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Abstract—Cloud computing services are becoming ubiquitous,
and are starting to serve as the primary source of computing
power for both enterprises and personal computing applications.
We consider a stochastic model of a cloud computing cluster,
where jobs arrive according to a stochastic process and request
virtual machines (VMs), which are specified in terms of resources
such as CPU, memory and storage space. While there are many
design issues associated with such systems, here we focus only on
resource allocation problems, such as the design of algorithms
for load balancing among servers, and algorithms for scheduling
VM configurations. Given our model of a cloud, we first define its
capacity, i.e., the maximum rates at which jobs can be processed
in such a system. Then, we show that the widely-used Best-
Fit scheduling algorithm is not throughput-optimal, and present
alternatives which achieve any arbitrary fraction of the capacity
region of the cloud. We then study the delay performance of
these alternative algorithms through simulations.

I. INTRODUCTION

Cloud computing services are becoming the primary source
of computing power for both enterprises and personal com-
puting applications. A cloud computing platform can provide
a variety of resources, including infrastructure, software, and
services, to users in an on-demand fashion. To access these
resources, a cloud user submits a request for resources. The
cloud provider then provides the requested resources from
a common resource pool (e.g., a cluster of servers), and
allows the user to use these resources for a required time
period. Compared to traditional “own-and-use” approaches,
cloud computing services eliminate the costs of purchasing and
maintaining the infrastructures for cloud users, and allow the
users to dynamically scale up and down computing resources
in real time based on their needs. Several cloud computing
systems are now commercially available, including Amazon
EC2 system [1], Google’s AppEngine [2], and Microsoft’s
Azure [3]. We refer to [4], [5], [6] for comprehensive surveys
on cloud computing.

While cloud computing services in practice provide many
different services, in this paper, we consider cloud computing
platforms that provide infrastructure as service, in the form
of Virtual Machines (VMs), to users. We assume cloud users
request virtual machines (VMs), which are specified in terms
of resources such as CPU, memory and storage space. Each
request is called a “job.” The type of a job specifies the type
of VM the user wants and the size of the job specifies the
amount of time required. After receiving these requests, the

cloud provider will schedule the VMs on physical machines,
called “servers”.

There are many design issues associated with such systems
[7], [8], [9], [10], [11], [12]. In this paper, we focus only on
resource allocation problems, such as the design of algorithms
for load balancing among servers, and algorithms for schedul-
ing VM configurations. We consider a stochastic model of
a cloud computing cluster. We assume that jobs with variable
sizes arrive according to a stochastic process, and are assigned
to the servers according to a resource allocation algorithm.
A job departs from the system after the VM is hosted for
the required amount of time. We assume jobs are queued in
the system when all servers are busy. We are interested in
the maximum rates at which jobs can be processed in such
a system, and resource allocation algorithms that can support
the maximum rates. The main contributions of this paper are
summarized below.

(1) We characterize the capacity region of a cloud system
by establishing its connection to the capacity region of
a wireless network. The capacity of a cloud system is
defined to be the set of traffic loads under which the
queues in the system can be stabilized.

(2) We then consider the widely-used Best-Fit scheduling
algorithm and provide a simple example to show that it
is not throughput-optimal. Next, we point out that the
well-known MaxWeight algorithm is throughput-optimal
in an ideal scenario, where jobs can be preempted
and can migrate among servers, and servers can be
reconfigured at each time instant. In practice, preemption
and VM migration are costly. Therefore, motivated by
the MaxWeight algorithm, we present a non-preemptive
algorithm which myopically allocates a new job to a
server using current queue length information whenever
a departure occurs. We characterize the throughput of
this myopic algorithm, and show that it can achieve any
arbitrary fraction of the capacity region if the algorithm
parameters are chosen appropriately.

(3) The algorithms mentioned above require central queues.
In practice, a more scalable approach is to route jobs to
servers right after their arrivals. We consider the Join-
the-Shortest-Queue (JSQ) algorithm which routes a job
to the server with the shortest queue. We prove that this
entails no loss in throughput compared to maintaining a



2

single central queue.
(4) JSQ needs to keep track of queue lengths at all servers,

which may become prohibitive when we have a large
number of servers and the arrival rates of jobs are large.
To address this issue, we propose the power-of-two-
choices routing for the case of identical servers, and
pick-and-compare routing for the case of non-identical
servers.

II. MODEL DESCRIPTION

A cloud system consists of a number of networked servers.
Each of the servers may host multiple Virtual Machines
(VMs). Each VM requires a set of resources, including CPU,
memory, and storage space. VMs are classified according to
the resources they request. As an example, Table I lists three
types of VMs (called instances) available in Amazon EC2.

