
Di-Sec: A Distributed Security Framework for
Heterogeneous Wireless Sensor Networks
Marco Valero∗†, Sang Shin Jung∗†, A. Selcuk Uluagac†, Yingshu Li∗ and Raheem Beyah†

∗Department of Computer Science †GT CAP Group, The School of ECE
Georgia State University Georgia Institute of Technology

Atlanta, Georgia 30303,USA Atlanta, GA 30332, USA
{mvalero, yli}@cs.gsu.edu {sjung36@, selcuk@ece., rbeyah@ece.}gatech.edu

Abstract—Wireless Sensor Networks (WSNs) are deployed for
monitoring in a range of critical domains (e.g., health care,
military, critical infrastructure). Accordingly, these WSNs should
be resilient to attacks. The current approach to defending against
malicious threats is to develop and deploy a specific defense
mechanism for a specific attack. However, the problem with this
traditional approach to defending sensor networks is that the
solution for the Jamming attack does not defend against other
attacks (e.g., Sybil and Selective Forwarding). In reality, one
cannot know a priori what type of attack an adversary will
launch. This work addresses the challenges with the traditional
approach to securing sensor networks and presents a comprehen-
sive framework, Di-Sec, that can defend against all known and
forthcoming attacks. At the heart of Di-Sec lies the monitoring
core (M-Core), which is an extensible and lightweight layer that
gathers statistics relevant for the defense mechanisms. The M-
Core allows for the monitoring of both internal and external
threats and supports the execution of multiple detection and
defense mechanisms (DDMs) against different threats in parallel.
Along with Di-Sec, a new user-friendly domain-specific language
was developed, the M-Core Control Language (MCL). Using the
MCL, a user can implement new defense mechanisms without
the overhead of learning the details of the underlying software
architecture (i.e., TinyOS, Di-Sec). Hence, the MCL expedites the
development of sensor defense mechanisms by significantly sim-
plifying the coding process for developers. The Di-Sec framework
has been implemented and tested on real sensors to evaluate
its feasibility and performance. Our evaluation of memory,
communication, and sensing components shows that Di-Sec is
feasible on today’s resource-limited sensors and has a nominal
overhead. Furthermore, we illustrate the basic functionality of
Di-Sec by implementing and simultaneously executing DDMs
for attacks at various layers of the communication stack (i.e.,
Jamming, Selective Forwarding, Sybil, and Internal attacks).

Index Terms—Wireless Sensor Network Security, Distributed
Security Framework, M-Core Control Language (MCL)

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are no longer a nascent
technology and are deployed in diverse application domains
(e.g., health care, military, environment). Moreover, with re-
cent initiatives such as Cyber-Physical Systems [1], Internet of
Things [2], and Planetary Skin [3], sensor-based applications
have gained new momentum in the research community.
WSNs have been predicted to be one of the ten technologies
that will change the world in the next 10 years [4].

Over the last decade, the WSNs research community has
identified many unique security threats. There has been a

tremendous effort to build mechanisms to defend against
these threats and a myriad of security solutions have been
proposed. However, the trend with different security schemes
so far has been to focus on defending against individual
threats/attacks rather than on developing a comprehensive se-
curity solution. We observe several legitimate reasons for this
trend. First, sensors are limited in terms of energy, memory,
and computational resources and this situation poses unique
challenges for protocol builders. Second, sensors were initially
considered to be deployed for single-task applications; thus,
the threat models envision the protection against only single
attacks. Third, the sensor research was evolving and the sensor
software and hardware platforms were not as rich and mature
as they are today.

However, the traditional method of defending against only a
certain attack does not eliminate the risk of other attacks. For
instance, the solution for the Jamming attack does not defend
against other attacks (e.g., Sybil, Selective Forwarding). The
traditional approach to securing WSNs requires the unrealistic
assumption that the attacker will only employ the attack
for which the network is prepared to defend. In fact, one
cannot know a priori what type of attack an adversary will
launch. Given the multifaceted threats on today’s networks,
the network must be prepared to defend against one or more
attackers launching single or multiple attacks simultaneously
at different places in the network. Keeping this realistic threat
model in mind, WSNs must be prepared to defend against all
known attacks at any given time [5].

