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Abstract—A wireless communication network is considered where Boolean model[[?], where two nodes are connected if the
any two nodes are connected if the signal-to-interferenceatio two circles drawn around them with a fixed radius overlap,
(SIR) between them is greater than a threshold. Assuming tha for the random Boolean modéll[1],][3], where two nodes are
the nodes of the wireless network are distributed as a Poisso : . - ’ -

point process (PPP), percolation (formation of an unbounde con_nected if the two circles drawn arounq them with a random
connected cluster) on the resulting SIR graph is studied as a radius overlap, for the random connection model [4], where

function of the density of the PPP. It is shown that for a small two nodes are connected with some probability which depends
enough threshold, there exists a closed interval of denséts for on the distance between them independently of other nodes.
which percolation happens with non-zero probability. Conersely, For all these connection models, a phase transition behavio

it is shown that for a large enough threshold, there exists alosed . . . - .
interval of densities for which the probability of percolation has been established il [1]+[5], i.e. there exists a clitica

is zero. Connectivity properties of the SIR graph are also density)., whereifA < A., then the probability of percolation
studied by restricting all the nodes to lie in a bounded area. is zero, while if A > ). then percolation happens almost

Assigning separate frequency bands or time-slots proportinal  surely. In other words, percolation is shown to be monotonic
to the logarithm of the number of nodes to different nodes for in \ [11-[4].

transmission/reception is shown to be necessary and sufiit for ]
guaranteeing connectivity in the SIR graph. The most relevant work to the present paperlis [6], (an

improved version of [[7]) where percolation on the SINR graph

(constructed from an underlying wireless network with rode
Consider a large ad-hoc wireless network, where mulistributed as a PPP) has been studied.[In [6], the SINR

tiple transmitter receiver pairs communicate simultarsgou graph is defined to bé¢®, £}, where® is the set of nodes,

in an uncoordinated manner without the help of any fixeahd the edge sef = {(z;,z;) : SINR;; > T}, with

infrastructure. Important examples of ad-hoc networkfuite SINR;; := 9(dij) where d,; is the distance

. - 24 vg(de;) !
vehicular networks, military and emergency networks, anghnyveen no”deggegﬁg ;q]( k;)(_) is the signal attenuation

sensor networks. The uncoordinated nature of communitatiQ,nction, +2 is the variance of the AWGNI is the connection
allows multiple transmitters to communicate at the same timy,reshold, andy > 0 is an interference suppression parameter
however, creates interference at all receivers. A commgiht depends on the wireless technology e.g. CDMA[In [6]
connection model in an ad-hoc network is the signal-ig-js shown that if). is the critical density withy = 0, then
interference ratio (SIR) modg&lwhere two nodes are CON-there exists ay+ > 0, such that for anyA > )., percolation
nected if the SIR between them is greater than a threshqlﬁ.ppens in the SINR graph for < ~*. Lower and upper
In this paper we are interested in studying the probabilfty @,,,nds onvy* have been obtained in1[8]. Thus, [6] shows
the formation of an unbounded connected cluster with the iRy there exists a small enoughfor which the percolation
model in an ad-hoc network. The study is motivated by the fagfoperties of the SINR graph are similar to= 0. Note that
that the presence of unbounded connected clusters guesani@ih respect toy, SIR graph percolation is monotonic, since
Iopg range connectivity using multi-hop routing in an ad:ho; percolation happens fofy, then percolation happens for
wireless network. _ all v < . Even though[[6] provides key insights into the
A natural tool to study the formation of unbounded COmsercolation properties of the SINR graph, however, its scop
nected clusters in a graph associated with a wireless netwey |imited since assuming arbitrarily small enoughis not

is percolation theory [1], where percolation is defined as theasiple from any wireless technology perspective.
event that there exists an unbounded connected cluster in

a graph. Previously, assuming the location of nodes of theIn this paper we considey = 1, and ignore the additive

wireless network to be distributed as a Poisson point pmc&O'Se coniribution, since witly = 1, the system is interfer-

(PPP) with density\, percolation has been studied for thegnCe limited.  Ignoring q‘[(f;g)ﬂOlse contrlb-utlon, with = 1,
INR;; = SIR;; := m. Assuming that the nodes

. . keE® k#1 J . )

Lignoring the additive noise in an interference limited eyst of ® are distributed as a homogenous PPP, in this paper we