Instance Type Memory CPU Storage
Standard Extra Large 15 GB 8 EC2 units 1,690 GB

High-Memory Extra Large 17.1 GB 6.5 EC2 units 420 GB
High-CPU Extra Large 7 GB 20 EC2 units 1,690 GB

TABLE I
THREE REPRESENTATIVE INSTANCES IN AMAZON EC2

We assume there are M distinct VM configurations and that
each VM configuration is specified in terms of its requirements
for K different resources. Let Rmk be the amount of type-k
resource (e.g., memory) required by a type-m VM (e.g., a
standard extra large VM). Further, we assume that the cloud
system consists of L different servers. Let Cik denote the
amount of type-k resource at server i. Given a server, an M -
dimensional vector N is said to be a feasible VM-configuration
if the given server can simultaneously host N1 type-1 VMs,
N2 type-2 VMs, . . . , and NM type-M VMs. In other words,
N is feasible at server i if and only if

M∑
m=1

NmRmk ≤ Cik

for all k. We let Nmax denote the maximum number of VMs
of any type that can be served on any server.

Example 1: Consider a server with 30 GB memory, 30
EC2 computing units and 4, 000 GB storage space. Then
N = (2, 0, 0) and N = (0, 1, 1) are two feasible VM-
configurations on the server, where N1 is the number of
standard extra large VMs, N2 is the number of high-memory
extra large VMs, and N3 is the number of high-CPU extra
large VMs. N = (0, 2, 1) is not a feasible VM configuration
on this server because it does not have enough memory and
computing units.

In this paper, we consider a cloud system which hosts VMs
for clients. A VM request from a client specifies the type of
VM the client needs, and the amount of time requested. We
call a VM request a “job.” A job is said to be a type-m job if
a type-m VM is requested. We consider a time-slotted system
in this paper, and we say that the size of the job is S if the
VM needs to be hosted for S time slots. Given our model of

a cloud system, we next define the concept of capacity for a
cloud.

III. CAPACITY OF A CLOUD

What is the capacity of a cloud? First, as an example,
consider the three servers defined in Example 1. Clearly this
system has an aggregate capacity of 90 GB of memory, 90
EC2 compute units and 12, 000 GB of storage space. However,
such a crude definition of capacity fails to reflect the system’s
ability to host VMs. For example, while

4× 17.1 + 3× 7 = 89.4 ≤ 90,

4× 6.5 + 3× 20 = 86 ≤ 90,

4× 420 + 3× 1690 = 6750 ≤ 12000,

it is easy to verify that the system cannot host 4 high-memory
extra large VMs and 3 high-CPU extra large VMs at the same
time. Therefore, we have to introduce a VM-centric definition
of capacity.

Let Am(t) denote the set of type-m jobs that arrive at
the beginning of time slot t, and let Am(t) = |Am(t)|,
i.e., the number of type-m jobs that arrive at the beginning
of time slot t. We let Wm(t) =

∑
j∈Am(t) Sj be the total

number of time slots requested by the jobs. We assume that
Wm(t) is a stochastic process which is i.i.d. across time slots,
E[Wm(t)] = λm and Pr(Wm(t) = 0) > εW for some εW > 0
for all m and t. Many of these assumptions can be relaxed,
but we consider the simplest model for ease of exposition.
Let Dm(t) denote the number of type-m jobs that are served
by the cloud at time slot t. Note that the job size of each of
these Dm(t) jobs reduces by one at the end of time slot t. The
workload due to type-m jobs is defined to be the sum of the
remaining job sizes of all jobs of type-m in the system. We
let Qm(t) denote the workload of type-m jobs in the network
at the beginning of time slot t, before any other job arrivals.
Then the dynamics of Qm(t) can be described as

Qm(t+ 1) = (Qm(t) +Wm(t)−Dm(t)) . (1)

We say that the cloud system is stable if
lim supt→∞E[

∑
mQm(t)] < ∞, i.e., the expected total

workload in steady-state is bounded. A vector of arriving
loads λ is said to be supportable if there exists a resource
allocation mechanism under which the cloud is stable. In the
following, we first identify the set of supportable λs. Let Ni
be the set of feasible VM-configurations on a server i. We
define a set C such that

C =

{
λ : λ =

L∑
i=1

λ(i) and λ(i) ∈ Conv(Ni).

}
, (2)

where Conv denotes the convex hull. We next use a simple
example to illustrate the definition of C.

Example 2: Consider a simple cloud system consisting of
three servers. Servers 1 and 2 are of the same type (i.e., they
have the same amount of resources), and server 3 is of a
different type. Assume there are two types of VMs. The set of
feasible VM configurations on servers 1 and 2 is assumed to be
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Fig. 2. The capacity region C

N1 = N2 = {(0, 0), (1, 0), (0, 1)}, i.e., each of these servers
can at most host either one type-1 VM or one type-2 VM.
The set of feasible configurations on server 3 is assumed to be
N3 = {(0, 0), (1, 0), (2, 0), (0, 1)}, i.e., the server can at most
host either two type-1 VMs or one type-2 VM. The regions
Conv(N1) and Conv(N3) are plotted in Figure 1. Note that
vector (0.75, 0.25) is in the region Conv(N1). While a type-1
server cannot host “0.75” type-1 VMs and “0.25” type-2 VM,
we can host a type-1 VM on server 1 for 3/4 of the time,
and a type-2 VM on the server for 1/4 of the time to support
load (0.75, 0.25). The capacity region C for this simple cloud
system is plotted in Figure 2.