Hence, in this work, we present a comprehensive security
framework, Di-Sec, that could defend against all known threats
for WSNs. To the best of our knowledge, there is not a
solution that can defend against all known attacks in realistic
situations. Although the previous security mechanisms are well
established for each individual layer of the communication
stack or individual attack, combining all of the mechanisms
and making them work in collaboration is a challenging
research problem [6]. In fact, our earlier work in this domain
[5] also studied this problem. However, it was at a macroscopic
level focusing on overall challenges with the framework at
the network level. The work was evaluated using simula-
tions. Therefore, in this work, we designed, developed and
implemented a framework that can provide generic security
to WSNs using real sensors, with the focus at the node level.
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Moreover, motivated by the future applications of sensors and
the growing interest [2] to integrate these resource limited
devices with more powerful infrastructures, Di-Sec provides an
architecture for heterogeneous sensor networks where there is
a combination of high-end sensors along with low-end sensors
to define a general framework for security. The approach
is also beneficial because providing defenses for all known
attacks at different layers would not be possible with the low-
end sensor nodes memory and other constraints, and using
only high-end sensor nodes (cluster-heads) introduces high
deployment costs.

Di-Sec was built with highly modular components and
a flexible architecture atop the TinyOS operating system.
The novel architecture of Di-Sec includes two fundamental
components: the Monitoring-Core (M-Core) and Detection and
Defense Modules (DDMs). Conceptually, the M-Core is the
the heart of Di-Sec and is an extensible and lightweight layer
that is responsible for gathering specific statistics to support
the operations of the DDMs. The M-Core is a simple yet
effective novel component-based solution for monitoring of
both internal and external threats. The M-Core can support
the execution of new or existing DDMs against different
threats in parallel. On the other hand, DDMs are specific
attack detection and/or defense mechanisms, but can also be
used as conduits to provide services to other layers. Each
DDM would include the implementation of the necessary
behavior utilizing the M-Core services. Furthermore, to easily
use the Di-Sec framework to access and activate the services
provided by M-Core, we have created a new domain specific
language named the M-Core Control Language (MCL). Using
the MCL, a user can implement new defense mechanisms
without the overhead of learning the details of the underlying
software architecture (i.e., TinyOS, Di-Sec). Hence, the MCL
expedites the development of sensor defense mechanisms by
significantly simplifying the coding process for developers.

We have implemented the Di-Sec framework and tested it
on real sensors to evaluate its feasibility and performance.
Our evaluation of memory, communication, and sensing com-
ponents shows that Di-Sec is feasible on today’s resource-
limited sensors and has a nominal overhead. Furthermore,
the comprehensive architecture of Di-Sec framework allowed
us to simultaneously implement four detection and defense
mechanisms that span different layers of the sensor communi-
cation stack (i.e., Jamming, Sybil, Selective Forwarding, and
Internal attacks).We show that Di-Sec’s flexible and modular
architecture can be easily extended to defend against new and
forthcoming attacks.

Our contributions in this paper are the following: We
(1) realize an extensible architecture that can rapidly allow
the implementation and execution of multiple attack defense
and detection mechanisms simultaneously; (2) present a new
domain specific language to significantly simplify the develop-
ment of new defense mechanisms; and (3) illustrate scenarios
for single and multiple simultaneous attacks and how Di-Sec
can host multiple defense mechanisms to stop the attacks.
Note that the code and more information about the Di-Sec

are available online at [7].
The rest of the paper is organized as follows. Related work

is discussed in Section II. Section III presents the network
and threat model and also describes the overview of the Di-
Sec framework. The details of the framework are explained
in Section IV. The M-Core Control Language is formally
introduced in Section V and a sample usage is also given
in the same section. The performance evaluation of Di-Sec on
real sensors is presented in Section VI. We conclude the paper
and discuss the future work in Section VII.

II. RELATED WORK

The issue of providing security for WSNs is a significant
and open research problem which has been discussed exten-
sively in earlier studies. Some studies provide classifications
and address the relevant issues from a general perspective
[8], [9]. Other studies focus only on a particular layer of
protocols [8], [10], [11] identifying various common attacks
like Jamming (physical layer), Sybil (MAC layer), and Se-
lective Forwarding (network layer). The common drawback
with earlier security schemes is the fact they were designed
to defend against only individual threats/attacks rather than
a comprehensive security solution. However, these are very
useful studies and in fact, many of our design choices in Di-
Sec stem from them.