I. INTRODUCTION
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are interested in finding the range 0§ for which percolation slots (called colors) are used by thenodes for transmission
happens in the SIR graph. and reception, where only signals belonging to the same colo
As discussed before, typically, continuum percolation exaterfere with each other. We show th@t(n) = xlogn (k
hibits phase transition behavior and is monotonic in thenquas a constant) is necessary and sufficient for ensuring the
tity of interest, e.g. monotonic ik [2], [4], monotonic iny [6]. connectivity of the SIR graph with high probability. The
The continuum percolation on the SIR graph, however, doessult suggests that if there are orqgé? interferers for any
not seem to be monotonic ik To illustrate this, let percolation receiving node, then the SIR between a large number of node
happen for some value of, say\y. Then increasing beyond pairs can be guaranteed to be above a constant threshold.
Mo, the distance between the nodes decreases, and hence bdtlotation: The expectation of functioif(z:) with respect to
the signal and the interference powers increase simulteteo « is denoted byE(f(x)). A circularly symmetric complex
Thus, it is difficult to establish that percolation happeos f Gaussian random variable with zero mean and variance
any A > ), for a fixed 7. The only cases where it is trivial o2 is denoted as: ~ CN(0,0?). (z)* denotes the function
to establish whether percolation happens or not are:0, or max{z,0}. |S| denotes the cardinality of se&f. The com-
T = o, (no percolation) and” = 0 (percolation). Moreover, plement of setS is denoted bySc. S;\S; represents the
it is also not obvious whether percolation happens for amyements ofS, that are not in its subse§;. We denote the
value of A for a fixedT. origin by 0. A ball of radiusr centered atc is denoted by
In this paper for the path-loss model, we show that for lard&(x, ). The set{1,2,..., N} is denoted by N]. We use the
enoughT’, there exists a closed intervAl. := [M} A3], such symbol:= to define a variable. We defingn) = O(g(n)) if
that if A € A}, then the probability of percolation is zerod k > 0, ng, ¥ n > ng, |f(n)| < |g(n)|k.
(sub-critical regime). In[[7], where a link between and z;
is defined in the SINR graph if botBINR;; and SINR;; are
greater than the same threshdidit is shown that ify > % Consider a wireless network with the set of nodes denoted
then the probability of percolation is zero. In this papee wdy ®. Forz;,z; € @, let d;; denote the distance between
consider that a link exists betweenandz; in the SIR graph andz;. We assume that if powe? is transmitted by node;,
if SIR;; > T, which is a relaxed condition compared fg [7]then the received signal poweraf is Pg(d;;), whereg(.) is
and consequently the analysis and result5of [7] cannotée uge monotonically decreasing signal attenuation functiith

Il. SYSTEM MODEL

to derive bounds on the sub-critical regime. distancé With concurrent transmissions from all nodesdaf
Conversely, we show that for small enou@h there exists the received signal at; at any time is

a closed intervalA% := [A%' A%2], such that if\ € A%,

then the percolation happens with non-zero probabilityr Ou =y \ Padr;)sk + vj, 1)

result loosely establishes continuity of percolatioriZat 0, ke® ki

since atT’ = 0 percolation happens for all non-zero valuewheresy, is signal transmitted from node,, P is the power

of A\. One might argue that a small enou@his also not transmitted by each node, angis the AWGN withCA/(0, 1)

practical, since the rate of transmission between any fair distribution. Note that this is an interference limited teys,

nodes depends of. Our result essentially establishes thaand we drop the contribution of the AWGN in the sequel.

for some node intensities, an infinite connected compondfbm (1), the SIR for the;; to x; communication iSIR;; :=

can be formed in a wireless network, where each link ha:i%_ We consider the SIR graph dfl [6], where an
ked, k#i ]

small rate of transmission. For example, in a delay toleragfige between; andz;, z;,z; € ®, exists if the SIR between
network, where reliability is more important than the rafe o,, ands;, SIR;;, is greater than a thresholgl.

information transfer, our results show that large datasiens  pefinition 1: SIR graph is a directed grapEG(T) :=

can be made to a large enough number of nodes by using L?@/’g}, with vertex set®, and edge sef := {(;,z;) :

rate links with strong error correcting codes. SIR;; > T}, whereT is the SIR threshold required for correct
Even though percolation guarantees the formation of Ugecoding required between any two nodesbof

bounded clusters, it does not ensure connectivity betwsgn a pefinition 2: We define that there is path from node;

two nodes of the network. In a wireless network, connegtivi, x; if there is a path frome; to z; in the SG(T). A path

is quite critical, and studying connectivity propertieslafge perweens; and z; on SG(T) is represented as; — ;.