We call C the capacity region of the cloud. This definition
of the capacity of a cloud is motivated by similar definitions
in [13]. We introduce the following notation: the servers are
indexed by i. Let N (i)(t) denote the VM-configuration on
server i at time slot t. Further define D(t) =

∑
iN

(i)(t), so
Dm(t) is the total number of type-m VMs hosted in the cloud
at time t. As in [13], it is easy to show the following results.

Lemma 1: D(t) ∈ C for any t.
Theorem 1: For any λ 6∈ C,

lim
t→∞

E

[∑
m

Qm(t)

]
=∞.

IV. THROUGHPUT OPTIMAL SCHEDULING: CENTRALIZED
APPROACHES

In this section, we study centralized approaches for job
scheduling. We assume that jobs arrive at a central job sched-
uler, and are queued at the job scheduler. The scheduler dis-
patches a job to a server when the server has enough resources
to host the VM requested by the job. In this setting, servers
do not have queues, and do not make scheduling decisions.
We call a job scheduling algorithm throughput optimal if the

algorithm can support any λ such that (1 + ε)λ ∈ C for some
ε > 0.

A. Best Fit is not Throughput Optimal: A Simple Example

A scheduling policy that is used in practice is so called
“best-fit” policy [14], [15], i.e., the job which uses the most
amount of resources, among all jobs that can be served, is
selected for service whenever resources become available.
Such a definition has to be made more precise when a VM
requests multiple types of multiple resources. In the case of
multiple types of resources, we can select one type of resource
as “reference resource,” and define best fit with respect to
this resource. If there is a tie, then best fit with respect to
another resource is considered, and so on. Alternatively, one
can consider a particular linear or nonlinear combination of the
resources as a meta-resource and define best fit with respect
to the meta-resource.

We now show that best fit is not throughput optimal.
Consider a simple example where we have two servers, one
type of resource and two types of jobs. A type-1 job requests
half of the resource and four time slots of service, and a type-2
job requests the whole resource and one time slot of service.
Now assume that initially, the server 1 hosts one type-1 job
and server 2 is empty; two type-1 jobs arrive once every three
time slots starting from time slot 3, and type-2 jobs arrive
according to some arrival process with arrival rate ε starting at
time slot 5. Under the best-fit policy, type-1 jobs are scheduled
forever since type-2 jobs cannot be scheduled when a type-1
job is in a server. So the workload due to type-2 jobs will
blow up to infinity for any ε > 0. The system, however, is
clearly stabilizable for ε < 2/3. Suppose we schedule type-1
jobs only in time slots 1, 7, 13, 19, . . . , i.e., once every six
time slots. Then time slots 5, 6, 11, 12, 17, 18, ... are available
for type-2 jobs. So if ε < 2/3, both queues can be stabilized
under this periodic scheduler.

The specific arrival process we constructed is not key to the
instability of best-fit. Assume type-1 and type-2 jobs arrive
according to independent Poisson processes with rates λ1 and
λ2, respectively. Figure 3 is a simulation result which shows
that the number of backlogged jobs blows up under best-fit
with λ1 = 0.7 and λ2 = 0.1, but is stable under a MaxWeight-
based policy with λ1 = 0.7 and λ2 = 0.5.

This example raises the question as to whether there are
throughput-optimal policies which stabilize the queues for all
arrival rates which lie within the capacity region, without
requiring knowledge of the actual arrival rates. In the next
subsection, we answer this question affirmatively by relating
the problem to a well-known scheduling problem in wireless
networks. However, such a scheduling algorithm requires job
preemption. In the later sections, we discuss non-preemptive
policies and the loss of capacity (which can be made arbitrarily
small) due to non-preemption.

B. Preemptive Algorithms

In this subsection, we assume that all servers can be
reconfigured at the beginning of each time slot, and a job
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Fig. 3. The number of backlogged jobs under the best-fit policy and a
MaxWeight policy

can be interrupted at the beginning of each time and put back
in the queue. We will study the schemes that do not interrupt
job service in the next subsection. We further assume the job
scheduler maintains a separate queue for each type of job, and
sizes of all jobs are bounded by Smax. Recall that Qm(t) is the
workload of type-m jobs at the beginning of time slot t. We
consider the following server-by-server MaxWeight allocation
scheme.

Server-by-server MaxWeight allocation: At the beginning
of time slot t, consider the ith server. If the set of jobs on the
server are not finished, move them back to the central queue.
Find a VM-configuration N∗(t) such that

N (i)∗(t) ∈ arg max
N∈Ni

∑
m

Qm(t)Nm.

At server i, we create upto N (i)∗
m (t) type-m VMs depending

on the number of jobs that are backlogged. Let N (i)
m (t) be the

actual number of VMs that were created. Then, we set

Qm(t+ 1) =

(
Qm(t) +Wm(t)−

∑
i

N (i)
m

)
.

�
The fact that the proposed algorithm is throughput optimal

follows from [13] and is stated as a theorem below.
Theorem 2: Assume that a server can serve at most Nmax

jobs at the same time, and E[W 2
m(t)] ≤ σ2 for any m. The

server-by-server MaxWeight allocation is throughput optimal,
i.e.,

lim
t→∞

E

[∑
m

Qm(t)

]
<∞

if there exists ε > 0 such that (1 + ε)λ ∈ C.