Although Di-Sec is not solely an intrusion detection system
(IDS) per se, it is a pertinent area to Di-Sec because using
the facilities provided in our framework, an IDS could be
implemented. In [12], the authors propose a hierarchical
framework for intrusion detection (ID). However the focus of
this work is on providing solutions to only a specific subset of
sensors called industrial sensor networks rather than providing
a generic solution. Although this study claims to support
several attacks using real sensors and report the performance
of intrusion detection via real experiments, there is no explicit
evaluation of the performance of each defense mechanism
on sensors. For instance, the implementation details and the
overhead and cost associated with the design were not an-
alyzed. In the neighbor-based IDS scheme [13], the authors
implemented an IDS on TinyOS and evaluated accuracy of
the neighbor-based technique in detection of Selective For-
warding, Jamming and Hello Flood attacks. However, similar
to [12] the focus is on the performance (i.e., the accuracy of
detection) of the IDS rather than a generic security framework.
In [14] a framework of a machine learning based IDS for
WSNs was presented without any evaluation of the scheme;
only the rules for the proposed IDS was listed without any
results and real experiment on sensors. In [15], embedded
sensor networks were utilized to supplement wireless intrusion
detection systems (WIDSs) on physical site surveillance and
security tasks. However, the main aim of this work is to aid
current WIDSs in physical security via deployed sensors rather
than designing an IDS framework for WSNs. On the other
hand, the IDS works in [16], [17] only treat the matter via
simulations without real experiments.
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Di-Sec is fundamentally different from previous approaches
in several ways. First, Di-Sec is neither an IDS nor a solution
to a specific attack. It is a generic modular security framework
for heterogeneous WSNs that can be easily extended and
enhanced, used to develop solutions for any type of attacks.
Given the facilities provided by Di-Sec, an IDS can also be
implemented in our framework. By default, the Di-Sec frame-
work supports solutions on real sensors to several attacks at
different layers of the communication stack including Jamming
(physical layer), Sybil (MAC layer), Selective Forwarding
(network layer). It also supports internal threats detection
with the M-Core. The Di-Sec architecture was designed with
modularity and flexibility in mind to ensure compatibility with
future applications.

Although the general idea of Di-Sec was discussed in our
earlier work [5], the focus was more on theoretical aspects at
a macroscopic level focusing on overall challenges with the
framework at the network level, and the work was evaluated
using simulations. However, Di-Sec was implemented and
tested on real sensors to evaluate its feasibility and perfor-
mance, with the focus at the node level. Moreover, along
with Di-Sec, a new user-friendly domain-specific language
called the M-Core Control Language (MCL) was developed
to expedite the development of sensor defense mechanisms.

III. SYSTEM OVERVIEW

In this section, we introduce the network model, the threat
model, and briefly describe the overall architecture of the Di-
Sec framework.

A. Network Model

We consider heterogeneous WSNs in this work, where
there are two kinds of nodes, regular nodes and cluster heads
(CHs). Regular nodes have limited energy, poor computation
ability, short sensing, and small transmission ranges while
CHs have plentiful resources including more energy, a larger
memory size, stronger communication ability, and more pow-
erful computation ability. In our model, we have a network
represented as an undirected graph G = (V,E), where each
edge (u, v) ∈ E represents a communication link between
nodes u and v, and each sensor v ∈ V collects data from one
of its sensing components and forwards the values through one
or multiple hops to the CH for further processing, analysis, and
storage.

B. Threat Model and Assumptions

We assume the malicious node is structurally the same as
the regular nodes, and possess hardware capabilities either
similar to or higher than that of legitimate nodes. We assume
that an adversary can compromise a node. An attacker can
launch multiple attacks on the cluster and also may change
his position to target other regions of the cluster.

C. Di-Sec Overview

The Di-Sec framework runs on TinyOS. TinyOS is a
modular operating system based on components that are

wired together through interfaces to create applications with
different functionalities. Using this operating system feature,
we designed the Di-Sec framework with a highly modular
architecture where every component is independent, and can
be easily added and removed without affecting the rest of the
framework.

