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Abstract

Greedy Maximal Scheduling (GMS) is an attractive low-coexjty scheme for scheduling in wireless networks.
Recent work has characterized its throughput for the casmnvittere is no fading/channel variations. This paper
aims to understand the effect of channel variations on tlaive throughput performance of GMS vis-a-vis that
of an optimal scheduler facing the same fading. The effenbtsa-priori obvious because, on the one hand, fading
could help by decoupling/precluding global states thad l&m poor GMS performance, while on the other hand
fading adds another degree of freedom in which an event ardhle to GMS could occur.

We show that both these situations can occur when fadingvisradrial. In particular, we first define the notion
of a Fading Local Pooling factor (F-LPF)and show that it exactly characterizes the throughput ofSGM this
setting. We also derive general upper and lower bounds ofPF-Using these bounds, we provide two example
networks - one where the relative performance of GMS is wthrae if there were no fading, and one where it is
better.

Index Terms

Local Pooling factor, Greedy Maximal Scheduling, ThroughRegion, Channel Fading.

. INTRODUCTION

This paper analytically investigates the effect of fadimgtie throughput performance of a natural and popular
scheduling algorithm: Greedy Maximal Scheduling (GMS)][12], [8], [6]. As with any scheduling algorithm,
GMS is a way to determine which wireless links can transmérat given time, based on their mutual interference
characteristics and their current level of fading. In marttr, GMS involves first associating a weight with each
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link — which depends on the load of the link and its channelddmn. Then, GMS involves iteratively turning on
the heaviest link that does not interfere with links alre&giyied on. This is repeated every time slot.

GMS has empirically shown to have very good throughput arddydeerformance; recent theoretical advances
[8], [B], [A5], [A], [[7], [LQ] characterize its throughpudll of these works assume that there is no fading; ie that
the rate a link can support is invariant as long as all theslitiiat interfere with it are not simultaneously on. Our
work investigates what happens to this performance in theemealistic setting with intrinsic channel fading as
well. In particular, we compare the relative throughput dfi& as compared to that of an optimal scheduler.

Our results demonstrate that the effect of fading is quitetlsuin particular, in some instances fading can
degrade the relative performance of GMS, while in other gdtsean improve it. The former reflects the fact that
fading provides an extra degree of freedom and complexitjénsystem, which GMS may not be able to handle
as well as in a system without this fading. The latter refl¢iots perhaps more subtle, fact that the sub-optimality
of GMS (even without fading) is tied to the existence of spkgiobal system configurations that result in poor
performance. The presence of fading “breaks up” these plofwafigurations — not allowing them to occur too
often — allowing GMS to perform relatively better.

Specifically, our contributions are as follows: For a giveineless network with fading channels,

1) We define a new quantity, called Fading-Local Pooling &a¢E-LPF), analogous to LPF defined in| [5]
that characterizes the performance of Greedy Maximal Sdimed(GMS) in wireless networks with fading
channels. Furthermore, we show that Fading-LPF is a lowantd@n the fraction of throughput that can be
stabilizable by the GMS when the arrivals and channels atependent and identically distributed over time.

2) With arbitrary arrival and channel state process, we stiaw Fading-LPF is an upper bound on the fraction
of throughput that can be stabilizable by the greedy scleeddibre specifically, we construct an adversarial
arrival and channel process with long term averages thaiuiside the scaled throughput region and show
that GMS policy cannot stabilize the queues.

3) We further provide lower and upper bounds on Fading-LRE dhe easy to evaluate. We provide two example
networks with specific fading structure and use the derivednids to demonstrate that fading can either
enhance or degrade the relative performance of GMS as ceahparthe non-fading scenario.

4) With fading, we can represent the channel model as a tiolieof global channel-states, where each state
is associated with an independent set and an occurancebjliybad natural question that arises is the
following: Is the acheivable rate-region with fading simphe (channel-probability weighted) average of the
per-statescaledrate regions, with the scaling parameter simply being theventional LPF for each state?
We show that this is in general not true. However, we derivegaon thatcan be stabilized by the GMS in
wireless networks with fading channels. This region is abtarized based on the interference degree of the

subgraphs (generated from original network) and the fadisgibution.



A. Related Work:

Transmission scheduling has been a key challenge in modeaiess systems. The MaxWeight algorithm,
proposed in[[14], has been the inspiration for many appresth address this in various wireless systems (dee [4]
for several variants). However, this algorithm suffersriroentralization as well as computational complexity.

Thus, there has been significant research in finding suloapfi.e., achieving a subset of the throughput region)
distributed scheduling algorithms with low complexity.erauthors in[[12] propose one such policy called Greedy
Maximal Scheduling, whose time complexity is linear in thember of links, and has a distributed implementation
[8]. There are other sub-optimal, randomized algorithnas tave been proposed with similar performance as GMS
(111, [6].

The authors in[]3] have been the first to study the performaic@MS under a general interference model.
They have identified conditions (so called 'Local Poolingf)der which there is no loss in the network throughput
region with GMS. The notion of Local Pooling has been extehidea multi-hop regime by [15].

This condition being identified as too restrictive, the aushin [5] have defined a new quantity called Local
Pooling Factor (LPF) that exactly characterizes the foactf throughput region achieved by GMS, and show that
over tree networks with & —hop model for interference, GMS achieves the entire thrpughegion. Additional
characterizations, including a per-link LPFE| [9] and bounidscharacterize the stability region [10], have been
proposed in literature.