C. Non-preemptive Algorithms

The algorithm presented in the previous subsection requires
us to reconfigure the servers and re-allocate jobs at the
beginning of each time slot. In practice, a job may not be

interruptable or interrupting a job can be very costly (the
system needs to store a snapshot of the VM to be able to
restart the VM later). In this subsection, we introduce a non-
preemptive algorithm, which is nearly throughput optimal.

Before we present the algorithm, we outline the basic ideas
first. We group T time slots into a super time slot, where T >
Smax. At the beginning of a super time slot, a configuration
is chosen according to the MaxWeight algorithm. When jobs
depart a server, the remaining resources in the server are filled
again using the MaxWeight algorithm; however, we impose
the constraint that only jobs that can be completed within the
super slot can be served. So the algorithm myopically (without
consideration of the future) uses resources, but is queue-length
aware since it uses the MaxWeight algorithm. We now describe
the algorithm more precisely.

Myopic MaxWeight allocation: We group T time slots into
a super time slot. At time slot t, consider the ith server. Let
N (i)(t−) be the set of VMs that are hosted on server i at the
beginning of time slot t, i.e., these correspond to the jobs that
were scheduled in the previous time slot but are still in the
system. These VMs cannot be reconfigured due to our non-
preemption requirement. The central controller finds a new
vector of configurations Ñ (i)(t) to fill up the resources not
used by N (i)(t−), i.e.,

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑
m

Qm(t)Nm,

The central controller selects as many jobs as available in the
queue, up to a maximum of Ñ (i)

m (t) type-m jobs at server
i, and subject to the constraint that a type-m job can only be
served if its size Sj ≤ T−(t mod T ). Let N̄ (i)

m (t) denote the
actual number of type-m jobs selected. Server i then serves the
N̄m(t)(i) new jobs of type m, and the set of jobs N (i)(t−) left
over from the previous time slot. The queue length is updated
as follows:

Qm(t+ 1) = Qm(t) +Wm(t)−
∑
i

(
N (i)
m (t−) + N̄ (i)

m (t)
)
.

Note that this myopic MaxWeight allocation algorithm
differs from the server-by-server MaxWeight allocation in two
aspects: (i) jobs are not interrupted when served and (ii)
when a job departs from a server, new jobs are accepted
without reconfiguring the server. We next characterize the
throughput achieved by the myopic MaxWeight allocation
under the following assumptions: (i) job sizes are uniformly
bounded by Smax, and (ii) Wm(t) ≤Wmax for all m and t.

Theorem 3: Any job load that satisfies (1+ε) T
T−Smax

λ ∈ C
for some ε > 0 is supportable under the myopic MaxWeight
allocation.
We skip the proof of this theorem because the proof is very
similar to the proof of Theorem 4 in the next section. It is
important to note that, unlike best fit, the myopic MaxWeight
algorithm can be made to achieve any arbitrary fraction of the
capacity region by choosing T sufficiently large.
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V. RESOURCE ALLOCATION WITH LOAD BALANCING

In the previous section, we considered the case when there
was a single queue for jobs of same type, being served at
different servers. This requires a central authority to maintain
a single queue for all servers in the system. A more distributed
solution is to maintain queues at each server and route jobs
as soon as they arrive. To the best of our knowledge, this
problem does not fit into the scheduling/routing model in [13].
However, we show that one can still show use MaxWeight-type
scheduling if the servers are load-balanced using a join-the-
shortest-queue (JSQ) routing rule.

In our model, we assume that each server maintains M
different queues for different types of jobs. It then uses this
queue length information in making scheduling decisions. Let
Q denote the vector of these queue lengths where Qmi is
the queue length of type m jobs at server i. Routing and
scheduling are performed as described in Algorithm 1.

Algorithm 1 JSQ Routing and Myopic Maxweight Scheduling
1) Routing Algorithm (JSQ Routing): All the type m jobs

that arrive in time slot t are routed to the server with the
shortest queue for type m jobs i.e., the server i∗m(t) =
arg min
i∈{1,2,,,L}

Qmi(t). Therefore, the arrivals to Qmi in time

slot t are given by

Wmi(t) =

{
Wm(t) if i = i∗m(t)

0 otherwise
(3)

2) Scheduling Algorithm (Myopic MaxWeight Scheduling)
for each server i: T time slots are grouped into a
super time slot. A MaxWeight configuration is chosen
at the beginning of a super time slot. So, for t = nT ,
configuration Ñ (i)(t) is chosen according to

Ñ (i)(t) ∈ arg max
N∈Ni

∑
m

Qmi(t)Nm

For all other t, at the beginning of the time slot, a new
configuration is chosen as follows:

Ñ (i)(t) ∈ arg max
N :N+N(i)(t−)∈Ni

∑
m

Qmi(t)Nm

where N (i)(t−) is the configuration of jobs at server i
that are still in service at the end of the previous time
slot. As many jobs as available are selected for service
from the queue, up to a maximum of Ñ (i)

m (t) jobs of
type m, and subject to the constraint that a new type m
job is served only if it can finish its service by the end of
the super time slot, i.e., only if Sj ≤ T−(t mod T ). Let
N

(i)

m (t) denote the actual number of type m jobs selected
at server i and define N (i)(t) = N (i)(t−)+N