To create a comprehensive security solution, we analyzed
the functionality of WSN devices and the variety and nature
of WSN attacks. Three important functions of sensor devices
include sensing physical or environmental conditions, process-
ing collected data, and communicating with other sensors. The
latter one is main target of attacks. Given the broadcast nature
of the wireless medium used by sensors to communicate, it
is very attractive and easy for adversaries to launch attacks
against communication channels. Therefore, we created a com-
munication module that controls everything that is transmitted
and received through the radio transceiver. Accordingly, the
communication module is the main data source component that
feed the Di-Sec framework. Moreover, at the heart of Di-Sec
we store and analyze all the collected data to provide useful
information for security. Our framework is flexible enough
to be integrated with existing security solutions and to be
used to create new detection and defense mechanisms using
the provided services. The Di-Sec framework is completely
invisible to the upper layers since it does all the data collection,
processing and security execution independent of the upper
layers.

IV. DI-SEC FRAMEWORK

In this section, we discuss the architecture of Di-Sec in
detail. It consists of four main components that have a unique
and important role in the framework: the Monitoring-core
(M-Core), Communication Module (COMM), Sensing Module
(Sense), and Detection and Defense Modules (DDMs). The
complete framework was implemented in TinyOS-2.x and
tested using Tmote Sky sensors. The general Di-Sec archi-
tecture is shown in Figure 1. Along with the framework,
we implemented four default DDMs using Di-Sec to defend
against Jamming, Sybil, Selective Forwarding, and Internal
attacks.

A. The Monitoring Core (M-Core)

The M-Core is the heart of the Di-Sec framework. It
provides a novel way to aggregate and distribute information
used for the defense against both internal and external threats.
All the data and packets going through the Sense and COMM
modules are also passed to the M-Core for collection and
analysis. In order to reduce the complexity of the imple-
mentation and increase the flexibility and modularity of our
framework, the M-Core was divided into sub-components,
each of which provide some specific services to the DDMs.
Table I summarizes some of the services provided by the M-
Core. It is important to note that any of these sub-components
can be removed or replaced, and more sub-components can be
added to enhance the M-Core functionality.
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Fig. 1: Di-Sec Architecture.

TABLE I: M-Core Sub-Components

Component Interface Commands/Events Action
channelScan channelinfo getConsecutiveSuccess Returns the number of consecutive successfully sent packets

getpps Returns the number of received packets per second
setThreshold Sets threshold for acceptable consecutive sent packets rate

packetCount packetcount getPacketCount Returns the total number of received packets
lostPacket Returns the number of packets lost by each node

RSSI rssivalue getRssiTable Returns neighbors RSSI table
initRssiTable Initializes the neighbors RSSI table

Sensing sensingstat getAvgSenseValue Returns the average sensed value aggregated at the M-Core
neighborsComm neighbors request Triggers a neighbor discovery message
currentNeighbors neighborsinfo getNeighbors Returns the number of current neighbors

initNeighbors Initializes current neighbors table
packetInformation packetsinfo getTable Return the packets information table

initTable Initializes packet information table

B. The Communication Module (COMM)

The communication module provides the main communi-
cation interfaces: AMSend, Receive, Packet, and AMPacket.
When using the Di-Sec framework, all the packets will pass
through the communication module. For each outgoing packet,
the COMM module notifies the M-Core whether the trans-
mission was successful or not. For all incoming packets, the
COMM module passes a copy to the M-Core even though
the packet is not addressed to that sensor node. The COMM
module is also in charge of adding Di-Sec headers to all
outgoing packets before transmitting them and analyzing the
headers when packets arrive. The purpose of Di-Sec headers
is to facilitate control of the communications and also for
the multiplexing of the messages. The defense, detection
and other modules inside the M-Core can also communicate
securely with the same M-Core modules in other sensors
through the COMM module. All the packets sent by the
COMM module are encrypted using the embedded AES-128

encryption provided by the CC2420 radio transceiver.
To increase the simplicity of activating and utilizing the

Di-Sec framework, we assigned the COMM module to be the
framework’s activation component. Users can easily enable the
Di-Sec framework by adding the COMM module and wiring it
to their applications as shown in Listing 1. Note that this setup
is automatically generated by the M-Core Control Language
introduced in section V.