networks (formally defined to be event that there is a path pefinition 3: We define that a node; canconnecto x; if

between any pair of nodes) has received a lot of attentigfere is an edge between andz; in the SG(T).

in literature [1], [9]-{14], primarily for the Boolean moble  gimilar to [6], in this paper we assume that the locations

of connectivity. For studying connectivity in the SIR graphof ¢ are distributed as a homogenous Poisson point process

we restrict ourselves to a finite area, to be precise an UPP) with density\. The SIR graph whe is distributed as a

square, since the probability of connectivity when nodes ar

distributed on an infinite plane is zero. We assume that theréThe most commonly found signal attenuation function inrditere is

are n nodes lying in the unit square that are independentf{),= * . however, it is singular at distances close to zero, anditeesu

d . L . . V\/ f0°° xzg(x)dx = oo. However, owing to simplicity of exposition, we use
rawn from an uniform distribution over the unit square. We -y’ _ =a “except for Subsectiofi IE8 and SubsectGiIV-B, where any

consider the case whefi(n) separate frequency bands/timenonotonically decreasing(.) with [ zg(z)dx < oo is considered.



PPP is referred to as the Poisson SIR graph (PSG). We define
the connected component of any node € @, asC,, :=

{z), € ®,2; — x1}, with cardinality|C,|. Note that because

of stationarity of the PPP, the distribution ¢, | does not

depend ony, and hence without loss of generality from here
on we consider node, for the purposes of defining connected
components.
In this paper we are interested in studying the percolation
properties of the PSG. In particular, we are interested in
finding the values of\ for which the probability of having e )p——C o F e p— ey
an unbounded connected component in PSG is greater than
zero, i.e. A, := {A : P(|Cy| = o0) > 0}. The event
{|Cs,| = oo} is also referred to apercolationon PSG, and ’ ’ ’

we say that percolation happens H({|C,,| = oo}) > 0,
and does not happen P({|C,,| = oo}) = 0. Ideally, we
would like to find sharp cutoff\. for A as a function of
T, such that forA > A, P({|C.,| = oo}) > 0, while with
A < A P({|C.,| = o0}) = 0. This problem, however, is
quite challenging, and in this paper we only establish that f
large enougll’ there exists a closed interval. := A} A2,

such that if A\ € Al then the probability of percolation is Fig. 1. Two dimensional hexagonal lattice with edge
zero, while for small enougfi’ there exists a closed interval

A% = [\ \¥2], such that ifA € A% then the probability of v

z; — xj, v, x; € &, does not implyz; — z; x;,z; € @, A A
one can similarly define in—componeﬁi’; = {x, € O, xp, —
z;}, bi-directional componenCﬁf = {zx € P2, —
xz; and z, — x;}, and either one-directional component
C;? ={zx € D, = z; OF T — x;}.
I1l. PERCOLATION ON THESIR GRAPH o

percolation is greater than zero.
Remark 1:Note that we have defined PSG to be a directed
graph, and the component af, is its out-component, i.e.
the set of nodes with whiclx; can communicate. Since
In this section, we first discuss the sub-critical regime reghe
the probability of percolation is zero, and then follow it up
the super-critical regime where the probability of pertiola
is greater than zero. Fig. 2. Closed face of the hexagonal lattice.

A. Sub-critical regime

For simplicity of exposition, in this subsection we assume
that the signal attenuation function(d;;) = d;;“, where
a > 2 is the path-loss exponent. The results of this sub-
section can be extended to any signal attenuation functio
g(.) that is monotonically decreasing and hfsg(z)dz <

. . d.. .
oo. Thus, in this caseSIR;; = W. Let I} :=
ke® k#i Ykj

> kea pzi by o then PSG = {®,&}, where the edge set
E = (wi,xj) 1 dij < (TLI]) “ L. In this subsection we are
interested in deriving that for large enou@hthere exists a
closed intervalAl. := [M} A2], such that ifA € AL then the
probability of percolation is zero.