The authors in(]l] exactly characterize, using graph th@omethods, the set of network graphs (with only the
primary interference constraints) where GMS is optimal KL-P 1). Finally, the authors in[[7] have studied the
performance of GMS with the SINR interference model, ancehghown that GMS exhibits zero LPF in the worst
case.

All the above results assume that there are no channel ieasaffading). In this paper, we study the effect of

channel variation on the performance of GMS.

Il. SYSTEM MODEL AND BACK GROUND

We consider a wireless network consisting#flinks labeled ag1,2,3, ..., K'}. Let K denote the set of links
in the network. Each linK consists of a transmitter and receiver. We assume time tdoltecs Each time slot is
composed of two parts. The first (control) part is reservadniaking the transmission decision and second part
for transmitting the packet. At time slet we denote the channel capacity of link By[t]. We assume that the
capacity varies from slot to slot, and is constant duringnaetislot. We consider collision interference/protocol
model and denote the set of links that interfere with linky 7;. We say that the transmission on lidlat time¢
is successful, if no link in the; transmits during the same tinte The maximum number of packets that can be
successfully transmitted in time sloton link [ is bounded byC;[¢].

We assume single hop flows in the network. &ft] denote the number of packets that arrive at transmitter of

link [ at time slott. We assume that arrival processes is bounded and averagef ratrivals for link! is denoted



by \;.

For simplicity we first consider ON/OFF channels (Cg[t] = 0or1) and later show that our results can be
extended to channels with finite number of channel states.tii ON/OFF setting, global state (GS) refers to
specifying the set of links that are in 'ON’ state. L@15(¢) denote the set of links that are in 'ON’ state in time
slott. Let w(J) denote the fraction of time the network is in global channales/, where links in set/ are 'ON’

and links in the sef’\J are in 'OFF’ state. Letr := {w(.J),J C K} denote thefading structure

Assumptions. :

Al (Long-term Averages)iVe assume that the long-term time averages of arrivals aaarodl states satisfy the

following:
1 T
?ZAl[t]—))\l as T — oo. (1)
t=0
and
1 T
T > 1gswes = 7(J) as T — c. 2)
t=0

A2 (Randomness)\Ve assume that arrivals are mutually independent i.i.d @sses with\; = E[A;[t]]. Similarly

the channels are independent across time and form a statigmacess withr (J) = E[lgg)—s]-

While both assumptions A1 and A2 specify the same long-terenages, we note that assumptions in Al allow
for arrival and channel state processes talbpendent across time and across lifitk& deterministic, and possibly
adversarial mannerThe necessity for the above sets of assumptions will be eleave state our main results in
SectionI].

A. Preliminaries

As discussed earlier, there is a rich history of analysis BfSGalgorithms for the non-fading cade [3]] [5]) [9],
[20Q], [, [7]. In this section we build on this notation irtdrature to allow for time-varying (fading) channels.

We define Interference graptG for a set of links as follows: Each link is represented by aenadd an edge
is drawn between two nodes if transmissions on the correipgninks in the original graph interfere with each
other. This model captures many existing wireless modetdsismuite general. We define the Independent set on
this graph as set of nodes with no edges between themQLet denote the number of packets present at the
transmitter at time waiting to get scheduled on link Let S;[t] € {0,1} denote the schedule decision for lihkat
time ¢. At each timet, a scheduleS[t] is determined based on the global queue state and chanteelrg@mation

at timet, that is(Q[t]), C[t]). We also assume that arrivals occur at the end of time slas, we have the following

gueue dynamics:

Qult + 1] = (Qu[t] — Ci[t)Si[t]) ™ + Alt], €)

wherea™ = max0, a).



Given the arrival traffic ratd \; },c and a scheduling policy, we say that the networktableunder scheduling
policy if the mean of the sum of queue lengths is bounded. \Wetsst an arrival rate vectdr\; };c . is supportable
if there exists any scheduling policy that can make the netvgtable. We call the set of all arrival vectors that
are supportable bthroughput regionand denote it ad\ s, where f denotes that the channels are fading.

We say that a scheduling policy is throughput optimal if ihcdabilize the network for all arrival rates inside
the throughput region.

Definition 1: ([5]) The interference degreg (1) of link [ is the maximum number of links in the sgtuZ; }that
can be active at the same time with out interfering with eatttero The interference degrek(G) of a graph
G = {V, E} is the maximum interference degree across all its link&'in

Consider a wireless system with 4 links. L& = {2}, 7o = {1,3,4}, Z3s = {2,4} andZ, = {2,3}. The

interference graph is shown in tegure[1with the corresponding; (/). The interference degree of this example

graph is 2.
1
d@®)=1
; d(@2)=2
d@3)=1
3 4

Fig. 1. Interference Graph where nodes denote the links dgdsedenote the interference constraints.

Definition 2: Given an interference graph, an independent set correspgonsket of nodes (links in the original
graph) such that there is no edge between any two nodes iretHes two links interfere in the original graph).
Further, it is maximal if it is not a subset of any other indegent set. For a set of links, define a matrixi/,
whose columns represent the maximal independent sets aetlie with |L| rows one for each link. We assume
links are naturally ordered and rows id;, are assigned according to the defined order.JFar L, let M ;, denote
the matrix with|LZ| rows and is constructed frod/; as follows: columns from\/; are used and zero row vectors
are added for links which do not belong to setLet CH (M ;1) denote the convex hull of all column vectors of
matrix My ..