Listing 1: How to Enable Di-Sec.
components new Comm(AM MSG) ;
MainC . So f twa re In i t−>Comm. I n i t ;
App . Packet −> Comm;
App .AMSend −> Comm;
App . Receive −> Comm;

C. The Sensing Module (Sense)

Similar to the COMM module, we added to our framework
the capability to intercept, monitor, and record all internal
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sensing measurement values and requests. We implemented
a sensing component to facilitate upper layers to get informa-
tion such as the temperature, humidity, total solar radiation,
photosynthetically active radiation, and internal voltage by
calling simple commands like sensing.getTemperature() or
sensing.getHumidity(). The main functionality of this module
in our framework is the capability to monitor internal sensing
activities. In this way, the sensing component is used to
supplement the DDMs security mechanisms.

D. The Detection and Defense Modules (DDMs)

The final components of the Di-Sec framework are the
detection and defense modules. DDMs are specific attack
detections and/or defenses mechanisms against threats, but
can also be used as conduits to provide services to other
layers. Each DDM would include the implementation of the
necessary behavior utilizing the M-Core services. Like the M-
Core sub-components, the DDMs have a modular architecture
and can be added, removed, and replaced without affecting
the rest of the framework. In order to not restrict the Di-Sec
framework to only DDMs implemented for our architecture,
we allow the DDMs to communicate and collaborate with
external security mechanisms as well. This feature enhances
the main functionality of the DDMs. For instance, a network
layer that implements a secure ad hoc on demand distance
vector (AOVD) routing algorithm does not have to be ported
into our framework, but it can use the services provided by
the M-Core through the easy implementation of a DDM that
will actually act as an information conduit.

Moreover, we implemented four different detection and de-
fense mechanisms against Jamming (DDM1), Sybil (DDM2),
Selective Forwarding (DDM3), and Internal attacks (DDM4)
which are distributed with the framework as default DDMs.

Note that the details for the behavior and implementation
of each individual attack are discussed in the performance
evaluation section along with the results.

V. M-CORE CONTROL LANGUAGE (MCL)

To easily use the Di-Sec framework, we have created a
new domain specific language: the M-Core Control Language
(MCL). In this section, we introduce MCL, present the formal
grammar of the language, and show how it can be used
to activate, deactivate or create new detection and defense
modules with an example.

A. Rationale for the MCL & Formal Definition

Di-Sec was designed to provide a comprehensive security
framework to programmers when implementing DDMs. How-
ever, a programmer who would like to use the framework
would still need to do some additional implementation (e.g.,
wiring in TinyOS) to take advantage of the existing DDMs or
to create new ones. Moreover, this situation may be exacer-
bated given the sophistication needed to implement programs
on sensors for a novice programmer. The MCL has been de-
signed to address this issue. It utilizes the sub-modules defined
in the M-Core and simplifies the programmer’s work to easily

TABLE II: The Keywords of MCL.

Keywords Descriptions

START Starts the program

END Ends the program

ACTIVATE(module
name, time)

Activates an existing module name at
specific time (ms)

STOP(module name) Deactivates an existing module name

SET(variable name,
attribute, value) Creates a new variable with a value

ASSOCIATE(module
name, interface
name . . . )

Associates a module name with one or
more interface name

DISSOCIATE(module
name, interface
name . . . )

Dissociates a module name with one
or more interface name

NEW(module name,
interface name . . . )

Creates a new detection and defense
module

activate, deactivate or create their own new defense mech-
anisms by automatically generating important programming
components needed for the underlying Di-Sec architecture
(e.g., configuration files, module files and wiring). The MCL
is a language that consists of a small set of keywords. The
formal definition of the grammar of MCL using the Extended
Backus-Naur Form (EBNF) is given in Listing 2. Also, the
list of all the keywords in the MCL and their descriptions are
tabulated in Table II. A program written with the MCL starts
and ends with the keywords, START and END. Between these,
one can use the other keywords ACTIVATE, STOP, or NEW
to activate, deactivate or create the modules respectively. A
programmer can even define his/her own variables using the
SET keyword.

