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Abstract—A wireless communication network is considered where
any two nodes are connected if the signal-to-interference ratio
(SIR) between them is greater than a threshold. Assuming that
the nodes of the wireless network are distributed as a Poisson
point process (PPP), percolation (formation of an unbounded
connected cluster) on the resulting SIR graph is studied as a
function of the density of the PPP. It is shown that for a small
enough threshold, there exists a closed interval of densities for
which percolation happens with non-zero probability. Conversely,
it is shown that for a large enough threshold, there exists a closed
interval of densities for which the probability of percolation
is zero. Connectivity properties of the SIR graph are also
studied by restricting all the nodes to lie in a bounded area.
Assigning separate frequency bands or time-slots proportional
to the logarithm of the number of nodes to different nodes for
transmission/reception is shown to be necessary and sufficient for
guaranteeing connectivity in the SIR graph.

I. I NTRODUCTION

Consider a large ad-hoc wireless network, where mul-
tiple transmitter receiver pairs communicate simultaneously
in an uncoordinated manner without the help of any fixed
infrastructure. Important examples of ad-hoc networks include
vehicular networks, military and emergency networks, and
sensor networks. The uncoordinated nature of communication
allows multiple transmitters to communicate at the same time,
however, creates interference at all receivers. A common
connection model in an ad-hoc network is the signal-to-
interference ratio (SIR) model,1 where two nodes are con-
nected if the SIR between them is greater than a threshold.
In this paper we are interested in studying the probability of
the formation of an unbounded connected cluster with the SIR
model in an ad-hoc network. The study is motivated by the fact
that the presence of unbounded connected clusters guarantees
long range connectivity using multi-hop routing in an ad-hoc
wireless network.

A natural tool to study the formation of unbounded con-
nected clusters in a graph associated with a wireless network
is percolation theory [1], where percolation is defined as the
event that there exists an unbounded connected cluster in
a graph. Previously, assuming the location of nodes of the
wireless network to be distributed as a Poisson point process
(PPP) with densityλ, percolation has been studied for the

1Ignoring the additive noise in an interference limited system.

Boolean model [2], where two nodes are connected if the
two circles drawn around them with a fixed radius overlap,
for the random Boolean model [1], [3], where two nodes are
connected if the two circles drawn around them with a random
radius overlap, for the random connection model [4], where
two nodes are connected with some probability which depends
on the distance between them independently of other nodes.
For all these connection models, a phase transition behavior
has been established in [1]–[5], i.e. there exists a critical
densityλc, where ifλ < λc, then the probability of percolation
is zero, while if λ > λc then percolation happens almost
surely. In other words, percolation is shown to be monotonic
in λ [1]–[4].

The most relevant work to the present paper is [6], (an
improved version of [7]) where percolation on the SINR graph
(constructed from an underlying wireless network with nodes
distributed as a PPP) has been studied. In [6], the SINR
graph is defined to be{Φ, E}, whereΦ is the set of nodes,
and the edge setE = {(xi, xj) : SINRij > T }, with
SINRij :=

g(dij)
σ2+

∑
k∈Φ,k 6=i γg(dkj)

, where dkj is the distance

between nodesxk and xj , g(.) is the signal attenuation
function,σ2 is the variance of the AWGN,T is the connection
threshold, andγ > 0 is an interference suppression parameter
that depends on the wireless technology e.g. CDMA. In [6],
it is shown that ifλc is the critical density withγ = 0, then
there exists aγ∗ > 0, such that for anyλ > λc, percolation
happens in the SINR graph forγ < γ∗. Lower and upper
bounds onγ∗ have been obtained in [8]. Thus, [6] shows
that there exists a small enoughγ for which the percolation
properties of the SINR graph are similar toγ = 0. Note that
with respect toγ, SIR graph percolation is monotonic, since
if percolation happens forγ0, then percolation happens for
all γ < γ0. Even though [6] provides key insights into the
percolation properties of the SINR graph, however, its scope
is limited since assuming arbitrarily small enoughγ is not
feasible from any wireless technology perspective.

In this paper we considerγ = 1, and ignore the additive
noise contribution, since withγ = 1, the system is interfer-
ence limited. Ignoring the noise contribution, withγ = 1,
SINRij = SIRij :=

g(dij)∑
k∈Φ,k 6=i g(dkj)

. Assuming that the nodes
of Φ are distributed as a homogenous PPP, in this paper we
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are interested in finding the range ofλ’s for which percolation
happens in the SIR graph.

As discussed before, typically, continuum percolation ex-
hibits phase transition behavior and is monotonic in the quan-
tity of interest, e.g. monotonic inλ [2], [4], monotonic inγ [6].
The continuum percolation on the SIR graph, however, does
not seem to be monotonic inλ. To illustrate this, let percolation
happen for some value ofλ, sayλ0. Then increasingλ beyond
λ0, the distance between the nodes decreases, and hence both
the signal and the interference powers increase simultaneously.
Thus, it is difficult to establish that percolation happens for
any λ > λ0 for a fixedT . The only cases where it is trivial
to establish whether percolation happens or not are:λ = 0, or
T = ∞, (no percolation) andT = 0 (percolation). Moreover,
it is also not obvious whether percolation happens for any
value ofλ for a fixedT .