Towards that end, we til®&2 using an hexagonal latticH
with edged as shown in FigJ1l. We let node to lie on the
origin of H. Each face of the hexagonal lattice has two states, Fig. 3. Node disconnection because of closed face.



the origin a.s.. Next, we show that for large enoughthe
probability of a face being closed is greater th?rwhen A
lies in a closed interval.
Theorem 1:For the PSG3 T* such that forl" > T*, 3
Closed Circui - AL, = [N} M2] C R, such that ifA € AL, then the probability

of percolation is zero.
Proof: Recall from conditions 1)-4),P(closed facg =
P(closedF;)%. Note that

P(closedFs) = P(|F5\F,|=0,|F,| > 1,

p< T, < oTw),
= P(|Fs\F,| = 0)P(|F,| > 1),
p< T, 1< 6T7),
_ e*)\V(Fa\Fp)
1—eME) )\V(Fp)e_’\”(Fp)} ,(2)
p < T, 1< 6T,

Fig. 4. Connected node partitioning because of a closeditirc wherev(.) represents the Lebesgue measuréRénNote that
u < 5T+ is automatically satisfied fof' > 1, sinceu < ¢
by construction. For large enoudgh, n can be chosen small
enough to make(F5\F,) small enough wittp < nT=. From
@), it follows that if v(F5\F,) is small enough, for large
enoughd, there exists\}. = [\} 2] C R, where if A € AL,

either openor closed As shown in Fig[R, a face oH is
defined to be closed if each of the six equilateral triandles
inside each face are closed, afglis defined to be closed if

1) there is no node ob in the shaded rggioﬁg\Fp_. then P(closedFs) > (%)%. Thus, we have shown that for a
2) there are at least two nodes®fin the inner equilateral large enoughl’, there exists a closed interval, such thatif

trlanglefp. belongs to the closed interval then tii¥closed face > %
3) p<nTx. and hence the probability of percolation is zero. ]
4) p<oT=.

Discussion:In this section we mapped the continuum per-
With these definitions we can map the continuum percgplation on the SIR graph into discrete percolation on the

lation on the PSG to discrete percolation on the hexagomixagonal lattice to make use of the known results on the

lattice. Conditions 1) and 4) together imply that no two r®dgjiscrete percolation on the hexagonal lattice. It is wethkn

on either side of a closed face Hf can have an edge betweenpat if the probability of any hexagonal face being closed is

each other. To see this, le} lie on the left side of any closed more than%, then almost surely, the connected component

face ofH andz; lie on the right of the closed face. See FilJ. 3f hexagonal lattice is finite. Then we showed that with our

for a pictorial description. Then clearly, the maximum sign mapping, for large enougi’, the probability of a closed

power betweenr; andx; is 6. Moreover, the interference face of the hexagonal lattice can be made more thafor

received at either; or z; from the nodes insidé, is greater 3 closed interval of node densities, and hence almost surely

thans= /T, sincey < 67'=. Thus,SIR;; < T andSIR;; <T', the connected component of the SIR graph is finite.

and hencer; andz; cannot connect to each other. Similarly, N )

conditions 2) and 3) imply that; or z; cannot connect to any B- Super-critical regime

of the nodes inside,, sincep < nT'=. In this section, we show that for small enoufhthere exists
Definition 4: A circuit in H is a sequence of consecutivea closed interval\y := [A4! A\%2], such that ifA € A%, then

faces ofH such that the first and last face of the sequence hatbe probability of percolation is greater than zero. Forgheof

a common edge. A circuit il is defined to be open/closedprovided in this section we need that the signal attenuation

if all the faces of the circuit are open/closedlh A closed function with distancey(.) is monotonically decreasing and

circuit is illustrated in Fig[4. satisﬁesfoOO zg(x)dx < oo. Clearly, g(z) = z~“ is not a
Thus, if there is a closed circuit around the origin, thewalid signal attenuation function for this subsection.

nodes of® lying inside the closed circuit cannot connect to In this section we tileR? into a square lattice, and define

any nodes ofd outside the closed circuit as shown in Hifj. 4each edge to b@pen or closedto tie up the continuum

Therefore if there exists a closed circuit around the orig®, percolation on the PSG with the percolation on the square

then a.s. there is no percolation, since infinitely many saife lattice. LetS be a square lattice with side:= %g*l (MT)

® cannot lie in a bounded area (inside of the closed circuigs shown in Fig[]5, wheréd/ € R which will be chosen

From [15], we know that for a hexagonal lattice, where thiater. LetS’ = S 4 (3, 5) be the dual lattice oS obtained

probability of any face being open/closed is independént,by translating each edge & by (3, 5) as shown in Fig[J6.

P(closed facg > 2, then there exists a closed circuit arounédny edgee of S is defined to be open if there are one or
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Fig. 5. Two-dimensional square lattice with edge
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Fig. 6. Dual of the square lattice.

more than one nodes df in both the adjacent squarés(e)
and S»(e) as shown in Figl]5, and the interference received
It = 3 copri 9(dij) at any nodej € Si(e) U Sz(e) is less
than M, V i € Si(e) U Sa(e). Any edge ofS is defined to
be closed if it is not open. Any edg€ € S’ is defined to
be open if and only if the corresponding edge S is open.
Some important properties & andS’ are as follows.