For the above example with 4 links, Idt={1,2,3} and L = {1,2, 3,4}, we have
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and

S = O =
o O = O

Note that the sef\;, := {X P < i; i € CH(Mp)} characterizes the throughput region of setZofinks if no
fading were present. We now define the throughput region thigtfading structure

Definition 3: The throughput regior ; for a given network with fading patterm(.J) is described as follows,
Aj= {X tX>0,X <Y 7(J)ijy wherefj; € C?—L(MJJC)}.
J
Definition 4: ([5]) The efficiency ratioy,,, under a given scheduling policy is defined as follows,
Vpol = sup{y : the policy can stabilize for allthe arrival rate vectars 7Af}.

Definition 5: Givenz(J) € [0, 1], we define a new region (&) as follows,

—

Ap(F) = {)\ X >0, < 3 (J)n(J)iiy whereij; C?—L(MJJC)}.
J

Note that throughput region is same @ag(1).

B. GMS Algorithm[[12]

We now describe the Greedy Maximal Scheduling(GMS) Algonit GMS essentially finds a maximal schedule
in a greedy fashion. Each node in the interference graphsigreed weight equal tg(Q;(¢)C;(t)), where f(.)
is a strictly increasing function that is zero @tand tends to infinity a€);(¢)C;(t) — occ. It then proceeds as
follows: it finds the node with maximum weight in the whole wetk and adds it to GMS schedule (ties are
broken arbitrarily), it further discards all the neighbmyinodes along with the selected node and repeats the above

procedure on the reduced graph, till there are no more nadfiemIthe interference graph.

I1l. M AIN RESULTS

In this paper, we characterize the performance of GMS dlyarifor wireless networks with time-varying

channels. We define the fading local pooling factgf,(w), for a set of linksZL(C K) with fading structurer

as follows:
ot (w) =inf{o : 31, s € ®(L) such thatod; > ¢}, (4)
where,
o(L)={¢:6=Y_ ()i whereij; € CH(Mjnr.L)}, (5)
J:JCIKC

and Fading-Local Pooling Factor (F-LPFJor a networkG, of, (), with fading structurer as follows:

*

oc(m) = ming.pcor (m), (6)



Note that the above definition reduces to the known definitibaPF for a graph[[6] when there is no fading,
i.e, whenn(K) = 1.

The F-LPF can be understood as follows: Consider arrivallg tonlinks of setZ (assume arrivals to other links
are 0); when the links in set are 'ON’ (others are 'OFF’), GMS will pick a maximal sched@among the 'ON’
links, i.e. a column ofM ;ny, 1. Thus vectoryj; is the long run average of these maximal schedules whenrsyste
is in stateJ; soij; € CH(Mjnr,). Thus®(L) is the set of all long-run average service vectors that caploear
due to GMS when the arrivals are restricted only to set ofslimkZ. For any two vectorsp, ¢ € ®(L), it may
thus happen that GMS resultsdn service vector, when it should have beﬁn(for the optimal case). Thus; ()
is the worst possible ratio difference among all the possdiarvice vectors ob(L).

Dual Characterization and Implications: In the same spirit a$ [3][_[9], thEading Local Pooling Factor has a
dual characterization, as noted in Lemia 3, and display&mb&@he F-LPF,0; (), is given by the solution to
the following optimization problem:

or(m) = max ar(J)a(J 7
= s, S mDal )

st:a'My, >a(J)e VJCL
SL'/MJ"L <b(J)e VJCL
S ()b() = 1, (8)

J:JCL
where e is a column vector of all ones;)’ is the vector transposition operation ang, denotes the marginal
distribution on set of linkg. induced by

Observe that each fading stateinducesa network defined by ON edges (i.e., all OFF links are removeoh f
the network). Thus, one could ask if with fading channelg, FRLPF can be determined simply by computing
the “standard” LPF (denoted hy*(.J)) for each of these induced networks, and then averaging theantities
(weighted by the steady-state fractions of times for eactheffading states) over all possible fading states? In
other wordsjs the following tru@

oi(m)= Y m(J)o*(J)

J:JCL
wherec*(J) is the standard LPF[5] for the network that is induced byestat

An important insight that emerges from the dual characiion is that suclaveraging does necessarily not
hold, in particular because the possibly adversarial naturdn@ffading channel does not permit averaging. Note
that the adversargannotchange the long-term fractions of the global states — it caneiy change the temporal
correlations. Inspite of this, averaging does not hold, laarty shown in Example B in Sectidn IIB).

In a tree network with fading as in Example B (see SedtiolB)llwhile the LPF for each state is '1’, the F-LPF

is less thant/5 which is lower thanany convex averaging of the states! This discussion implies tthe regular



LPF does not immediately extend to the case with fading. Wosvates us to explicitly develop the local pooling
factor in the presence fading, and understand its imptioati

Contributions:

A. Characterization in terms of F-LPF;

Our first contribution, Theorem 1, characterizes the efficjeratio of GMS algorithm in the presence of fading.

Theorem 1. a) (Upper Bound) Under a given network topology and chantegiesdistribution with Assumption
Al on the arrivals and fading channels, the efficiency rafi@&MS ¢*) is less than or equal to ().
b) (Achievability) Under a given network topology and chelrstate distributiont with Assumption A2 on the

arrivals and fading channels, the efficiency ratio of GM8)(is greater than or equal toj, ().

Implications: The above result enables us to understand the performan@M& compared to the optimal
scheduler in the presence of fading. In particular, conmgubounds orv, () leads to insights on the positive
and negative aspects of fading (discussed further in ThesiZ2andB). Observe first that as long as the long-term
averages on the arrivals and channels are satisfied (AsgumAgd), we can construct an arrival and channel process
that ensures that the efficiencgnnotexceed the F-LPl (). Further, fortypical arrival and channel processes
with sufficient randomness (in this paper i.i.d. assumgtibave been imposed, however this can be weakened),
the converse holds whereirf,(7) is achievable.