In this paper for the path-loss model, we show that for large
enoughT , there exists a closed intervalΛl

T := [λl1
T λl2

T ], such
that if λ ∈ Λl

T , then the probability of percolation is zero
(sub-critical regime). In [7], where a link betweenxi andxj

is defined in the SINR graph if bothSINRij andSINRji are
greater than the same thresholdT , it is shown that ifγ > 1

T ,
then the probability of percolation is zero. In this paper, we
consider that a link exists betweenxi andxj in the SIR graph
if SIRij > T , which is a relaxed condition compared to [7],
and consequently the analysis and results of [7] cannot be used
to derive bounds on the sub-critical regime.

Conversely, we show that for small enoughT , there exists
a closed intervalΛu

T := [λu1
T λu2

T ], such that ifλ ∈ Λu
T ,

then the percolation happens with non-zero probability. Our
result loosely establishes continuity of percolation atT = 0,
since atT = 0 percolation happens for all non-zero values
of λ. One might argue that a small enoughT is also not
practical, since the rate of transmission between any pair of
nodes depends onT . Our result essentially establishes that
for some node intensities, an infinite connected component
can be formed in a wireless network, where each link has a
small rate of transmission. For example, in a delay tolerant
network, where reliability is more important than the rate of
information transfer, our results show that large data transfers
can be made to a large enough number of nodes by using low
rate links with strong error correcting codes.

Even though percolation guarantees the formation of un-
bounded clusters, it does not ensure connectivity between any
two nodes of the network. In a wireless network, connectivity
is quite critical, and studying connectivity properties oflarge
networks (formally defined to be event that there is a path
between any pair of nodes) has received a lot of attention
in literature [1], [9]–[14], primarily for the Boolean model
of connectivity. For studying connectivity in the SIR graph,
we restrict ourselves to a finite area, to be precise an unit
square, since the probability of connectivity when nodes are
distributed on an infinite plane is zero. We assume that there
are n nodes lying in the unit square that are independently
drawn from an uniform distribution over the unit square. We
consider the case whenC(n) separate frequency bands/time

slots (called colors) are used by then nodes for transmission
and reception, where only signals belonging to the same color
interfere with each other. We show thatC(n) = κ logn (κ
is a constant) is necessary and sufficient for ensuring the
connectivity of the SIR graph with high probability. The
result suggests that if there are ordernlogn interferers for any
receiving node, then the SIR between a large number of node
pairs can be guaranteed to be above a constant threshold.

Notation: The expectation of functionf(x) with respect to
x is denoted byE(f(x)). A circularly symmetric complex
Gaussian random variablex with zero mean and variance
σ2 is denoted asx ∼ CN (0, σ2). (x)+ denotes the function
max{x, 0}. |S| denotes the cardinality of setS. The com-
plement of setS is denoted bySc. S2\S1 represents the
elements ofS2 that are not in its subsetS1. We denote the
origin by 0. A ball of radiusr centered atx is denoted by
B(x, r). The set{1, 2, . . . , N} is denoted by[N ]. We use the
symbol:= to define a variable. We definef(n) = O(g(n)) if
∃ k > 0, n0, ∀ n > n0, |f(n)| ≤ |g(n)|k.

II. SYSTEM MODEL

Consider a wireless network with the set of nodes denoted
by Φ. For xi, xj ∈ Φ, let dij denote the distance betweenxi

andxj . We assume that if powerP is transmitted by nodexi,
then the received signal power atxj is Pg(dij), whereg(.) is
the monotonically decreasing signal attenuation functionwith
distance.2 With concurrent transmissions from all nodes ofΦ,
the received signal atxj at any time is

rj =
∑

k∈Φ,k 6=i

√

Pg(dkj)sk + vj , (1)

wheresk is signal transmitted from nodexk, P is the power
transmitted by each node, andvj is the AWGN withCN (0, 1)
distribution. Note that this is an interference limited system,
and we drop the contribution of the AWGN in the sequel.
From (1), the SIR for thexi to xj communication isSIRij :=

g(dij)∑
k∈Φ,k 6=i g(dkj)

. We consider the SIR graph of [6], where an
edge betweenxi andxj , xi, xj ∈ Φ, exists if the SIR between
xi andxj , SIRij , is greater than a thresholdT .

Definition 1: SIR graph is a directed graphSG(T ) :=
{Φ, E}, with vertex setΦ, and edge setE := {(xi, xj) :
SIRij ≥ T }, whereT is the SIR threshold required for correct
decoding required between any two nodes ofΦ.

Definition 2: We define that there is apath from nodexi

to xj if there is a path fromxi to xj in the SG(T ). A path
betweenxi andxj on SG(T ) is represented asxi → xj .

Definition 3: We define that a nodexi canconnectto xj if
there is an edge betweenxi andxj in theSG(T ).