(i)
(t). The

queue lengths are updated as follows:

Qmi(t+ 1) = Qmi(t) + Wmi(t)−N (i)
m (t). (4)

The following theorem characterizes the throughput perfor-

mance of the algorithm.
Theorem 4: Any job load vector that satisfies (1+ε)T

T−Smax
λ ∈

C for some ε > 0 is supportable under the JSQ routing and
myopic MaxWeight allocation as described in Algorithm 1

Proof: Let Ymi(t) denote the state of the queue for type-
m jobs, where Yj

mi(t) is the remaining job size of the jth

type-m job at server i. First, it is easy to see that Y(t) =
{Ymi(t)}m,i is a Markov chain under the myopic MaxWeight
scheduling. Further define S = {y : Pr(Y(t) = y|Y(0) =
0) for some t}, then Y(t) is an irreducible Markov chain on
state space S assuming Y(0) = 0. This claim holds because (i)
any state in S is reachable from 0 and (ii) since Pr(Wm(t) =
0) ≥ εW for all m and t, the Markov chain can move from
Y(t) to 0 in finite time with a positive probability. Further
Qmi(t) =

∑
jY

j
m,i(t), i.e., Qmi(t) is a function of Ymi(t).

We will first show that the increase of
∑
m
Qmi(t)N

(i)
m (t) is

bounded within a super time slot. For any t such that 1 ≤
(t mod T ) ≤ T − Smax, for each server i,∑

m

Qmi(t)N
(i)
m (t− 1)

=
∑
m

Qmi(t)N
(i)
m (t−)

+
∑
m

Qmi(t)
(
N (i)
m (t− 1)−N (i)

m (t−)
)

≤a
∑
m

Qmi(t)N
(i)
m (t−) +

∑
m

Qmi(t)Ñ
(i)
m (t)

=
∑
m

(
Qmi(t)N

(i)
m (t−) + Qmi(t)Ñ

(i)
m (t)

)
IQmi(t)≥SmaxNmax

+
∑
m

(
Qmi(t)N

(i)
m (t−) + Qmi(t)Ñ

(i)
m (t)

)
IQmi(t)<SmaxNmax

≤(b)

∑
m

Qmi(t)N
(i)
m (t) +MSmaxN

2
max

where the inequality (a) follows from the definition Ñ (i)
m (t);

and inequality (b) holds because when Qmi(t) ≥ SmaxNmax,
there are enough number of type-m jobs to be allocated to
the servers, and when 1 ≤ (t mod T ) ≤ T − Smax, all
backlogged jobs are eligible to be served in terms of job sizes.
Now since |Qmi(t)−Qmi(t− 1)| =

∣∣∣Wmi(t)−N (i)
m (t)

∣∣∣ ≤
Wmax +Nmax, we have∑

m

Qmi(t− 1)N (i)
m (t− 1) ≤ β′ +

∑
m

Qmi(t)N
(i)
m (t) (5)

where β′ = MNmax(Wmax +Nmax) +MSmaxN
2
max.

Let V (t) = |Q(t)|2 be the Lyapunov function. Let t =
nT + τ for 0 ≤ τ < T . Then,

E[V (nT + τ + 1)− V (nT + τ)|Q(nT ) = q]

=E

[∑
i

∑
m

(
Qmi(t) + Wmi(t)−N (i)

m (t)
)2

−Q2
mi(t)

∣∣∣∣Q(nT ) = q

]
(6)
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=E

[
2
∑
i

∑
m

Qmi(t)
(
Wmi(t)−N (i)

m (t)
)

+
∑
i

∑
m

(
Wmi(t)−N (i)

m (t)
)2∣∣∣∣∣Q(nT ) = q

]
(7)

≤K + 2E

[∑
m

∑
i

Qmi(t)Wmi(t)

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

]
(8)

=K + 2
∑
m

E[Qmi∗m(t)(t)Wm(t)|Q(nT ) = q]

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

]
(9)

=K + 2
∑
m

λmE[Qmi∗m(t)(t)|Q(nT ) = q]

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

]
(10)

≤K + 2
∑
m

λmWmaxτ

+ 2
∑
m

λmE[Qmi∗m(nT )(nT )|Q(nT ) = q]

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

]
(11)

=K + 2
∑
m

λmWmaxτ + 2
∑
m

λmqmi∗m

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

]
(12)

where K = ML(Smax + Nmax)2 and i∗m = i∗m(nT ) =
arg min
i∈{1,2,,,L}

qmi. Equation (9) follows from the definition of

Wmi in the routing algorithm in (3). Equation (10) follows
from the independence of the arrival process from the queue
length process. Inequality (11) comes from the fact that
Qmi∗m(t)(t) ≤ Qmi∗m(nT )(t) ≤ Qmi∗m

(nT ) +Wmaxτ .
Now, applying (5) repeatedly for t ∈ [nT, (n+1)T−Smax],

and summing over i, we get

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

≤ L(t− nT )β′ −
∑
i

∑
m

Qmi(nT )N (i)
m (nT ). (13)