Proof Discussion:For the first part, we extend the ideas lin [5], to construct dveesarial arrival andading
process pattern when arrival rates are outside (tjg{7) + €)A; and show that a set of queues are unstable
under GMS policy. For the second part, we use the approad]ifd] as follows: we show that if\ is inside
(o&(m) — e)Ay then GMS policy can stabilize all the queues in the network. ok at the deterministic fluid
limit of the system and exhibit a Lyapunov function whosedtds negative under the GMS policy. We have that

fluid model is stable and therefore that the original systerstable.

Theorem 2 (Upper Bound) For everyJ C K and any(jiy, vy, Hy) such thati;, 7y € CH(My), vy < Hyjij, we
have that
ngc m(J)H (1)

og(m) < max S m(Dpal) 7

wherep (1) =01if [ ¢ J.

Implications: While o, () is defined only though an optimization problem, the uppemigopermits an explicit
solution. This bound is useful, as evidenced in Example Biged in Sectio II-B. In particular this upper bound
is useful to illustrate that the F-LPF is not a simple convernbination of the standard LPF averaged over the
fading states, and that adversarial fading can indeed wdlse performance of GMS.

Proof DiscussionThough the proof follows from straightforward algebraicrquutations, the value of the theorem

lies in the smart selection dfiy, 7y, Hy) vectors that satisfy the inequality stated in the abovertireoIn the



worst case the bound yields 1; however we can use the exigmgdts in literature [1] to get good bounds. Thus,
the tightness of the upper bound depend up on the abilityentify good vectors that satisfy the above constraints.
Theorem 3 (Lower Bound)
» > gcrmr(J)n(My)
O'L(Tr) > )
>y mL(J)N (M)
wheren (M) = min; >, M;;, N(M) = max; Y. M;;. w7, denotes the marginal distribution on set of links

9)

induced byxr and can be computed as follows,

Implications: The ability to compute a lower bound leads to the interestihgervation that fading can help
improveefficiency. This is because, by turning links 'OFF’, fadingréaks up” some of the bad global states that
can lead to poor GMS performance. This is explicitly brougihitin Example A in the context of a six-link network.

Proof DiscussionThe lower bound is derived using the dual formulation of theFF, see[{l7). We find a point
in the dual search space that satisfies all the constrairtseimlual characterization, thus yielding a lower bound
on the primal problem. Observe that)M ;) corresponds to the minimum number of links that needs to B¢ 'O
in any maximal schedule on set dflinks and N (M ;) denotes the maximum number of links that could be 'ON’
among all the maximal schedules on setJofinks. Thus, the lower bound can be computed easily and can be
shown to be tight for some wireless networks. As an intemgsdiside, note that the lower bound provided is always
better than the inverse of the interference degree of g@gbee Corollary 1).

We now present two examples: A and B, one in which fading redubke relative performance of GMS and the
other in which fading enhances the relative performance MSGespectively to illustrate the value of the above

results.

B. Examples: Benefit and Detriment with Fading

Example A: A network where fading structure improves the relative performance of GMS: Consider a graph
with six links K = {a,b,¢,d, e, f}. The interference graph for the six links is shown in the Feglil-Bl Each
link is either is state 'ON’ or 'OFF’. We consider the follomg fading structures, for J C K

m(J) = pll(1 — p)=II,

where|.J| denotes the size of set Note thatp = 1 corresponds to the no-fading case.
Using our results, we compute the lower bound and upper ®ondocal pooling factoe.(7) and is plotted
in Figure[I-Bl.
It is known [B] that the non-fading LPF for the above exammeequal to 2/3. From the graph, we observe

that for smaller values of, F-LPF for above hexagon network with fading is greater th&®# with out fading
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Fig. 3. Bounds on the fading local pooling factor for the Hgoa network

structure. As p tends to zero, the fraction of time networkams a cycle also tends to be small and it is known
that GMS is optimal for tree networks. Therefore, it fits wwlth intuition to see that fading enhances the F-LPF
for graphs with cycles.

Example B: A network where fading structure wor sens the relative performance of GMS: Consider the graph
with 3 links a, b, ¢ as shown above. The interference sets for each link s= {b},Z;, = {a,c}andZ. = {b}. We
assume each link is either in state 'ON’(1) or 'OFF’(0). Se tjlobal channel staté 10’ denotes that links and

b are in 'ON’ state and link: is in 'OFF’ state. The fading structure is defined as follow§110") = 7('011") =
r('111") = 1/3.

For each global channel state, the possible maximal indkpdrsets are as follows:
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Mapape =1 0 1
0 0
and
0 0
Mpeape =1 1 0
0 1
and
1 0
Mape=1| 0 1
1 0

Any vector that belongs t®({abc}) can be represented as follows,

Q_S): é ab[Ozl—Oé]/‘F éMbc[ﬁl—B]/‘FéMabchl _7]/' (10)

Let ¢; be obtained usinga, 3,~) = (1,0,0) and ¢, be obtained usinga, 5,v) = (1/2,1/2,3/4). Evaluating
the above expression using the above values, we have fr1ay and ¢, = 2[111]. Observing the fact that
%gb} = ¢, using Theoreni]2, we have that local pooling factor for theelgss network with the above fading
structure is less than or equal go But, it is known that the local pooling factor of GMS for treetworks (with
no fading) is 1.