Definition 5: Open component ofS is the sequence of
connected open edges Sf

Lemma 1:If the cardinality of the open component 8f
containing the origin is infinite, thefC,., | = occ.

Proof: Note that if an edges € S is open, then all the
nodes lying inSi(e) U Sz(e) are connected to each other,
since the distance between any two of them is less than
Lsg—1 (MT), and hence the signal power is greater tha#,
while the interference power is less thad, implying that
SIR;; > T, z;,z; € S1(e) U S2(e). Thus, if there are infinite
number of connected open edgesSnthen the number of
connected nodes @b is also infinite. ]

Definition 6: A circuit in S or S’ is a connected path of
S or S’ which starts and ends at the same point. A circuit in
S or S’ is defined to be open/closed if all the edges on the
circuit are open/closed i8 or S'.

Lemma 2: [15] The open component @& containing the
origin is finite if and only if there is a closed circuit i’
surrounding the origin.

Next, we will show that for small enouglf’, 3 A%} =
(A4l A\42], such that ifA € A%, then probability of having
a closed circuit inS’ surrounding the origin is less than one,
and hence the probability of having an infinite open compbnen
of S containing the origin is greater than zero. We take an
approach similar ta_[6].

Let A, = 1 if there are one or more than one nodes of
® in both the adjacent squares(e) and Sz(e) of e, and
zero otherwise. Similarly, leB, = 1 if the interference[;ﬁ
received at any nodg € S (e) U Sz(e) is less thanM, Vi €
S1(e)USa(e) and zero otherwise. Then by definition, an edge
e € Sis openifC. = A.B. = 1. Now we want to bound the
probability of having a closed circuit surrounding the amig
in S. Towards that end, we will first bound the probability of
a closed circuit of length, i.e. P(C; = 0,02 =0,...,C,, =
0), V n € N consideringr distinct edges. Leps := P(A,, =
0) for any n. Since® is a PPP with densitp, p4 = 1 —
(1—e=*%)2. Then we have the following intermediate results
to upper bound?(C; =0,Cy =0,...,C, =0).

Lemma 3: P(4; = 0,43 =0,..., 4, = 0) < p}, where

_1/4

P1 =Dy -
Proof: Follows from the fact that in any sequenceroédges
of S there are at least/4 edges such that their adjacent
squaresSi(e) U Sz(e) do not overlap. Thereford?(4; =
0,43 =0,..., 4, =0) < P(NecoA. = 0), whereO is the
set of edges for which their adjacent squafgse) U Sa(e)
have no overlap, anfD| = n/4. SinceS;(e) U Sa(e), e € O
have no overlap, and evends = 0 are independent far € O,
the result follows. ]

Lemma 4: [6, Proposition 2] Forf0°O zg(x)dr < oo,



P(By = 0,Bs = 0,...,B, = 0) < p3, wherep, := our result loosely establishes the continuity of percolatat

1
(R J9(@)de—%) and K is a constant. T=0.
Lemma 5: [6, Propositon 3] P(C; = 0,0, = Even though our result is only valid for small enough
0,...,Cn = 0) < (V/PI +/P2)" we expect that for any value d¢f, percolation can happen

Letq := (/p1+./P2)- Using the Peierl's argument, the nex@nly for a "small” closed interval of node densities, if at. al

Lemma characterizes an upper boundgofor which having The justification for this claim is that for extremely small
a closed circuit inS surrounding the origin is less than one.values of node densities, the minimum distance betweensnode
Lemma 6:1f ¢ < 1=2Y10  then the probability of having IS large, and it is unlikely that SIR for large number of

27 : ;
a closed circuit inS’ surrounding the origin is less than onenodes is larger thad’, while for extremely large values of

Proof: From [15], the number of possible circuits of |engtmod_e_densities, interference is significant and it is difior
n around the origin is less than or equal 403”2, From sufficient number of nodes to have SIR greater tfian
Lemmal®, we know that the probability of a closed circuit of After having established that percolation happens on tﬁ_’e Sl
lengthn is upper bounded by”. Thus, graph f_or a small enough threshd_ldthe next natural question
to ask is: whether the SIR graph is connected for small enough
T, where by a connected graph we mean that there is a path for
each node to any other node in the graph. Since the prolyabilit
4 of SIR graph being connected in an infinite plane with any
= 7(1, node density is zero, we restrict ourselves to an unit square
3(1 —3q)? wheren nodes are uniformly distributed, and ask the question
whether the SIR graph restricted to an unit square is coadect
F]or small enoughl” in the next Section.