Since, (1+ε)T
T−Smax

λ ∈ C, there exists
{
λi
}
i

such that
(1+ε)T
T−Smax

λi ∈ Conv(Ni) for all i and λ =
∑
i

λi. According

to the scheduling algorthm, for each i, we have that

(1 + ε)
T

T − Smax

∑
m

Qmi(nT )λim

≤
∑
m

Qmi(nT )N (i)
m (nT ). (14)

Thus, we get,

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

≤ L(t− nT )β′ −
∑
i

∑
m

Qmi(nT )N (i)
m (nT ) (15)

≤ L(t− nT )β′ − (1 + ε)T

T − Smax

∑
i

∑
m

Qmi(nT )λim. (16)

Substituting this in (12), we get, for t ∈ [nT, (n+1)T−Smax],

E[V (nT + τ + 1)− V (nT + τ)|Q(nT ) = q]

≤K + 2
∑
m

λmWmaxτ + 2L(t− nT )β′

+ 2
∑
m

λmqmi∗m − 2(1 + ε)
T

T − Smax

∑
i

∑
m

qmiλ
i
m.

(17)
Note that λmqmi∗m =

∑
i λ

i
mqmi∗m ≤

∑
i λ

i
mqmi. Using this

and summing the drift for τ from 0 to T − 1 using (17) for
τ ∈ [0, T − Smax], and (12) for the remaining τ , we get

E[V ((n+ 1)T )− V (nT )|Q(nT ) = q]

≤TK + 2
∑
m

λmWmax

T−1∑
τ=0

τ + 2Lβ′
T−Smax−1∑

τ=0

τ

+ 2T
∑
i,m

qmiλ
i
m − 2

(1 + ε)T

T − Smax

∑
i,m

qmiλ
i
m(T − Smax)

≤K1 − 2εT
∑
i

∑
m

qmiλ
i
m.

where K1 = TK + 2
∑
m λmWmax

∑T−1
τ=0 τ +

2Lβ′
∑T−Smax−1
τ=0 τ . Let B = {q :

∑
i

∑
m qmiλ

i
m ≤

K1/εT}. Then, the drift E[V ((n+1)T )−V (nT )|Q(nT ) = q]
is negative outside the finite set B. The theorem then follows
from the Foster-Lyapunov theorem [16], [17].

VI. SIMPLER LOAD BALANCING ALGORITHMS

Though JSQ routing algorithm is throughput optimal, the
job scheduler needs the queue length information from all the
servers. This imposes a considerable communication overhead
as the arrival rates of jobs and number of servers increase.
In this section, we present two alternatives which have much
lower routing complexity.

A. Power-of-two-choices Routing and Myopic MaxWeight
Scheduling

An alternate to JSQ routing is the power-of-two-choices al-
gorithm [18], [19], [20], which is much simpler to implement.
When a job arrives, two servers are sampled at random, and
the job is routed to the server with the smaller queue for that
job type. In our algorithm, in each time slot t, for each type
of job m, two servers im1 (t) and im2 (t) are chosen uniformly
at random. The job scheduler then routes all the type m job
arrivals in this time slot to the server with shorter queue length
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among these two, i.e., i∗m(t) = arg min
i∈{im1 (t),im2 (t)}

Qmi(t) and so

Wmi(t) =

{
Wm(t) if i = i∗m(t)

0 otherwise.

Otherwise, the algorithm is identical to the JSQ-Myopic
MaxWeight algorithm considered earlier. In this section, we
will provide a lower bound on the throughput of this power-
of-two-choices algorithm in the non-preemptive case when all
the servers have identical resource constraints.

Theorem 5: When all the severs are identical, any job
load that satisfies (1 + ε) T

T−Smax
λ ∈ C for some ε > 0

is supportable under the power-of-two-choices routing and
myopic MaxWeight allocation algorithm.

Proof: Again, we use V (t) = |Q(t)|2 as the Lyapunov
function. Then, from (8), we have

E[V (t+ 1)− V (t)|Q(nT ) = q]

≤K + 2E

[∑
m

∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q

]

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q

] (18)

For fixed m, let Xm(t) be the random variable which
denotes the two servers that were chosen by the routing
algorithm at time t for jobs of type m. Xm(t) is then uniformly
distributed over all sets of two servers. Now, using the tower
property of conditional expectation, we have,

E

[∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q

]

=EX

[
E

[∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣
Q(nT ) = q, Xm(t) = {i′, j′}

]]
=EX [E [Qmi′(t)Wmi′(t) + Qmj′(t)Wmj′(t)|

Q(nT ) = q, X(t) = {i′, j′}]]
=EX [E [min (Qmi′(t),Qmj′(t))Wm(t)|

Q(nT ) = q, X(t) = {i′, j′}]] (19)

≤EX
[
E

[
Qmi′(t) + Qmj′(t)

2
Wm(t)

∣∣∣∣
Q(nT ) = q, X(t) = {i′, j′}

]]
=EX

[
qmi′ + qmj′

2
λm

]
=λm

L− 1(
L
2

) 1

2

∑
i

qmi (20)

=λm

∑
i

qmi

L
. (21)

Equation (19) follows from the routing algorithm and (20)
follows from the fact that Xm(t) is uniformly distributed.