This result though sounds counter-intuitive, stems froen fiict that we allow the fading to be arbitrary. Thus

fading can act as adversary and as demonstrated, can degeagerformance of GMS algorithm.

C. Characterization in terms of Interference degree

So far, we have characterized the performance of GMS thraugingle scaling factor of the entire throughput
region. Note that each fading stafeinduces a network defined on the set of edges that are in 'Cdté stnd
GMS can stabilize the network if arrivals are inside the@agi*(.J)A ;. It is natural to ask for the fading scenario,
i.e. network with distributionr(J), if GMS could stabilize the regiod_ ; 7(J)o*(J)A;? We answer the above
guestion in two parts.

In the first part, we show the interesting result tie¥1S cannot stabilizéhe above averaged region. In other
words, there exists an arrival process with rate outsidedgb®n A ¢ () for z(J) = o*(J) (standard LPF) that can
make the network unstable under GMS algorithm. We illustthts using a simple example described below.
Counter Example: Consider the network with 3 nodes as in Example B. Note ttestandard LPF[1] for all the

three fading states is. Thus the region\¢(c*(.J)) is exactly same as the actual throughput regign However,



we have shown earlier that F-LPF is strictly less tlia$1 Thus there exists an arrival process with rates outside
the region0.8A; that cannot be stabilized by the greedy maximal schedule.
Given the previous negative result, in the second part wevghat GMS can stabilize the regicmf(ﬁ).

Note that this region is strictly inside the regidn (z) with z(.J) = o*(.J). More formally, our result is as follows:

Theorem 4. Under a given network topology and channel state distrioutvith Assumption Al on the arrivals and

fading channels, GMS can stabilize the network if the ainwges are inside the regiof ¢(Z), wherex(S) = dI%S)'

Implications: The above theorem provides an elegant characterizatiolneofate region that can be stabilizable
by the GMS algorithm. Also, we find that that the above reg®ndt a subsetf the achievable region stated in
Theorem 1b (i.ev/(mw)Af). We illustrate the above observation through a simple gtamdescribed below.

Consider the wireless network with 3 nodes and fading istion similar to example B. Note that the interference
degree for fading state 10’ is d;('110") = 1, for state’011’ is d;('011") = 1 and for the fading statél11’ is
d;('111") = 0.5. Any arrival rate vector that belongs to the new region definsitig the interference degree can

be expressed as below,

§= gMapfal — o] + ZMuclf 1= 6] + 55 Maely 1 =], a1
whereq, S andy are positive constants that are boundedlbWsing («, 8,~) = (0, 1,0), we have that rate vector
(0, %,0) is inside the new region characterized by the interfereregree. However, note that we have shown the
F-LPF is upper bounded bglfor example B network. Thus, all arrival rates that are iadide region%Af satisfy
the constraint thak, < % and hence rate vectdo, %,0) belongs to the new region and not the region characterized
by F-LPF.

Proof DiscussionWe consider the continuous time model with deterministitvar and channel state processes.
We then exhibit a Lyapunov function, sum of squares of queungths, whose derivative is strictly less than zero

under the GMS policy whenever the arrival rate is strictlgidle the new region. Therefore, the fluid model is

stable and thus using the results frdm [2] we conclude thabtiginal network model is stable.

IV. PROOFS OFRESULTS

Theorem (1). a) (Upper Bound) Under a given network topology and chantatksdistribution with Assumption
Al on the arrivals and fading channels, the efficiency rafi@aMS ¢*) is less than or equal to (7).
b) (Achievability) Under a given network topology and chelnstate distributionm with Assumptions Al and

A2 on the arrivals and fading channels, the efficiency rafi@GMS ¢*) is greater than or equal ta ().

Proof: The proof follows the method developed by the authof§], [3] for the non-fading case; however
we have extended it to take in to account the fading structeirst, for the converse (to show instability for
arrivals outside the stability region), we explicitly cangt an adversarial channel variations pattern that saés

the time-averages imposed by the fading assumption, asdghised in conjunction with the adversarial arrival
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process. The achievability part is more straightforward e augment the analysis inl[3].][5] to include the fluid
limit of the channel fading proces®/e now provide the proof more detail:

Proof (Theorem 1. a): The result follows from the following general lemma.

Lemma 1. If there exists a subset of links(C K), a positive numbets and two vectorgi, 7 € (L) such that
oii > v, then for arbitrary smalk > 0, there exists a traffic pattern with offered lo&d- ee;, and a fading pattern,

such that system is unstable under greedy maximal schedule.

Proof (Lemmal[l): The idea of the proof is as follows — we construct a trafficgrat and channel variations
pattern with offered load’ + e, and show that under this traffic/channel fading pattern,gineue lengths go to
infinity under GMS, thus making the system unstable.

As remarked earlier, this proof technique was introducebiih where authors only needed to construct adver-
sarial arrival process that makes the queues in the systeovedlow. However, in our setting, we need to account
for the fading process and construct both arrival and chdrfading pattern that makes the network unstable.