P(closed circuit around origin < ) 4n3"%¢",
n=1

which is less thar for ¢ < %ﬁ. [ ]
Theorem 2:For the PSG, where the attenuation functio

g(.) is monotonically decreasing and satisfifsg(z)dz < IV. CONNECTIVITY ON THE SIR GRAPH

o0, for small enoughr’, 3 Af = [Af' A7?], such that ifA € For studying the SIR graph connectivity, we restrict our-

A, then the probability of percolation on the PSG is greategyes to an unit square and assume thatodes of®,, =

than zero. {x1,...,z,} are drawn independently from an uniform distri-

Proof: From Lemmé.B, we know that if < ?17227m’ then  pution on the unit square. Following Sectioh II, the SIR drap
the probability of having a closed circuit ' is less thanl. o the unit square is defined 86(T, 1) := {®,,, £, }, where
)

Hence from Lemmal2, if; < %ﬁ, then the probability ¢ _ r(;. +) . SIR,; > T}, andSIR;; := 9(di;

of percolation on the PSG is greater than zero. Recall that vl T =l U Dkewn iz 8(dk)”

q = /P1 + /P2, Wherep, N (1 - (1M_ e A s = Definition 7: The SIR graphSG(T,1) is defined to be
2=g " (MT), andp; := (R J9)dr—5) Next, we show connected if there is a path fram — z;in SG(T,1), Vi, j =
thatq can be made arbitrarily small for a closed intetd&l = 1,2,... n,i # j.

(A4l \u2] by appropriately choosing/ for small enoughr". To analyze the connectivity of the SIR graph, we color the

Let M = 1/T, thenp,; does not depend oi/ or T, and nodes of® with C(n) colors, where nodes assigned different
p1 decreases to zero with increasing Moreover, for small colors correspond to having orthogonal signals in eithaeti
enoughT" with M = 1/T, depending ork, p, can be made or frequency. Graph coloring is a map: ® — [C(n)], such
arbitrarily small for values of\ for which p, is very small. thatC(z,,) = c¢(xm), c(z.) € [C(n)]. Coloring ensures that
Thus, for small enouglf’, there exists a value of for which  only those signals transmitted from the similarly coloredes

q < %. Moreover, sinceg is a continuous function, interfere with each other. Then the colored SIR graph is de-
there exists a closed intervalt. = [\ \42] for which ¢ < fined asSG(T, 1,C(n)) := {®,, &}, whereE,, = {(z;, z;) :

%, and consequently fon € A%, the probability of SIR;; > T}, andSIR;; = Eke@n,k;éiifj:)):c(z')g(dkj)’ and

percolation on the PSG is greater than zero. B SG(T,1,C(n)) is defined to be connected if there is a path
Discussionin this section we mapped the continuum percgrom z; — z; in SG(T,1,C(n)) V,i,j =1,2,...,n,i # j.
lation on the SIR graph into discrete percolation on the sgjua Note that SG(T,1) = SG(T,1,1). In the next Theorem,

lattice. With a square lattice, it is known that if the probi& e find an upper bound o6'(n) for which SG(T,1,C(n))

of having a closed circuit around the origin is less than ong, connected.

then with positive probability an unbounded connectedtelus

is present in the square lattice. Then with our mapping, f6r UPper bound orC(n)

small enougHhl’, we showed that the probability of having a For generality, we will prove the upper bound for the
closed circuit around the origin is less than one for a clossthgular path-loss model(d;;) = d;;*, which easily extends
interval of node densities. Consequently, for small endiigh to all other path-loss models with monotonically decregsin
we concluded that the connected cluster of the SIR graph) and [ zg(z)dx < co. The main result of this subsection
is unbounded for a closed interval of node densities. Siniseas follows.

percolation happens for all non-zero values)oit T' = 0, Theorem 3:If C(n) > 4(1 + d)clogn colors are used

by showing that percolation happens for small enodgh for coloring the SIR graptSG(T,1,C(n)), wherec and ¢




1
Fig. 8. Coloring the square tiling of the unit square withrfeets of colors.
chogw S11
n
Wﬂ Then the probability that the SIR graph is connected
n P(SG(T,1,C(n)) isconnected can be written as