Similar to [6], in this paper we assume that the locations
of Φ are distributed as a homogenous Poisson point process
(PPP) with densityλ. The SIR graph whenΦ is distributed as a

2The most commonly found signal attenuation function in literature is
g(x) = x−α, however, it is singular at distances close to zero, and results
in

∫
∞

0
xg(x)dx = ∞. However, owing to simplicity of exposition, we use

g(x) = x−α, except for Subsection III-B and Subsection IV-B, where any
monotonically decreasingg(.) with

∫
∞

0
xg(x)dx < ∞ is considered.
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PPP is referred to as the Poisson SIR graph (PSG). We define
the connected component of any nodexj ∈ Φ, as Cxj

:=
{xk ∈ Φ, xj → xk}, with cardinality|Cxj

|. Note that because
of stationarity of the PPP, the distribution of|Cxj

| does not
depend onj, and hence without loss of generality from here
on we consider nodex1 for the purposes of defining connected
components.

In this paper we are interested in studying the percolation
properties of the PSG. In particular, we are interested in
finding the values ofλ for which the probability of having
an unbounded connected component in PSG is greater than
zero, i.e. λp := {λ : P (|Cx1 | = ∞) > 0}. The event
{|Cx1| = ∞} is also referred to aspercolationon PSG, and
we say that percolation happens ifP ({|Cx1 | = ∞}) > 0,
and does not happen ifP ({|Cx1| = ∞}) = 0. Ideally, we
would like to find sharp cutoffλc for λ as a function of
T , such that forλ > λc P ({|Cx1| = ∞}) > 0, while with
λ ≤ λc P ({|Cx1 | = ∞}) = 0. This problem, however, is
quite challenging, and in this paper we only establish that for
large enoughT there exists a closed intervalΛl

T := [λl1
T λl2

T ],
such that ifλ ∈ Λl

T then the probability of percolation is
zero, while for small enoughT there exists a closed interval
Λu
T := [λu1

T λu2
T ], such that ifλ ∈ Λu

T then the probability of
percolation is greater than zero.

Remark 1:Note that we have defined PSG to be a directed
graph, and the component ofx1 is its out-component, i.e.
the set of nodes with whichx1 can communicate. Since
xi → xj , xi, xj ∈ Φ, does not implyxj → xi xi, xj ∈ Φ,
one can similarly define in-componentCin

xj
:= {xk ∈ Φ, xk →

xj}, bi-directional componentCbd
xj

:= {xk ∈ Φ, xk →
xj and xk → xj}, and either one-directional component
Ced

xj
:= {xk ∈ Φ, xk → xj or xk → xj}.

III. PERCOLATION ON THESIR GRAPH

In this section, we first discuss the sub-critical regime where
the probability of percolation is zero, and then follow it up
the super-critical regime where the probability of percolation
is greater than zero.

A. Sub-critical regime

For simplicity of exposition, in this subsection we assume
that the signal attenuation functiong(dij) = d−α

ij , where
α > 2 is the path-loss exponent. The results of this sub-
section can be extended to any signal attenuation function
g(.) that is monotonically decreasing and has

∫

xg(x)dx <

∞. Thus, in this case,SIRij =
d−α
ij∑

k∈Φ,k 6=i d
−α
kj

. Let Iij :=
∑

k∈Φ,k 6=i d
−α
kj , then PSG = {Φ, E}, where the edge set

E =

{

(xi, xj) : dij ≤
(

1
TIi

j

)
1
α

}

. In this subsection we are

interested in deriving that for large enoughT there exists a
closed intervalΛl

T := [λl1
T λl2

T ], such that ifλ ∈ Λl
T then the

probability of percolation is zero.
Towards that end, we tileR2 using an hexagonal latticeH

with edgeδ as shown in Fig. 1. We let nodex1 to lie on the
origin of H. Each face of the hexagonal lattice has two states,

x1

δ

Fig. 1. Two dimensional hexagonal lattice with edgeδ.

ρ

F
δ

ρ

δ

F

µη

Fig. 2. Closed face of the hexagonal lattice.

x1

F

x2

ρ

δ δ

µ

F

η

Fig. 3. Node disconnection because of closed face.
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1δ x

Closed Circuit

Fig. 4. Connected node partitioning because of a closed circuit.

either open or closed. As shown in Fig. 2, a face ofH is
defined to be closed if each of the six equilateral trianglesFδ

inside each face are closed, andFδ is defined to be closed if
1) there is no node ofΦ in the shaded regionFδ\Fρ.
2) there are at least two nodes ofΦ in the inner equilateral

triangleFρ.
3) ρ ≤ ηT

1
α .

4) µ ≤ δT
1
α .

With these definitions we can map the continuum perco-
lation on the PSG to discrete percolation on the hexagonal
lattice. Conditions 1) and 4) together imply that no two nodes
on either side of a closed face ofH can have an edge between
each other. To see this, letxi lie on the left side of any closed
face ofH andxj lie on the right of the closed face. See Fig. 3
for a pictorial description. Then clearly, the maximum signal
power betweenxi andxj is δ−α. Moreover, the interference
received at eitherxi or xj from the nodes insideFρ is greater
thanδ−α/T , sinceµ ≤ δT

1
α . Thus,SIRij < T andSIRji < T ,

and hencexi andxj cannot connect to each other. Similarly,
conditions 2) and 3) imply thatxi or xj cannot connect to any
of the nodes insideFρ, sinceρ ≤ ηT

1
α .

