabilize the network if the arrival rates are inside the regionΛf (~x), wherex(S) = 1
dI(S)

.

Proof: We consider a continuous model similar to the one described in the proof of Theorem 1b. In this model,

the queuing system evolves according to the following equation,

d

dt
ql(t) =







λl − µl(t) if ql(t) > 0

(λl − µl(t))
+ if ql(t) = 0,

whereµl(t) =
∑

J π(J)µ
J
l (t) satisfies the GMS properties. In the original system with fading channels note that

the weight of GMS schedule is always greater than1
dI(S)

of the weight of the max-weight schedule whereS is

the set of links that are in ’ON’ state. Therefore in the fluid model, we can show thatµJ
l (t) satisfies the following

condition

∑

l

ql(t)µ
J
l (t) ≥

1

dI(J)
max

~ηJ∈CH(MJ,K)

∑

l

ql(t)ηJ(l).
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Let us the consider the following Lyapunov function,

V (~q(t)) =
∑

l

q2l (t). (29)

Taking the derivate of the Lyapunov function, we have that

V̇ (~q(t)) ≤ 2
∑

l

ql(t)(λl)− µl(t)). (30)

Using the GMS properties ofµl(t), we have

V̇ (~q(t)) ≤

(

2
∑

l

ql(t)λl −
∑

J

2

dI(J)
π(J) max

~ηJ∈CH(MJ,K)

∑

l

ql(t)ηJ(l)

)

(31)

As ~λ is assumed to lie inside the regionΛf (~x), there exists~ηJ ∈ CH(MJ,K) such that

λl <
∑

J

1

dI(J)
π(J)ηJ (l). (32)

Using the above inequality, we have that

V̇ (~q(t)) <

(

2
∑

l

ql(t)
∑

J

1

dI(J)
π(J)ηJ (l)−

∑

J

2

dI(J)
π(J) max

~ηJ∈CH(MJ,K)

∑

l

ql(t)ηJ (l)

)

(33)

Thus from the above inequality we have thatV̇ (q(t)) < 0 wheneverq(t) > 0.

We can now use the results from [2] to argue that the original system is stable under the assumed arrival process

as the fluid model is stable.

V. EXTENSIONS TOMULTIPLE FADING STATES

We now extend our results for ’ON/OFF’ channels to channel models where each link capacity is time-varying

and takes values from a finite state space. Let us denote the set of values in the state space by{0, c1, c2, ....., cm}.

The global stateGS(t) of the system now refers to the exact channel state of each link. Let π(X1,X2, ...,XK )

denote the fraction of time the network is in global channel state (X1,X2,X3, ....XK). Let us denote the state

(X1,X2,X3, ....,XK ) by X.

Let MX denote the matrix consisting ofK rows one for each link. Each column now represents a possible

maximal independent set on the set of links with non-zero channel states. For a given column, the entries of a

given row is set to zero if linkl (corresponding to row) does not belong to independent set, or is set to equal to

channel valueXl if it belongs to independent set. For example, consider the Interference graph in Figure 1 with

each link taking 3 channel states{0, 1, 2}. ThenM(1,2,1,0) is given by,

M(1,2,1,0) =

















1 0

0 2

1 0

0 0
















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The throughput regionΛf for the above general network model with fading patternπ(X) is given by:

Λg
f = {~λ : ~λ > 0 , ~λ ≤

∑

X

π(X)~ηX where

~ηX ∈ CH(MX)}.

We now define the F-LPF for a set of linksL as follows:

σ∗
L(π) = inf{σ : ∃ ~φ1, ~φ2 ∈ Φg(L) such thatσ ~φ1 ≥ ~φ2}, (34)

where,

Φg(L) = {~φ : ~φ =
∑

X

π(X)~ηX where~ηX ∈ CH(MXL
)}, (35)

XL is constructed fromX by setting the values of links that do not belong to setL in X to zero.

Theorem 1 can be shown to hold for the general model with the above modified definition of F-LPF. The proof

of Theorem 1 for the ’ON/OFF’ channels can be easily modified to above system with general channels and is

therefore omitted.

VI. CONCLUSION & D ISCUSSION

In this paper, we studied the problem of scheduling in wireless networks with interference constraints where the

capacity of links changes over time. We have analyzed the performance of a well-known algorithm, Greedy-Maximal

Scheduling (GMS), to the case of general wireless networks with fading structure. We defined Fading-Local pooling

factor for graphs with fading and showed that it characterizes the fraction of throughput that can be achieved by

GMS. We have derived useful yet easily computable bounds on F-LPF through alternate formulations.