Since € ®(L), there exist vectorsi’ such thati can be expressed as,

7= m(J) (Mt,vaJ). (12)

JCL

Fix 6 > 0, we then find a vecto” in the set of rational number§), such that|i’ — @”|| < é.
Assume packets arrive to a link at beginning of the time dlet the queues of all the links ik are empty
att = 0. Let 7, be the smallest integer such that for al-/ T, is an integer. Let; = »/T;. Also, there exists

integersny, no, ...nor such that
nyTy

= —7m(J)| < =. 13
>s.scrnsTs i) < 2k (13)
Let us definer(J) € Q as follows,
_ nyTy
7 (J) = =——"——. 14
Using the rational quantities;, (/) and+/, we definei” as follows,
7= wn(J) (ML), (15)

J:JCL
Consider a total time period of  ; n;7;. We assume that channel state remaing/ istate for7; time slots
(denoted as a time frame). It is easy to observe that with bloweadescribed fading pattern, we achieve the same
channel state distribution as; (/) on links of setL. We now describe the arrival pattern f@y time slots when
the channel is in statd.
Assume that all the queue lengths (of linksZip are equal at the beginning @f; time slots. We now construct
arrival pattern that keeps the queue lengths of all linkseinIsequal at the end df’; time slots under the GMS

policy. The arrival process is as follows:
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1) The time frame ofl’; slots is further divided in tay, ¢, ....t;;s.| time slots, wherg; = r/T; and|157|
denotes the number of columns i ;.

2) During thet! i # |15/ time slots, apply one packet to each link that is 'ON’ in thecolumn of M ;. For
the Iastt“gSJ‘ time slots, apply one packet to each link that is ON in the ¢adtmn of M ; at the beginning
of the time slot except for the last one time slot. For the tam time slot, with probability — ¢ we do the
same as described before and with probabilityve apply two packets to each link that is ON in the last
column of M; and 1 packet to rest of links ifh.

Note that the arrival process is modified compared to one @sep in [5] so as to ensure that all queues remain

equal afterT; time slots.

It is now easy to see that at the end’Bf time slots, all the queue lengths are equal and increase bihl w
probability e. Thus the above arrival and channel variation pattern mag&esystem unstable under GMS schedule.
We now show that the arrival rate is sameias eer,.

Let &; denote the vector of all zeros except fah position which is set to one. L&t ; = ZJQL for the remaining
part of the proof. For the constructed adversarial arrivatpss, the arrival rate is given by the following,

Ko~ S (il /M + cf) 16)
S
Rewriting the above expression in terms7of(.J), we have that
1187

o= SN i) + (3 ) w7)
J =1 J
Thus we have, )
Xaav= > _7p(J) (M) +e> ”T—(Jj))é (18)
J J

We choose small enoughso that the arrival rate is strictly less thant ec,.

Proof (Theorem 1. b): This proof is a simple extension of that [ [5], [3], howeveodified to include the fluid
limit arising due to the channel fading process. Thus, weeharovided a detailed sketch and refer o [5]) [3] for
full details.

We consider the fluid limit of the queuing process and we e Lyapunov function and show negative drift
under GMS schedule whenever arrival rate (o&(m) —€)Ay.

Consider a sequence of syste%‘@"(nt) (scaled in time and space by a factormf Where@”(.) denotes the
queue lengths of original system, satisfyingQ}'(0) < n at timet = 0. Let us index the sequence of systems
by n = {1,2,....}. We apply the same arrival processes to all the above defiystdrss (i.eA"(.) = A(.)) and
assume that queues are served according to greedy maxinealde. LetA™(t) and D" (t) denote the cumulative
arrival and departure process of systemip to timet.

Using the results from [2], it can be shown that the sequerigeracesseg@"(.), A"(.), D"(.)) asn — oo
converges to a fluid limit almost surely along a subsequgmge in the topology of uniform convergence over

compact sets,
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1
—Alnk (ngt) — Nt (29)
N

t
nilenk(nkt) — ZJ:W(J)(/O ,ui](s)ds), (20)
Q) ). (21)
Also, the fluid limits (¢;(t), uf (t)) satisfy the following equality:
t
alt) = al0)+ Nt = S w()( [ 4l (s)ds). (22)
7 0

Moreover, fluid limits are absolutely continuous, and atuftagtimest (i.e., those points in time where the
derivatives exist) we have the following condition satidfie
d A — pa(t) it q(t)>0
EQl(t) = I
(N =)™ if q(t) =0,
wherey(t) = >, m(J)u (t) satisfies the GMS properties. L&ty denote the set of links with the longest queues

at timet,

Lo(t) = {i € K|qi(t) = maxexq;(t) } (23)

Let L(t) denote the set of links with the largest derivative of quearggth among the links if((¢),

L) = {i € Lo(t) Seai(t) = maer, o) ai(t)} (24)

Lemma 2. Under the greedy maximal schedule, the service rate saigfig|. ) € ®(L(t)), whered[, denotes

the projection of vector om on to set of linksL.

The proof of the above lemma is similar to one [in [3], [5] andoiesented in appendix. The idea, roughly is
that, queues in the sét(¢) will remain the longest for small enough amount of time paahd GMS picks the
maximal schedule restricted to links int) that are in 'ON’ state.

Since the arrival rates are strictly with i (w)A, there exists a service vectore ®(L) andv < o (mw)A;
such that\(L) < 7, whereX(L) is projection of arrival vector on to the sét Given any two vectors in sei(L),
note that one vector never dominates the other one in all ithergsions by a factor more tharj (7). Therefore
we have that%ma&@(t)q,-(t) is strictly negative when ever maxt) > 0.