Definition 4: A circuit in H is a sequence of consecutive
faces ofH such that the first and last face of the sequence have
a common edge. A circuit inH is defined to be open/closed
if all the faces of the circuit are open/closed inH. A closed
circuit is illustrated in Fig. 4.

Thus, if there is a closed circuit around the origin, then
nodes ofΦ lying inside the closed circuit cannot connect to
any nodes ofΦ outside the closed circuit as shown in Fig. 4.
Therefore if there exists a closed circuit around the origina.s.,
then a.s. there is no percolation, since infinitely many nodes of
Φ cannot lie in a bounded area (inside of the closed circuit).
From [15], we know that for a hexagonal lattice, where the
probability of any face being open/closed is independent, if
P (closed face) > 1

2 , then there exists a closed circuit around

the origin a.s.. Next, we show that for large enoughT , the
probability of a face being closed is greater than1

2 when λ
lies in a closed interval.

Theorem 1:For the PSG,∃ T ⋆ such that forT > T ⋆, ∃
Λl
T = [λl1

T λl2
T ] ⊂ R, such that ifλ ∈ Λl

T , then the probability
of percolation is zero.
Proof: Recall from conditions 1)-4),P (closed face) =
P (closedFδ)

6. Note that

P (closedFδ) = P (|Fδ\Fρ| = 0, |Fρ| > 1,

ρ ≤ ηT
1
α , µ ≤ δT

1
α ),

= P (|Fδ\Fρ| = 0)P (|Fρ| > 1),

ρ ≤ ηT
1
α , µ ≤ δT

1
α ),

= e−λν(Fδ\Fρ)
[

1− e−λν(Fρ) − λν(Fρ)e
−λν(Fρ)

]

,(2)

ρ ≤ ηT
1
α , µ ≤ δT

1
α ,

whereν(.) represents the Lebesgue measure onR
2. Note that

µ ≤ δT
1
α is automatically satisfied forT > 1, sinceµ ≤ δ

by construction. For large enoughT , η can be chosen small
enough to makeν(Fδ\Fρ) small enough withρ ≤ ηT

1
α . From

(2), it follows that if ν(Fδ\Fρ) is small enough, for large
enoughδ, there existsΛl

T = [λl1
T λl2

T ] ⊂ R, where ifλ ∈ Λl
T ,

thenP (closedFδ) > (12 )
1
6 . Thus, we have shown that for a

large enoughT , there exists a closed interval, such that ifλ
belongs to the closed interval then theP (closed face) > 1

2 ,
and hence the probability of percolation is zero.

Discussion:In this section we mapped the continuum per-
colation on the SIR graph into discrete percolation on the
hexagonal lattice to make use of the known results on the
discrete percolation on the hexagonal lattice. It is well known
that if the probability of any hexagonal face being closed is
more than 1

2 , then almost surely, the connected component
of hexagonal lattice is finite. Then we showed that with our
mapping, for large enoughT , the probability of a closed
face of the hexagonal lattice can be made more than1

2 for
a closed interval of node densities, and hence almost surely
the connected component of the SIR graph is finite.

B. Super-critical regime

In this section, we show that for small enoughT , there exists
a closed intervalΛu

T := [λu1
T λu2

T ], such that ifλ ∈ Λu
T , then

the probability of percolation is greater than zero. For theproof
provided in this section we need that the signal attenuation
function with distanceg(.) is monotonically decreasing and
satisfies

∫∞
0 xg(x)dx < ∞. Clearly, g(x) = x−α is not a

valid signal attenuation function for this subsection.
In this section we tileR2 into a square lattice, and define

each edge to beopen or closed to tie up the continuum
percolation on the PSG with the percolation on the square
lattice. LetS be a square lattice with sides := 1√

5
g−1 (MT )

as shown in Fig. 5, whereM ∈ R which will be chosen
later. LetS′ = S + ( s2 ,

s
2 ) be the dual lattice ofS obtained

by translating each edge ofS by ( s2 ,
s
2 ) as shown in Fig. 6.

Any edgee of S is defined to be open if there are one or
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2S  (e)
1

s

e
S  (e)

Fig. 5. Two-dimensional square lattice with edges.

e’

s

S

S
e

Fig. 6. Dual of the square lattice.

more than one nodes ofΦ in both the adjacent squaresS1(e)
andS2(e) as shown in Fig. 5, and the interference received
Iij =

∑

k∈Φ,k 6=i g(dkj) at any nodej ∈ S1(e) ∪ S2(e) is less
thanM, ∀ i ∈ S1(e) ∪ S2(e). Any edge ofS is defined to
be closed if it is not open. Any edgee′ ∈ S

′ is defined to
be open if and only if the corresponding edgee ∈ S is open.
Some important properties ofS andS′ are as follows.