Listing 2: Formal definition of MCL with EBNF.
MCL : : = ’START’ , SPACES,

{ KEYWORDS, ’ ( ’ , EXPRESSIONS, ’ ) ’ , SPACES } ,
’END’ ;

KEYWORDS : : = ’ACTIVATE ’ | ’STOP’ | ’SET ’ |
’ASSOCIATE ’ | ’DISSOCIATE ’ | ’NEW’ ;

EXPRESSIONS : : = PARAMETERS, { [ ’ , ’ , SPACES,
PARAMETERS ] } , [ ’ , ’ , SPACES, VALUE ] ;

PARAMETERS : : = [ a−zA−Z]\w∗ ;

VALUE : : = \d∗ ;

SPACES : : = ’ ’∗ ;

B. Sample Usage

In this sub-section, we show a sample usage of the MCL.
In our realistic scenario, the user implements a secure WSN
program using the MCL to protect against several attacks. The
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Fig. 2: A realistic example usage of MCL.

MCL written by the user is given in Figure 2 (code snippet in
the middle). Specifically, the user instructs Di-Sec to activate
and deactivate the existing defense and detection modules D1,
D2, and D3. The user also adds a new module, D4, into Di-
Sec and sets the specific activation time and specifies that
it use the cpucycles sub-component of the M-Core. In the
example, ACTIVATE enables D1 and specifies D1’s starting
time. ASSOCIATE is used to connect the D1 to the sub-
modules of M-Core in Di-Sec. Also, STOP simply disables D2
and D3 which will not be used at run time and disconnects
them from the sub-modules. Moreover, NEW adds the new
D4 module configurations into Di-Sec and generates a new
template file for the D4 module implementation. With this one
keyword (NEW), the users can start writing their own DDMs in
the template file without worrying about the underlying details
of the Di-Sec and TinyOS. As seen in the figure, a user would
be able to handle existing DDMs and create new ones with
simple keywords. Most importantly, the conversion from the
MCL to the necessary underlying components (i.e., side files
in Figure 2) of the Di-Sec framework and the integration with
Di-Sec are automatically handled by the MCL.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the Di-Sec
framework on real sensors in two dimensions: (1) We evaluate
the different components’ storage costs (RAM and ROM), the
CPU overhead, and communication overhead on individual
sensors; (2) We analyze and present the results of the Di-Sec
framework in realistic attack-defense scenarios demonstrating
Jamming, Sybil, Selective Forwarding, and Internal attacks.
We verify that the Di-Sec framework can successfully defend
against these and other attacks.

A. Individual Sensor Evaluation

In our evaluation, we present 9 configurations with different
components and analyze the cost of each of them. We have 2
configurations for the upper layer and 7 Di-Sec configurations.
In this experiment, the upper layer is an application layer

provided with the default installation of TinyOS: RadioCount-
ToLeds.

The 2 application layer configurations are Plain and Plain
with Security. The first one represents the plain applica-
tion layer without any additions as provided with TinyOS.
For the second one, we enabled encrypted communications
provided by the CC2420 chip through the SecAMSenderC
component. On the other hand, the 7 Di-Sec configurations
include: M-Core-Plain which is the basic M-Core configu-
ration with no other enabled components. M-Core(Security)
has encryption enabled. M-Core(Security+Sensing) adds
the sensing component to the previous configuration. M-
Core(Security+Sensing+DDM1) is the previous configuration
plus jamming defense and detection module. In the same way,
DDM2, DDM3, and DDM4 represent detection and defense
modules against Sybil, Selective Forwarding, and Internal
threat respectively.

The costs of the different components in terms of storage
are presented in Table III. For ROM, we observe that the
sensing component and the security (encryption) component
have the largest storage costs with 7930 bytes and 3696
bytes, respectively. When considering RAM utilization, M-
Core-Plain has the greatest cost (598 bytes) which is expected
because the plain M-Core includes all the submodules previ-
ously discussed.