By analyzing F-LPF, we have studied the effect of fading on the performance of GMS. It is a priori not clear

whether fading can enhance/degrade the relative performance of GMS. In this work, we have showed that fading

can in fact exhibit both behaviors through two simple examples, one in which fading increases the efficiency ratio

of GMS and other in which fading decreases the efficiency ratio as compared to non-fading case.
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VII. A PPENDIX

Proof: (Lemma 2)

The proof is similar to the one presented in [5] however taking in to account the channel fading. From the

definition of setL0(t) in Eqn (23), there existsǫ1 > 0 such that

qi(t) > qj(t) + ǫ1 ∀ i ∈ L0(t)andj ∈ K \ L0(t).

Using the continuous property ofql(t), we further have that, there existsǫ2 > 0, δ1 > 0 such that

min
i∈L0(t)

qi(t+ δ) > max
j∈K\L0(t)

qj(t+ δ) + ǫ2 ∀ δ ∈ [0, δ1].

SinceL(t) is contained insideL0(t), we have that, there existsǫ2 > 0, δ1 > 0 such that

min
i∈L(t)

qi(t+ δ) > max
j∈K\L0(t)

qj(t+ δ) + ǫ2 ∀ δ ∈ [0, δ1]. (36)

Also, from the definition of setL(t) in Eqn (24), there existsǫ3 > 0 such that

d

dt
qi(t) >

d

dt
qj(t) + ǫ3 ∀ i ∈ L(t)andj ∈ L0(t) \ L(t).
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Further, using the definition of derivatived
dt
q(t) ≈ q(t+δ)−q(t)

δ
, there existsǫ4 > 0, δ2 > 0 such that the following

holds. For alli ∈ L(t)andj ∈ L0(t) \ L(t), we have

qi(t+ δ)− qi(t)

δ
>

qj(t+ δ)− qj(t)

δ
+ ǫ4 ∀ δ ∈ (0, δ2]

Using the fact that queuesql(t) in setL0(t) are equal, the above inequality can be rewritten as follows.For all

i ∈ L(t)andj ∈ L0(t) \ L(t), we have

qi(t+ δ)

δ
>

qj(t+ δ)

δ
+ ǫ4 ∀ δ ∈ (0, δ2].

Thus we have,

min
i∈L(t)

qi(t+ δ) > max
j∈L0(t)\L(t)

qj(t+ δ) + ǫ5 ∀ δ ∈ (0, δ2]. (37)

From the inequalities (36) and (37), we have the following inequality, there existsδ0, δ3 > 0 such that for all

δ ∈ [δ0, δ3] we have

min
i∈L(t)

qi(n(t+ δ)) > max
j∈K\L(t)

qj(n(t+ δ)) + ǫ6. (38)

From the definition of fluid limitql(t), there existsn0 large enough such that∀n > n0 andδ ∈ [δ0, δ3], we have

that

min
i∈L(t)

Qi(n(t+ δ)) > max
j∈K\L(t)

Qj(n(t+ δ)) + nǫ7. (39)

The above inequality ensures that the links in the setL(t) have larger queue lengths compared to other links in

the network for all the time slots in[n(t+ δ0), n(t+ δ3)]. Therefore, depending up on global channel stateGS(τ),

at each time slotτ ∈ [n(t + δ0), n(t + δ3)], GMS schedule picks a maximal schedule from the set of linksL(t)

that are in ’ON’ state. LetZn
l (τ) denote the scheduling decision picked by the GMS algorithm for link l at time

slot τ . We thus have

~Zn(τ)|L(τ) ∈ MGS(τ)∩L(t),L(t). (40)

Computing the total service provided by the GMS algorithm intime slots[n(t+ δ0), n(t+ δ3)], we have

Dn
l (nt+ nδ3)−Dn

l (nt+ nδ0) =

∫ nt+nδ3

nt+nδ0

Zn
l (τ)dτ.

Let us denote the quantityD
n
l (nt+nδ3)−Dn

l (nt+nδ0)
n(δ3−δ0)

by µn
l (t). From the above equality, we have that~µn(t)|L(t) ∈

Φ(L(t)). As δ0 can be made arbitrarily small, we have the result.
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