Definition 5: Open component ofS is the sequence of
connected open edges ofS.

Lemma 1: If the cardinality of the open component ofS
containing the origin is infinite, then|Cx1 | = ∞.
Proof: Note that if an edgee ∈ S is open, then all the
nodes lying inS1(e) ∪ S2(e) are connected to each other,
since the distance between any two of them is less than
1√
5
g−1 (MT ), and hence the signal power is greater thanMT ,

while the interference power is less thanM , implying that
SIRij > T, xi, xj ∈ S1(e) ∪ S2(e). Thus, if there are infinite
number of connected open edges inS, then the number of
connected nodes ofΦ is also infinite.

Definition 6: A circuit in S or S
′ is a connected path of

S or S′ which starts and ends at the same point. A circuit in
S or S′ is defined to be open/closed if all the edges on the
circuit are open/closed inS or S′.

Lemma 2: [15] The open component ofS containing the
origin is finite if and only if there is a closed circuit inS′

surrounding the origin.
Next, we will show that for small enoughT , ∃ Λu

T =
[λu1

T λu2
T ], such that ifλ ∈ Λu

T , then probability of having
a closed circuit inS′ surrounding the origin is less than one,
and hence the probability of having an infinite open component
of S containing the origin is greater than zero. We take an
approach similar to [6].

Let Ae = 1 if there are one or more than one nodes of
Φ in both the adjacent squaresS1(e) and S2(e) of e, and
zero otherwise. Similarly, letBe = 1 if the interferenceIij
received at any nodej ∈ S1(e)∪S2(e) is less thanM, ∀ i ∈
S1(e)∪S2(e) and zero otherwise. Then by definition, an edge
e ∈ S is open ifCe = AeBe = 1. Now we want to bound the
probability of having a closed circuit surrounding the origin
in S. Towards that end, we will first bound the probability of
a closed circuit of lengthn, i.e.P (C1 = 0, C2 = 0, . . . , Cn =
0), ∀ n ∈ N consideringn distinct edges. LetpA := P (An =
0) for any n. SinceΦ is a PPP with densityλ, pA = 1 −
(1− e−λs)2. Then we have the following intermediate results
to upper boundP (C1 = 0, C2 = 0, . . . , Cn = 0).

Lemma 3:P (A1 = 0, A2 = 0, . . . , An = 0) ≤ pn1 , where
p1 = p

1/4
A .

Proof: Follows from the fact that in any sequence ofn edges
of S there are at leastn/4 edges such that their adjacent
squaresS1(e) ∪ S2(e) do not overlap. ThereforeP (A1 =
0, A2 = 0, . . . , An = 0) ≤ P (∩e∈OAe = 0), whereO is the
set of edges for which their adjacent squaresS1(e) ∪ S2(e)
have no overlap, and|O| = n/4. SinceS1(e) ∪ S2(e), e ∈ O
have no overlap, and eventsAe = 0 are independent fore ∈ O,
the result follows.

Lemma 4: [6, Proposition 2] For
∫∞
0

xg(x)dx < ∞,
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P (B1 = 0, B2 = 0, . . . , Bn = 0) ≤ pn2 , where p2 :=

e(
2λ
K

∫
g(x)dx−M

K ), andK is a constant.
Lemma 5: [6, Proposition 3] P (C1 = 0, C2 =

0, . . . , Cn = 0) ≤ (
√
p1 +

√
p2)

n.
Let q := (

√
p1+

√
p2). Using the Peierl’s argument, the next

Lemma characterizes an upper bound onq for which having
a closed circuit inS surrounding the origin is less than one.

Lemma 6: If q < 11−2
√
10

27 , then the probability of having
a closed circuit inS′ surrounding the origin is less than one.
Proof: From [15], the number of possible circuits of length
n around the origin is less than or equal to4n3n−2. From
Lemma 5, we know that the probability of a closed circuit of
lengthn is upper bounded byqn. Thus,

P (closed circuit around origin) ≤
∞
∑

n=1

4n3n−2qn,

=
4q

3(1− 3q)2
,

which is less than1 for q < 11−2
√
10

27 .
Theorem 2:For the PSG, where the attenuation function

g(.) is monotonically decreasing and satisfies
∫

xg(x)dx <
∞, for small enoughT , ∃ Λu

T = [λu1
T λu2

T ], such that ifλ ∈
Λu
T , then the probability of percolation on the PSG is greater

than zero.
Proof: From Lemma 6, we know that ifq < 11−2

√
10

27 , then
the probability of having a closed circuit inS′ is less than1.
Hence from Lemma 2, ifq < 11−2

√
10

27 , then the probability
of percolation on the PSG is greater than zero. Recall that
q =

√
p1 +

√
p2, wherep1 = (1 − (1 − e−λs)2)1/4, s =

1√
5
g−1 (MT ), and p2 := e(

2λ
K

∫
g(x)dx−M

K ). Next, we show
thatq can be made arbitrarily small for a closed intervalΛu

T =
[λu1

T λu2
T ] by appropriately choosingM for small enoughT .