Let V(¢) = maxg(t) denote the Lyapunov function used for the fluid system. Simeérave a negative drift for
the Lyapunov function, using the results from [2], we havat ttuid system is stable (i.e there exiggs> 0 such

that ¢;(t) = 0Vt > ty). Therefore from[[2], we have that the queues in the origmeuing system are stablem
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Theorem (2). For everyJ C K and any(jis, vy, Hy) such thati;, v; € CH(My), vy < Hyjij, we have that

J)H l
ok () < mav ngcﬂ( VH yp(1)
Zch m(J)ps (1)
wherep (1) =0if I ¢ J.
Proof:
Since (7, v, Hy) satisfy the inequality,
vy < Hyjiy

Summing over all subsets with positive scaling constat(ts),

o w(Nws) <D w (D) (Hyps (D))
7

J
Using the maximum constant over all the inequalities, weehiéne following,

q Yoym(JJ)H () .
;wum < (max L T ) ;wum

By observing the fact that)~ ; = (.J)7;, >, n(J)/is) belong to thed(K), we have the result.

Theorem (3).

ot () > ZJgL mr(J)n(My)
B > scrmL(J)N(My)’

(25)

(26)

(27)

(28)

wheren (M) = min; Y. M;;, N(M) = max; > ., M;; and 7, denotes the marginal distribution on set of links

induced byr.

Proof: We first state a lemma that describes the dual problem thas fimel fading Local Pooling Factor as

the optimal solution. The dual characterization of Locablim Factor was presented previously in [3]] [9]. We

now provide such characterization for F-LPF in Lemha 3 byegalizing the arguments inl[9]. In particular, the

multiple global channel states due to fading each inducéereint constraint — combining all of these appropriately

while satisfying the long-term average fractiofis,(/)} results in amax min problem, as detailed below. This

result is used to derive the lower bound.

Lemma 3. The following optimization problem characterize$() :

o (m) =max »  w(J)a(J)

J:JCL

st:2'Myp>a(J)e VJCL
' My, <b(J)e VJCL
> w(D)b(J) =1

JCL
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Proof: Consider the definition of} (7) in (4). The corresponding optimization problem is given by:

inf o
stio Y w(N)MyLa(J) > > w(J)MyLB(T)
JCL JCL

la(H=1 v JCL
IBHI=1 v JCL
(1), 5(J) 2 0
where]||.|| is defined as the sum of all the elements of the vector. Let fineda new variabley(J) = od(J).

Thus, we have:

inf o
st Y w()MyL(B(T) —7(J) <0
JCL

)= vV JCL
IBI=1 ¥ JCL
(1), 5(J) 2 0
For the above LP, letZ,{y(J)},{z(J)}) denote the dual variables associated with the constrdihes.dual is
given by

max min o+
Z{y( (N} 6,a(0),5())

L [1S;]

> (Y m)l ZMJ (8] =)+
i=1 JCL

> (J)(w)e—a)+

JCL

—

s.ty(J),8(J) = 0
Rewriting the above dual optimization problem, we have
- Z )+ o= y(I)+
\IS. | ’
Z B [r(J Z:pzM‘] + 2(
j=1

1S,

|
ZE: 71 mr(J jz:x
=

Z{y(J )} {Z(J)}aa(J

st7(J), B(J) > 0
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Equivalently, the above program can be reduced to

max Z —z(J)

J:JCL

S.t :WL(J)(L'/MJ,L —l—Z(J)e/ >0 VJCL

— ()’ My +y(J)e >0 VJCL

> oy) =1

JCL
) by a(J) and% by b(J) we have the desired result.
[ |
From the above Lemnid 3, we have tlgt(7) is equal to,
J)a(J
, nax J;L m(J)a(J)
st:a'My, >a(J)e VJCL
o' My <b(J)e VJCL
> wn(b(J) =
JCL
Observe tha(zﬂ(j) NG ZWL"((XIJ)(M,) 1) is a valid point in the search space. Substituting the poirthe
above function, we have the desired inequality. |

Corollary 1: o}, (m) > _d,(lG)

Proof: Observing the fact thath(M;) > ﬁN(MJ) and using the above lemma, we have the desired

inequality. |

Theorem (4). Under a given network topology and channel state distrdutvith Assumption Al on the arrivals and

fading channels, GMS can stabilize the network if the ainwges are inside the regiof ¢ (Z), wherex(S) = dI%S)'

Proof: We consider a continuous model similar to the one describélle proof of Theorem 1b. In this model,

the queuing system evolves according to the following dqoat

d o { Nt i qt)>0

@t A= m()* i a(t) =0,

where(t) = >, m(J)uj (t) satisfies the GMS properties. In the original system withifacchannels note that
the weight of GMS schedule is always greater t% of the weight of the max-weight schedule whefes
the set of links that are in 'ON’ state. Therefore in the fluiddel, we can show that/(¢) satisfies the following

condition

S an () > dzé max Z(Jz )na(l

7 UJECH (M)
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Let us the consider the following Lyapunov function,

V(@) =D a (). (29)

l
Taking the derivate of the Lyapunov function, we have that

V(a(t) <2 a(t)(n) — mlt)). (30)
1
Using the GMS properties qf;(t), we have
- 2
V(q(t) < (2 21: a(t)h - Z,: o) e ZZ: qz(t)m(l)> (31)
As X is assumed to lie inside the regidvy (), there existsj; € CH (M ) such that
23 o7, (32)
Using the above inequality, we have that
o 1 2
V(q(t)) < (QZl:QZ(t) ZJ: mﬂ@)m(l) - XJ: d[(.])ﬂ.(J) B Y Z;m(ﬂm(”) (33)

Thus from the above inequality we have thatg(t)) < 0 wheneverg(t) > 0.