In Table IV the CPU overhead when sending and receiving
packets, as well as collecting sensing values from the phys-
ical sensor are shown. We compare CPU ticks of the plain
application configuration and the full M-Core configuration.
The results show that the M-Core adds a reasonable amount
of overhead for the transmission scenario which is expected
since our framework adds and verifies Di-Sec headers before
transmitting the packets. For the receiving scenario, we do not
see any overhead since the COMM module passes the incom-
ing packet directly to the upper layer as soon as it is received.
For the sensing scenario, there is minimal overhead since the
request has to pass through Di-Sec’s Sense component.
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TABLE III: Di-Sec ROM and RAM Footprint (Bytes)

TYPE ROM ∆ROM ROM-FREE RAM ∆RAM RAM-FREE
Plain 18172 18172 30980 1641 1664 8599
Plain w/Security 20838 2666 28314 1743 98 8497
M-Core-Plain 19328 1156 29824 2236 598 8004
M-Core(Security) 23024 3696 26128 2346 106 7894
M-Core(Security+Sensing) 30954 7930 18198 2507 166 7733
M-Core(Security+Sensing+DDM1) 32058 1104 17094 2690 186 7550
M-Core(Security+Sensing+DDM1+DDM2) 32352 294 16800 2715 24 7525
M-Core(Security+Sensing+DDM1+DDM2+DDM3) 32710 358 16442 2807 98 7433
M-Core(Security+Sensing+DDM1+DDM2+DDM3+DDM4) 32940 230 16212 2823 16 7417

Fig. 3: Same Information Passed to Application Layer when Using Different Configurations.

Fig. 4: Experiment Setup.

TABLE IV: Di-Sec CPU Ticks

M-Core Plain Diff
TX 352 239 113
RX 1600 1600 0

Sensing 550 546 4

The Di-Sec header is 6-bytes long and includes a 2-byte
source node ID and 1-byte Di-Sec sequence number that are
managed individually at each sensor. The header also includes
a 2-byte DDMtype variable used to multiplex the message
to Di-Sec modules and a 1-byte command variable used
for internal communication. Figure 3 shows the difference
between the packets sent with the plain configuration, and M-
Core with and without encryption. The Di-Sec communication
overhead is only 6 header-bytes added to the message plus the
overhead of the encryption and decryption of the payload.

B. Experiments Evaluation

To test the Di-Sec framework, we created a experimental
cluster scenario where we deployed 6 Tmote Sky sensors
with unique IDs (from 1 to 6) throughout the second floor
of the Klaus Advanced Computing Building (KACB) at the
Georgia Institute of Technology. The topology is shown in
Figure 4. Node 1 is the cluster head and base station (BS)
in charge of collecting all the data and the rest of the sensors
communicate with the BS through multiple hops. All the nodes
collect and average light measurements and transmit packets
at the same rate of 1 packet every 9 seconds. It is expected
that nodes 2 and 3 will have higher traffic compared with
the others since they are the gateways to the base station.
The overall traffic behavior and packet loss after an attack
was recorded at the base station and presented in this section.
Using the this topology we launched Jamming, Sybil, Selective
Forwarding, and Internal attacks against the nodes in the
cluster and monitor and capture the traffic to show how the
cluster defends and recovers from the attacks. Each of the
attack scenarios will be explained along with the results.

1) Jamming Scenario: In this experiment, the complete
jamming DDM was implemented inside the Di-Sec frame-
work. As shown in Figure 4, an attacker was placed next to
nodes 4 and 5 to jam the communication channel. Figure 5(a)
shows the aggregated packet count and arrivals at the base
station. We see that node 3 has a higher traffic intensity than
node 2 which is expected since node 3 is forwarding packets
coming from nodes 4 and 5 and node 2 is only forwarding
packets generated at node 6. Since all the nodes generate traffic
at the same rate, we can perceive that the Jamming attack was
launched after approximately 32 packet transmissions. From
the aggregated traffic received from node 2, we detected that
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Fig. 5: Attack Experiments.

there were approximately 28 lost packets and from node’s
3 aggregated traffic we detected 38 lost packets out of a
total of 420 packets transmitted during the experiment. The
results show that our implementation of jamming detection and
defense using the M-Core services actually defends against
Jamming attacks and the packet loss due to the attack was
approximately 15% for this specific scenario.