Let M = 1/T , then p1 does not depend onM or T , and
p1 decreases to zero with increasingλ. Moreover, for small
enoughT with M = 1/T , depending onK, p2 can be made
arbitrarily small for values ofλ for which p1 is very small.
Thus, for small enoughT , there exists a value ofλ for which
q < 11−2

√
10

27 . Moreover, sinceq is a continuous function,
there exists a closed intervalΛu

T = [λu1
T λu2

T ] for which q <
11−2

√
10

27 , and consequently forλ ∈ Λu
T , the probability of

percolation on the PSG is greater than zero.
Discussion:In this section we mapped the continuum perco-

lation on the SIR graph into discrete percolation on the square
lattice. With a square lattice, it is known that if the probability
of having a closed circuit around the origin is less than one,
then with positive probability an unbounded connected cluster
is present in the square lattice. Then with our mapping, for
small enoughT , we showed that the probability of having a
closed circuit around the origin is less than one for a closed
interval of node densities. Consequently, for small enoughT ,
we concluded that the connected cluster of the SIR graph
is unbounded for a closed interval of node densities. Since
percolation happens for all non-zero values ofλ at T = 0,
by showing that percolation happens for small enoughT ,

our result loosely establishes the continuity of percolation at
T = 0.

Even though our result is only valid for small enoughT ,
we expect that for any value ofT , percolation can happen
only for a ”small” closed interval of node densities, if at all.
The justification for this claim is that for extremely small
values of node densities, the minimum distance between nodes
is large, and it is unlikely that SIR for large number of
nodes is larger thanT , while for extremely large values of
node densities, interference is significant and it is difficult for
sufficient number of nodes to have SIR greater thanT .

After having established that percolation happens on the SIR
graph for a small enough thresholdT , the next natural question
to ask is: whether the SIR graph is connected for small enough
T , where by a connected graph we mean that there is a path for
each node to any other node in the graph. Since the probability
of SIR graph being connected in an infinite plane with any
node density is zero, we restrict ourselves to an unit square
wheren nodes are uniformly distributed, and ask the question
whether the SIR graph restricted to an unit square is connected
for small enoughT in the next Section.

IV. CONNECTIVITY ON THE SIR GRAPH

For studying the SIR graph connectivity, we restrict our-
selves to an unit square and assume thatn nodes ofΦn =
{x1, . . . , xn} are drawn independently from an uniform distri-
bution on the unit square. Following Section II, the SIR graph
on the unit square is defined asSG(T, 1) := {Φn, En}, where
En = {(xi, xj) : SIRij ≥ T }, andSIRij :=

g(dij)∑
k∈Φn,k 6=i g(dkj)

.

Definition 7: The SIR graphSG(T, 1) is defined to be
connected if there is a path fromxi → xj in SG(T, 1), ∀i, j =
1, 2, . . . , n, i 6= j.

To analyze the connectivity of the SIR graph, we color the
nodes ofΦ with C(n) colors, where nodes assigned different
colors correspond to having orthogonal signals in either time
or frequency. Graph coloring is a mapC : Φ → [C(n)], such
that C(xm) = c(xm), c(xm) ∈ [C(n)]. Coloring ensures that
only those signals transmitted from the similarly colored nodes
interfere with each other. Then the colored SIR graph is de-
fined asSG(T, 1, C(n)) := {Φn, En}, whereEn = {(xi, xj) :

SIRij ≥ T }, and SIRij :=
g(dij)∑

k∈Φn,k 6=i,c(xk)=c(xi)
g(dkj)

, and

SG(T, 1, C(n)) is defined to be connected if there is a path
from xi → xj in SG(T, 1, C(n)) ∀, i, j = 1, 2, . . . , n, i 6= j.

Note thatSG(T, 1) = SG(T, 1, 1). In the next Theorem,
we find an upper bound onC(n) for which SG(T, 1, C(n))
is connected.

A. Upper bound onC(n)

For generality, we will prove the upper bound for the
singular path-loss modelg(dij) = d−α

ij , which easily extends
to all other path-loss models with monotonically decreasing
g(.) and

∫

xg(x)dx < ∞. The main result of this subsection
is as follows.

Theorem 3:If C(n) > 4(1 + δ)c logn colors are used
for coloring the SIR graphSG(T, 1, C(n)), where c and δ
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Fig. 7. Square tiling of the unit square.

are independent ofn, then the SIR graphSG(T, 1, C(n)) is
connected with high probability.
Proof: Consider a1× 1 squareS1. We assume thatn nodes
are distributed uniformly inS1. We tileS1 into smaller squares

sij with side
√

c log n
n as shown in Fig. 7. Let the number of

nodes lying insij be |sij |. Let the set of colors to be used
be C(n) := {c1, c2, c3, c4}, where|cℓ| = (1 + δ)c logn, ℓ =
1, 2, 3, 4, and cℓ ∩ ck = φ, ∀ ℓ, k. Colors from setc1 and c2
are associated with alternate rows in odd numbered columns,
while setss3 ands4 are associated with alternate rows in even
numbered columns in the tilting ofS1 usingsij as shown in
Fig. 8. Nodes in each smaller squaresij are colored as follows.
Let the nodes lying in eachsij be indexed using numbers1
to |sij |. Then we associate(1 + δ)c log n colors to eachsij
in a regular fashion, i.e. color of nodep, p = 1, . . . , |sij | is p
mod (1+ δ)c logn. SinceE{|sij |} = c logn, ∀ i, j, from the