Since the scheduling algorithm is identical to Algorithm 1,
(13) still holds for any t such that 1 ≤ (t mod T ) ≤ T−Smax.
Thus, we have,

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

≤ L(t− nT )β′ −
∑
i

∑
m

Qmi(nT )N (i)
m (nT ). (22)

We assume that all the servers are identical. So, C is obtained
by summing L copies of Conv(N ). Thus, since (1+ε)T

T−Smax
λ ∈ C,

we have that (1+ε)T
T−Smax

λ
L ∈ Conv(N ) = Conv(Ni) for all i.

According to the scheduling algorthm, for each i, we have
that

(1 + ε)
T

T − Smax

∑
m

Qmi(nT )
λm
L

≤
∑
m

Qmi(nT )N (i)
m (nT ). (23)

Thus, we get,

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

≤ L(t− nT )β′ − (1 + ε)T

T − Smax

∑
i

∑
m

Qmi(nT )
λm
L

(24)

≤ L(t− nT )β′ − (1 + ε)T

T − Smax

∑
m

λm

∑
iQmi(nT )

L
. (25)

Now, substituting (21) and (16) in (18) and summing over
t ∈ [nT, (n+ 1)T − 1], we get

E[V ((n+ 1)T )− V (nT )|Q(nT ) = q]

≤TK + 2T
∑
m

λm

∑
i

qmi

L
+ 2Lβ′

T−Smax−1∑
τ=0

τ

− 2(1 + ε)
T

T − Smax

∑
m

λm

∑
i

qmi

L
(T − Smax)

≤TK + 2Lβ′
T−Smax−1∑

τ=0

τ − 2Tε
∑
m

λm

∑
i

qmi

L
.

This proof can be completed by applying the Foster-Lyapunov
theorem [16], [17].

B. Pick-and-Compare Routing and Myopic MaxWeight
Scheduling

One drawback of the power-of-two-choices scheduling is
that it is throughput optimal only when all servers are identical.
In the case of nonidentical servers, one can use pick-and-
compare routing algorithm instead of power-of-two-choices.
The algorithm is motivated by the pick-and-compare algorithm
for wireless scheduling and switch scheduling [21], and is
as simple to implement as power-of-two-choices, and can be
shown to be optimal even if the servers are not identical. We
describe this next. The scheduling algorithm is identical to the
previous case.
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Pick-and-compare routing works as follows. In each time
slot t, for each type of job m, a server im(t) is chosen
uniformly at random and compared with the server to which
jobs were routed in the previous time slot. The server with the
shorter queue length among the two is chosen and all the type
m job arrivals in this time slot are routed to that server. Let
i∗m(t) be the server to which jobs will be routed in time slot
t. Then, i∗m(t) = arg min

i∈{im(t),i∗m(t−1)}
Qmi(t) and so

Wmi(t) =

{
Wm(t) if i = i∗m(t)

0 otherwise.

Theorem 6: Any job load vector that satisfies (1+ε)T
T−Smax

λ ∈
C for some ε > 0 is supportable under the pick-and-compare
routing and myopic MaxWeight allocation algorithm.

Proof: Consider the irreducible Markov chain Y(t) =
(Y(t), {i∗m(t)}m) and the Lyapunov function V (t) = |Q(t)|2 .
Then, as in the proof of theorem 5, similar to (18) for t ≥ nT,
we have

E[V (t+ 1)− V (t)|Q(nT ) = q, i∗m(nT ) = i′]

≤K + 2E

[∑
m

∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q, i∗m(nT ) = i′

]

− 2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣Q(nT ) = q, i∗m(nT ) = i′

]
.

(26)
Since, (1 + ε) T

T−Smax
λ ∈ C, there exists

{
λi
}
i

such that
(1 + ε) T

T−Smax
λi ∈ Conv(Ni) for all i and λ =

∑
i

λi. This{
λi
}
i

can be chosen so that there is a κ so that λm ≤ κλim.
This is possible because if λm > 0 and λm is not on the
boundary of C, one can always find

{
λi
}
i

so that λim > 0.
Since the scheduling part of the algorithm is identical to

Algorithm 1, (16) still holds for t ∈ [nT, (n + 1)T − Smax].
Thus, we have

−
∑
i

∑
m

Qmi(t)N
(i)
m (t)

≤ L(t− nT )β′ − (1 + ε)T

T − Smax

∑
i

∑
m

Qmi(nT )λim. (27)

We also need a bound on the increase in
−
∑
i

∑
mQmi(t)N

(i)
m (t) over multiple super time slots. So,

for any n′, we have∑
i

∑
m

Qmi(nT )N (i)
m (nT )

≤
∑
i

∑
m

Qmi((n+ n′)T )N (i)
m (nT )

+ n′TLMNmax(Wmax +Nmax)

≤
∑
i

∑
m

Qmi((n+ n′)T )N (i)
m ((n+ n′)T ) + n′TLβ′

where the second inequality follows from the fact that we use
maxweight scheduling every T slots and from the definition

of β′. Now, again, using (14), and (27), for any t such that
1 ≤ (t mod T ) ≤ T − Smax, we have

−
∑
i

∑
m

Qmi(t)N
(i)
m (t) (28)

≤ L(t− nT )β′ − (1 + ε)T

T − Smax

∑
i

∑
m

Qmi(nT )λim. (29)