2) Sybil Scenario: For the sybil detection, we used a RSSI
table containing average RSSI values for each neighbor. This
table is updated every time a packet arrives at the sensor
since the packet is passed to the M-Core and the RSSI value
is extracted and averaged. For this scenario, we collect at
least 10 sample packets from each neighbor to calculate the
RSSI average and define an upper and lower threshold for the
RSSI. For this experiment, we used two legitimate sensors:
one sampler and one collector. The sampler gets light intensity
measurements and transmits the values to the collector. The
collector receives and displays the data. We also have one
sybil sensor that impersonates the sampler and injects false
data into the network which is received by the collector node.
Figure 5(b) shows the results of our experiment including the
data fluctuation caused by the injections and the detection and
recovery point. As seen in the figure, the Di-Sec framework
is able to support Sybil attack scenario as well.

3) Selective Forwarding Scenario: The Selective Forward-
ing attack scenario also uses the the topology shown in Figure
4. For this scenario, we deliberately modified node 4 to drop
66% of the received packets. The M-Core provides the ability
to set thresholds to trigger some actions. In this scenario, we
set the threshold for the maximum acceptable packets dropped
by a relaying node to 25 packets. Figure 5(c) shows that
packets from node 5 were being dropped. The first time the
neighbors detect this irregularity the threshold had not been
reached, therefore, no action is taken. The second time the
misbehavior is detected, node 5 changes its relaying node to
be node 6 and reaches the base station through node 2. As
expected, the services provided by the M-Core facilitate the
implementation of security measures for Selective Forwarding
attacks.

The aggregated traffic received from node 2 and 3 at the
base station is shown in Figure 6(a). If we compare Figures
6(a) and 5(a) and ignoring the jamming fluctuations on 5(a),
we observe that node 2 transmitted more aggregated traffic
in the selective forwarding scenario and node 3 during the
jamming experiment. These results are expected since in the
selective forwarding scenario, node 5 redirected all its traffic
to node 6 after detecting node 4 as a selective forwarder.

4) Internal Threat Scenario: For this attack scenario, we
focus on the sensing component. We created a malicious sens-
ing component that returns forged sensed values to the applica-
tion layer to simulate a misbehaving component or an internal
threat. We set up 3 sensors with different configurations to col-
lect and display the total solar radiation values from the light
sensor. The first sensor is not compromised and collects from
our sensing component. The second node is compromised and
collects the data directly from a compromised light component
(e.g., HamamatsuS10871TsrCompromised). The third sensor
also collects the data from the malicious component but uses
the Di-Sec sensing component to verify the collected values.
Figure 6(b) presents results of this experiment and shows
that the compromised application relying on our framework
services identifies and recovers from the malicious attack.

5) Combined Attacks: For the sake of completeness, we
combined and launched two of the previous attacks in a
single experiment. Specifically, we combined the Jamming
and Selective Forwarding attacks to demonstrate that the Di-
Sec framework successfully defends and recovers from any
combination of attacks. Figure 6(c) shows the overall traffic
behavior per node and aggregated at the gateways (nodes 2
and 3). Again, node 5’s traffic is dropped by the selective
forwarder (node 4) and after detection the route is changed
and the traffic is redirected to the base station via node 6.
Right after the first attack, we launched the Jamming attack
which was also handled by our framework which was able to
finally resume the normal communications.
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Fig. 6: Attack Experiments 2.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a comprehensive security frame-
work for WSNs called Di-Sec. The goal of our architectural
design was to create a highly modular, flexible, and expandable
framework to provide security against different attacks.

The overall contribution of this work is to realize an
architecture that can be leveraged by researchers to expedite
the development of sensor defense mechanisms and to allow
their parallel execution. We want to do for sensor security
researchers what metasploit has done for hackers.

Along with Di-Sec, we also created a domain specific
language called the M-Core Control Language (MCL) to
interact with the framework. Using the MCL, a user can
implement new defense mechanisms without the overhead of
learning the details of the underlying software architecture
(i.e., TinyOS, Di-Sec). We study the performance of the
framework in terms of storage costs (RAM and ROM), CPU
overhead, and communication overhead. We also implemented
DDMs against Jamming, Sybil, Selective Forwarding, and
Internal attacks and show through experimentation that Di-
Sec framework successfully defends and recovers from those
attacks.

For our future work, we will increase the number of M-
Core services and the attacks’ detection and defense coverage.
We will also incorporate to the framework the capability to
dynamically distribute code modules at run time, to allow the
exchange of defense and detection modules. We also envision
our framework to work on collaborative cluster environments
as proposed in our previous work [5]
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