Chernoff bound,P (|sij | > (1 + δ)c log n) ≤ n
−cδ2

3 . Hence
with this coloring, the probability that there are two or more
nodes with the same color in a given squaresij is

P (two nodes with the same color insij) ≤ n
−cδ2

3 . (3)

Consider another squarest(m) with side
√

m logn
n centered

at any nodext as shown in Fig. 9, wherem < c is a constant.
Again, using the Chernoff bound as above, we have that

P
(

|st(m)| < m

2
logn

)

≤ n−2. (4)

Now define events Eij =
{two nodes with the same color insij}, and

Ft(m) = {there are less than
m

2
log n nodes inst(m)}.

c2

1
c4

c3

c

Fig. 8. Coloring the square tiling of the unit square with four sets of colors.

Then the probability that the SIR graph is connected
P (SG(T, 1, C(n)) is connected) can be written as
P (SG(T, 1, C(n)) is connected)

= P (∩ijEij ∪ ∩tFt(m))

P (SG(T, 1, C(n)) is connected| ∩ij Eij ∪ ∩tFt(m))

+ P ((∩ijEij ∪ ∩tFt(m))c)

P (SG(T, 1, C(n)) is connected| (∩ijEij ∪ ∩tFt(m))
c
) .

Using the union bound over all squaressij , and over all
nodesxt, together with (3), and (4), it follows thatP (∩ijEij∪
∩tFt(m)) ≤ n−1 + n1− cδ2

3 . Thus, for large enoughn,

P (SG(T, 1, C(n)) is connected) ∼

P (SG(T, 1, C(n)) is connected| (∩ijEij ∪ ∩tFt(m))c) .

Hence in the sequel, we analyze the SIR connectivity while
conditioning on the event that no squaresij has more than
two nodes with the same color, and each squarest(m) has at
least m2 logn nodes.

Now, under the conditioning, to show that the SIR graph is
connected, it is sufficient to show that for anyt = 1, . . . , n, xt

is connected to all nodes inst(m) in the SIR graph. Towards
that end, letxu, u 6= t be any other node inst(m). Then
the distance betweenxt and xu, dtu, is upper bounded by
√

2m logn
n , thus the signal powerd−α

tu ≥
(

2m logn
n

)−α/2

.
Now consider Fig. 9 for analyzing the interference power at
xu. Without loss of generality assume thatxt belongs to the
square associated with color setc1. Note that even ifxt and
xu belong to the same squaresij , there is no other node
in sij that has the same color asxt. So the interference
received atxt is attributed to nodes lying in squaresi′j′
associated with color sets1, where eitheri′ 6= i or j′ 6= j.
From Fig. 9, it is clear that for anyq, q = 1, 2, . . . , n,
there are maximum8 nodes using the same color asxt, at

a distance at least2q

(

√

c logn
n −

√

m logn
n

)

from xu, since
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Fig. 9. Pictorial description of distance from nearest interferers after coloring.

d1, . . . , d7 ≥
(

√

c logn
n −

√

m logn
n

)

. Thus, the interference

power

∑

v 6=t,c(xv)=c(xt)

d−α
vu ≤

n
∑

q=1

8
(

2q

(

√

c logn
n −

√

m logn
n

))α .

Sincem < c is a constant,
(

√

c logn

n
−
√

m logn

n

)

≥ β

(

√

c logn

n

)

for someβ > 0. Hence

∑

v 6=t,c(xv)=c(xt)

d−α
vu ≤ 8

(2β)α
(

c log n
n

)α/2

n
∑

q=1

q−α. (5)

Since
∑n

q=1 q
−α converges forα ≥ 2, let c5 :=

∑n
q=1 q

−α.
Then, computing the SIR, we have

SIRtu =
d−α
tu

∑

v 6=t,c(xv)=c(xt)
d−α
vu

≥
cα/2

(

m
2β

)−α/2

8c5
,

which can be made more thanT , the SIR thresh-
old, by appropriately choosingc and m. For exam-
ple, for α = 2, for c > 3βT

2π2m , SIRtu >
T . Thus, for an appropriate choice ofc and m,

P (SG(T, 1, C(n)) is connected| (∩ijEij ∪ ∩tFt(m))c) =
1, and

lim
n→∞

P (SG(T, 1, C(n)) is connected) = 1.

Discussion:Theorem 3 implies thatO(log n) colors are
sufficient for guaranteeing the connectivity ofSG(T, 1, C(n))
with high probability. The intuition behind this result is that
if only n/log(n) nodes interfere with any node’s transmission
then the total interference received at any node is bounded
with high probability, and each node can connect to a large
number of nodes. In the next subsection we show that ac-
tually C(n) = O(logn) colors are also necessary for the
SG(T, 1, C(n)) to be connected with high probability, and if
C(n) is less than orderlogn, then the interference power can
be arbitrarily large and difficult to bound, makingSG(T, 1)
disconnected with high probability.