Fig. 7. Square tiling of the unit square. P(SG(T’ 1, C(n)) IS ConneCte)j

= P(ﬁijEij U ﬁtFt(m))

are independent af, then the SIR grapl$G (T, 1,C(n)) is P(SG(T,1,C(n)) is connected Ny; Eyj U N Fi(m))
connected with high probability. + P((Nij Eij U N Fy(m))°)

Proof: Consider al x 1 squareS;. We assume that nodes P (SG(T,1,C(n)) is connected (N;; E;; U Ny Fy(m))°).
are distributed uniformly ir8;. We tile S; into smaller squares

si; with side Clog" as shown in Fig[J7. Let the number of
nodes lying ins;; be Isi;|. Let the set of colors to be used
be C(n) := {c1,ca,c3,ca}, Wherele| = (14 d)clogn, £ =
1,2,3,4, andc, Ncp = ¢,V £, k. Colors from seic; and ¢y P(SG(T,1,C(n)) is connectefl~

are associated with alternate rows in odd numbered columns,

while setss; ands, are associated with alternate rows in even P (SG(T,1,C(n)) is connected (N; Ei; U Ny Fy(m))©) .
numbered columns in the tilting &, usings;; as shown in
Fig.[8. Nodes in each smaller squareare colored as follows.
Let the nodes lying in eack;; be indexed using numbeis
to |s;;|. Then we associatél + ¢)clogn colors to eachs;;
in a regular fashion, i.e. color of noge p =1,...,|s;;| isp

d (140)cl SinceE{|s;;|} = ¢l v fromthe o .
mod (1+0)clogn. Si {lsij[} = clogn, v J connected, it is sufficient to show that for ahy 1,...,n, =,

Chernoff bound,P (Isi;| > (1 + 6)clogn) < n=5. Hence is connected to all nodes 1 (m) in the SIR graph. Towards
with this coloring, the probability that there are two O IO hat end, letz,,u # ¢ be any other node is,(m). Then

nodes with the same color in a given squajgis the distance between, and z,, dy., is upper bounded by

—a/2
P(two nodes with the same color #);,) < n= 3) Zmlogn thus the signal powet;,” > (m%)
Now consider Fig[19 for analyzing the interference power at
Consider another squasg(m) with side /mlog" centered z,. Without loss of generality assume that belongs to the
at any noder; as shown in Fid.19, wherex < ¢ |s a constant. square associated with color sgt Note that even ifz; and

Again, using the Chernoff bound as above, we have that 7. belong to the same squasg;, there is no other node
in s;; that has the same color as. So the interference

Using the union bound over all squaresg, and over all
nodesz,, together with[(B), and{4), it follows thadt(N;; E;; U

NeFy(m)) <n~ 1+ n'= . Thus, for large enough,

Hence in the sequel, we analyze the SIR connectivity while
conditioning on the event that no squasg has more than
two nodes with the same color, and each sqsafe:) has at
leastZ log n nodes.

Now, under the conditioning, to show that the SIR graph is

P(|St(m)| < %logn) <n 2 (4) received atz; is attributed to nodes lying in squakg ;.

associated with color set;, where eitheri’ # i or j' # j.

Now define events Ei; = From Fig.[9, it is clear that for any, ¢ = 1,2,...,n
{two nodes with the same color i)}, and there are maximung nodes using the same color ag, at

. H 1 1 H
Fi(m) = {there are less tha% log n nodes ins;(m)}. a distance at leasty <\/% - \/%) from ., since
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\elogn G & ICy Cd | G
n /é»
T i ; n
de QT’ ds
C Cl Cl

Fig. 9. Pictorial description of distance from nearestriet@rs after coloring.

di,...,d7 > (\/Clo% - \/@) Thus, the interference P (SG(T,1,C(n)) is connected (Ni; Eij; U Ny Fy(m))%) =

power

- 8
oo dr<) -
vt e(ey)=c(zr) =1 (2q O/% - \/%»

Sincem < ¢ is a constant,
<\/clogn \/mlogn) < clogn)
- > B
n n n
for somes > 0. Hence

Yo das ° /2 >t 6
qg=1

vittc(zy)=c(zr) (28)> (clogn)

n

SinceZZ:1 q*_o‘ converges forx > 2, let ¢5 := ZZ:l q <.
Then, computing the SIR, we have

/2 (m —a/2

;" ¢ (ﬁ)

SIRyy = doa — 8 ’
Evit,c(mv)zc(wt) v @

which can be made more thafd’, the SIR thresh-
old, by appropriately choosinge and m. For exam-
ple, for ¢ = 2, for ¢ > 225, SIR,, >