We can now use the results from [2] to argue that the origipstesn is stable under the assumed arrival process

as the fluid model is stable. [ |

V. EXTENSIONS TOMULTIPLE FADING STATES

We now extend our results for 'ON/OFF’ channels to channetlef®where each link capacity is time-varying
and takes values from a finite state space. Let us denote ttoé galues in the state space B9, c1, ¢, ....., ¢ }-

The global state7S(t) of the system now refers to the exact channel state of eakhliet 7(X;, Xo, ..., Xk)
denote the fraction of time the network is in global channates(X;, X», X3,....Xx). Let us denote the state
(X1, X5, X3,...., X) by X.

Let Mx denote the matrix consisting af rows one for each link. Each column now represents a possible
maximal independent set on the set of links with non-zermokhstates. For a given column, the entries of a
given row is set to zero if link (corresponding to row) does not belong to independent sa$ set to equal to
channel valueX; if it belongs to independent set. For example, consider mierfierence graph in Figufé 1 with

each link taking 3 channel statés, 1,2}. Then M, 5 1 o) iS given by,

M 21,0 =

S = O =
o O N O
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The throughput regior ; for the above general network model with fading patte(iX) is given by:
A ={X:X>0 , X< 7(X)ijx where
X
ix € CH(Mx)}.

We now define the F-LPF for a set of links as follows:

o (7)) = inf{o : 31, ¢y € ®I(L) such thatog; > ¢a}, (34)
where,
®I(L)={d: =) m(X)ix whereijx € CH(Mx,)}, (35)
X

X1, is constructed fronX by setting the values of links that do not belong to 5dh X to zero.
Theorem 1 can be shown to hold for the general model with tlwealnodified definition of F-LPF. The proof
of Theorem 1 for the 'ON/OFF’ channels can be easily modifiecibove system with general channels and is

therefore omitted.

VI. CONCLUSION & DISCUSSION

In this paper, we studied the problem of scheduling in wagleetworks with interference constraints where the
capacity of links changes over time. We have analyzed theimeance of a well-known algorithm, Greedy-Maximal
Scheduling (GMS), to the case of general wireless netwoittsfading structure. We defined Fading-Local pooling
factor for graphs with fading and showed that it characésrithe fraction of throughput that can be achieved by
GMS. We have derived useful yet easily computable bounds-bRR-through alternate formulations.

By analyzing F-LPF, we have studied the effect of fading om plerformance of GMS. It is a priori not clear
whether fading can enhance/degrade the relative perfarenahGMS. In this work, we have showed that fading
can in fact exhibit both behaviors through two simple exaspbne in which fading increases the efficiency ratio

of GMS and other in which fading decreases the efficiency ras compared to non-fading case.
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VIlI. APPENDIX

Proof: (Lemmal2)
The proof is similar to the one presented lin [5] however tgkim to account the channel fading. From the

definition of setZLy(¢) in Eqn [23), there exists; > 0 such that

qi(t) > Qj(t) +e Vie Lo(t) andj € K \ Lo(t).

Using the continuous property @f(t), we further have that, there exists > 0,d; > 0 such that

i gi(t+0) > (E+6)+e¥5 € [0,8].
(il W H0) > a4t +0) +ea¥o € (0,01

Since L(t) is contained insidd.((¢), we have that, there exists > 0,6; > 0 such that

in ¢;(t+46) > (t+9 Vé e [0,0]. 36
Z-?Llﬁ)q( + ) jeg\fgj(t)qﬂ( +0) + €2 [0, 01] (36)

Also, from the definition of seL(¢) in Eqn [23), there exists; > 0 such that

%qi(t) > %qj(t) +es Vie L(t)andj € Lo(t) \ L(t).
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Further, using the definition of derivativ%q(t) =~ w there exists, > 0,d, > 0 such that the following

holds. For alli € L(t)and;j € Ly(t) \ L(t), we have

Gl +0) = ailt) _ a;(t+6) — g;(0)
0 0

Using the fact that queueg(t) in setLy(t) are equal, the above inequality can be rewritten as foll¢wes.all
i€ L(t)andj € Lo(t) \ L(t), we have
gi(t+90) _ qi(t+9)

+e4V6 € (0,52]

5 > 5 +64V5€(0,(52].
Thus we have,
in q;(t+9) > (t+ 0 Vd € (0,68)]. 37
B D> i W eTo (0 o7

From the inequalitied (36) and_(37), we have the followingqguality, there existgy, 3 > 0 such that for all

d € [dp, 03] we have

i i t+9)) > i t+06 . 38
iglngtl)q(N( +9)) jerlggf(t)qg(n( +9)) + e (38)

From the definition of fluid limitg;(¢), there exists:, large enough such that > ngandsd € [dy, d3], we have

that

in Q;i(n(t+46 i(n(t+6 . 39
min Qi(n(t+9)) > max Qj(n(t+)) + ner (39)

The above inequality ensures that the links in thelgg} have larger queue lengths compared to other links in
the network for all the time slots in(t + do), n(t + d3)]. Therefore, depending up on global channel s@# ),
at each time slot € [n(t + dy),n(t + d3)], GMS schedule picks a maximal schedule from the set of libks
that are in 'ON’ state. LetZ}'(7) denote the scheduling decision picked by the GMS algoritomiifik / at time

slot 7. We thus have

Z™(T) Liry € Mas(rynLi).Li)- (40)
Computing the total service provided by the GMS algorithntiine slots[n(t + do), n(t + d3)], we have

nt+nds
Dp*(nt 4 nd3) — D(nt + ndy) = / Zj'(T)dr.
nt+ndo

Let us denote the quantitf- ("””335)3__25)("””5“)

®(L(t)). As dp can be made arbitrarily small, we have the result.

by p;'(t). From the above equality, we have th&l(t)|. ) €
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