Remark 2:Recall that SIR connectivity has been studied
in [11] under the physical model, where it is shown that
if simultaneously transmitting nodes are at least∆ distance
away, then all the nodes within a fixed radius from the active
transmitters have SIR’s greater than the specified threshold
for large enough∆. The result of [11], however, is valid only
for α > 2. In comparison, our result is valid for allα for
which

∑∞
n=1 n

−α is finite. Our approach is similar to SIR
connectivity analysis of the one-dimensional case [10], where
n nodes are uniformly distributed in the unit interval.
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B. Lower bound onC(n)

In this section we show that if less than orderlog(n)
colors are used, then the SIR graph is disconnected with high
probability. To show this, we actually show that any node is not
connected to any other node with high probability if less than
orderlog(n) colors are used. For proving this lower bound we
will restrict ourselves to path-loss models with monotonically
decreasingg(.) and

∫

xg(x)dx < ∞, since with singular path-
loss models,g(dij) = d−α

ij , the signal power between any two
nodes cannot be bounded. Formally, our result is as follows.

Theorem 4:For path-loss models with monotonically de-
creasingg(.) and

∫

xg(x)dx < ∞, if C(n) = Tf(n)
ω , where

limn→∞
f(n)
logn = 0, i.e. C(n) is sub-logarithmic inn, and

ω is a constant, then the SIR graphSG(T, 1, C(n)) is not
connected with high probability.
Proof: To show thatC(n) = O(log n) is necessary for
guaranteeing the connectivity ofSG(T, 1, C(n)) with high
probability, similar to last subsection, we consider the tiling

of the unit squareS1 by squaressij , but with side
√

logn
n ,

instead of
√

c log n
n as shown in Fig. 5.

With this tiling, the expected number of nodes in any square
E{|sij |} = logn, andP (|sij | < (1 − δ) log n) ≤ n−δ2/2, for
any 0 < δ < 1. Therefore withC(n) = Tf(n)

ω colors, where
limn→∞

f(n)
logn = 0, with high probability, there are at least

ω/T nodes in each square using one particular colorcp ∈
C(n). Let Φcp = {xm : c(xm) = cp, xm ∈ sij} be the set of
nodes in squaresij that use the colorcp. Note that|Φcp | >
ω/T with high probability. Consider two nodesxk, xm ∈ Φcp ,
and any other nodexℓ ∈ sij . By the definition ofsij , the
distance between nodexm andxℓ, dmℓ is no more thandkℓ+
√

2 log n
n . Therefore the interference received atxℓ from nodes

inside sij using color c is
∑

xm∈Φcp ,m 6=k g (dmℓ) which is

greater than(ω/T−1)g

(

dkℓ +
√

2 log n
n

)

since|Φcp | > ω/T .

Thus the SIR betweenxk andxℓ is

SIRkℓ ≤ g(dkℓ)

(ω/T − 1)g

(

dkℓ +
√

2 logn
n

) .

Sinceg(.) is bounded, choosingω appropriately,SIRkℓ < T .
Thus, we have shown that nodexk is not connected to any
node insidesij . Similarly, it follows that xk ∈ sij is not
connected to any node outside ofsij , since for xp /∈ sij ,
the signal powerg(dkp) is less compared tog(dkℓ) the signal
power at any nodexℓ ∈ sij , while the interference powers at
xp /∈ sij andxℓ ∈ sij are identical. Thus, we conclude that if
less than orderlogn colors are used, thenSG(T, 1, C(n)) is
not connected with high probability.

Discussion:In this subsection we showed that if less than or-
der logn colors are used, then the SIR graphSG(T, 1, C(n))
is disconnected with high probability. This result holds for any
SIR thresholdT , and hence even for small enoughT , the SIR
graph cannot be connected by using a single color. This result
is in contrast to our percolation result where we showed that

for small enoughT , percolation happens for a closed interval
of node densities.

V. CONCLUSION

In this paper we studied the percolation and connectivity
properties of the SIR graph. The analysis is complicated since
the link formation between any two nodes depends on all the
other nodes in the network (through their interference contri-
bution) and entails infinite range dependencies. For studying
percolation on the SIR graph, we tied up the continuum
percolation on the SIR graph to discrete percolation for which
prior results are known. For finding a sub-critical regime, we
made use of the hexagonal lattice, while for the super-critical
regime percolation on the square lattice is considered. We
showed the existence of a closed interval of node intensities
for which the SIR graph percolates or not depending on the
SIR threshold. Ensuring connectivity is a stricter condition
compared to percolation, since with connectivity every pair of
nodes should have a path between them. We took the graph
coloring approach for studying connectivity on the SIR graph,
and found upper and lower bounds on the number of colors
required for guaranteeing connectivity with high probability.
The derived upper and lower bounds are tight, and from
which we conclude that using colors that are logarithmic in
the number of nodes is necessary and sufficient for ensuring
connectivity in the SIR graph with high probability.
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