T. Thus, for an appropriate choice ot and m,

1, and

nhfgo P(SG(T,1,C(n)) is connecte= 1.
[ |

Discussion: Theorem[B implies thatD(logn) colors are
sufficient for guaranteeing the connectivity 8(7, 1, C(n))
with high probability. The intuition behind this result ibat
if only n/log(n) nodes interfere with any node’s transmission
then the total interference received at any node is bounded
with high probability, and each node can connect to a large
number of nodes. In the next subsection we show that ac-
tually C'(n) = O(logn) colors are also necessary for the
SG(T,1,C(n)) to be connected with high probability, and if
C(n) is less than ordelog n, then the interference power can
be arbitrarily large and difficult to bound, makin§G (T, 1)
disconnected with high probability.

Remark 2:Recall that SIR connectivity has been studied
in [11] under the physical model, where it is shown that
if simultaneously transmitting nodes are at leastdistance
away, then all the nodes within a fixed radius from the active
transmitters have SIR’s greater than the specified thrdshol
for large enough\. The result of[[11], however, is valid only
for & > 2. In comparison, our result is valid for att for
which 7, n=« is finite. Our approach is similar to SIR
connectivity analysis of the one-dimensional case [10Jergh
n nodes are uniformly distributed in the unit interval.



B. Lower bound orC(n)

In this section we show that if less than ordeg(n)
colors are used, then the SIR graph is disconnected with high
probability. To show this, we actually show that any nodeas n
connected to any other node with high probability if lessitha
orderlog(n) colors are used. For proving this lower bound w

will restrict ourselves to path-loss models with monotaiij ; L .
P ¥ other nodes in the network (through their interference rcont

decreasing(.) and [ zg(z)dz < oo, since with singular path- " I ; .
loss modelsg(d;;) = 4, the signal power between any tWObutlon) and entails infinite range dependencies. For shggyi

nodes cannot be bounded. Formally, our result is as foIIowg.erCC)l"jltlon on the SIR graph, we tied up the continuum

Theorem 4:For path-loss models with monotonically de_percolation on the SIR graph to discrete percolation forcivhi

; . TF(n prior results are known. For finding a sub-critical regime, w
c.reasmgg}(.)) and I"T_g(x)dx <,OO’ it C(n) _ # where made use of the hexagonal lattice, while for the supereatiti
limy o0 fo.; = 0, 1. C(n) is sub-logarithmic inn, and  o4ime percolation on the square lattice is considered. We
w is a constant, then the SIR grat:(T’, 1,C(n)) is N0t ghowed the existence of a closed interval of node intessitie
connected with high probability. _ for which the SIR graph percolates or not depending on the
Proof: To show thatC(n) = O(logn) is necessary for gir threshold. Ensuring connectivity is a stricter coriti
guaranteeing the connectivity #FG(T,1,C(n)) with high  comnared to percolation, since with connectivity every péi
probability, similar to last subsection, we consider tH®di qqes should have a path between them. We took the graph
of the unit squareS; by squaress;;, but with side /2™, coloring approach for studying connectivity on the SIR drap

and found upper and lower bounds on the number of colors

required for guaranteeing connectivity with high probigpil
Afhe derived upper and lower bounds are tight, and from

which we conclude that using colors that are logarithmic in
) the number of nodes is necessary and sufficient for ensuring

limp, o0 {55 = 0, with high probability, there are at leastconnectivity in the SIR graph with high probability.
w/T nodes in each square using one particular celpre

C(n). Let ., = {xp, : c(Tm) = cp, Tm € 845} be the set of
nodes in squars;; that use the color,. Note that|®. | >
w/T with high probability. Consider two nodes,, z,, € ®.,,
and any other node, € s;;. By the definition ofs;;, the
distance between nods,, andz,, d,,,, iS no more thaniy, +

2loan Therefore the interference received:afrom nodes

n .

inside s;; using colorc is sze@cp,m#g(dmg) which is

for small enoughl’, percolation happens for a closed interval
of node densities.

V. CONCLUSION

In this paper we studied the percolation and connectivity
roperties of the SIR graph. The analysis is complicatecksin
e link formation between any two nodes depends on all the

instead of\/”‘)% as shown in Figl15.

With this tiling, the expected number of nodes in any squ
E{[si;|} = logn, and P(|s;;| < (1 — &) logn) < n=0"/2, for
any0 < ¢ < 1. Therefore withC(n) = %(") colors, where
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