Fix m. Let immin = arg min
i∈{1,2,,,L}

Qmi(nT ). Note that

|Qmi(t)−Qmi(t− 1)| =
∣∣∣Wmi(t)−N (i)

m (t)
∣∣∣ ≤ Wmax +

Nmax. Therefore, once there is a t0 ≥ nT such that i∗m(t0)
satisfies

Qmi∗m(t0)(t0) ≤ Qmimmin
(t0), (30)

then, for all t ≥ t0, we have Qmi∗m(t)(t) ≤ Qmimmin
(nT )+(t−

nT ) (Wmax +Nmax). Probability that (30) does not happen
is at most

(
1− 1

L

)(t0−nT )
. Choose t0 so that this probability

is less than p = ε/4κ. Then, (1 + κp) = 1 + ε/4. Choose k
so that kT > (t0−nT ) and ((n+ k)T − t0) +κ(t0−nT ) ≤
kT (1 + ε/4).

Then

(n+k)T−1∑
t=nT

E

[∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q, i∗m(nT ) = i′

]

=

t0∑
t=nT

E

[∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q, i∗m(nT ) = i′

]

+

(n+k)T−1∑
t=t0

E

[∑
i

Qmi(t)Wmi(t)

∣∣∣∣∣Q(nT ) = q, i∗m(nT ) = i′

]
(31)

≤λm(t0 − nT )
∑
i

qmi

+

t0∑
t=nT

(t− nT ) (Wmax +Nmax)LWmax

+

(n+k)T−1∑
t=t0

(1− p)λm
(
qmimmin

+(t− nT ) (Wmax +Nmax))

+ pλm ((n+ k)T − t0)
∑
i

qmi

+ p

(n+k)T−1∑
t=t0

(t− nT ) (Wmax +Nmax)LWmax (32)

≤(1− p) ((n+ k)T − t0)
∑
i

qmimmin
λim

+

kT∑
τ=0

τ (Wmax +Nmax)LWmax

+ (1− p)λm(t0 − nT )
∑
i

qmi + pλmkT
∑
i

qmi (33)

≤K1 + (1− p) ((n+ k)T − t0)
∑
i

qmiλ
i
m
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+ (1− p)κ(t0 − nT )
∑
i

qmiλ
i
m + κpkT

∑
i

qmiλ
i
m

(34)

≤K1 + (1− p)kT (1 + ε/4)
∑
i

qmiλ
i
m

+ (1 + ε/4)κpkT
∑
i

qmiλ
i
m (35)

≤K1 + kT (1 + ε/4)2
∑
i

qmiλ
i
m (36)

≤K1 + kT (1 + 3ε/4)
∑
i

qmiλ
i
m (37)

whereK1 =
kT∑
τ=0

τ (Wmax +Nmax)LWmax. Equations (35)

and (36) follow from our choice of k and p respectively.
Now, substituting (37) and (28) in (26) and summing over

t ∈ [nT, (n+ 1)T − 1], we get

E[V ((n+ k)T )− V (nT )|Q(nT ) = q, i∗m(nT ) = i′]

≤K ′ + 2kT (1 + 3ε/4)
∑
m

∑
i

qmiλ
i
m

−
(n+k)T−1∑
t=nT

2E

[∑
i

∑
m

Qmi(t)N
(i)
m (t)

∣∣∣∣∣
Q(nT ) = q, i∗m(t) = i′

]
≤K ′ + 2kT (1 + 3ε/4)

∑
m

∑
i

qmiλ
i
m

− 2(1 + ε)
T

T − Smax

∑
m

∑
i

qmiλ
i
mk(T − Smax)

≤K ′ +−1

2
kTε

∑
m

∑
i

qmiλ
i
m

where K ′ = kTK+MK1 +2Lβ′
∑kT−Smax−1
τ=0 τ . The result

follows from the Foster-Lyapunov theorem [16], [17].

VII. SIMULATIONS

In this section, we use simulations to compare the perfor-
mance of the centralized myopic MaxWeight scheduling algo-
rithm, and the joint routing and scheduling algorithm based
on the power-of-two-choices and MaxWeight scheduling. We
consider a cloud computing cluster with 100 identical servers,
and each server has the hardware configuration specified
in Example 1. We assume jobs being served in this cloud
belong to one of the three types specified in Table I. So VM
configurations (2, 0, 0), (1, 0, 1), and (0, 1, 1) are the three
maximal VM configurations for each server. It is easy to verify
that the load vector λ = (1, 13 ,

2
3 ) is on the boundary of the

capacity region of a server.
To model the large variability in jobs sizes, we assume job

sizes are distributed as follows: when a new job is generated,
with probability 0.7, the size is an integer that is uniformly
distributed in the interval [1, 50], with probability 0.15, it is
an integer that is uniformly distributed between 251 and 300,
and with probability 0.15, it is uniformly distributed between

Fig. 4. Comparison of the mean delays in the cloud computing cluster in
the case with a common queue and in the case with power-of-two-choices
routing when frame size is 4000

451 and 500. Therefore, the average job size is 130.5 and the
maximum job size is 500.

We further assume the number of type-i jobs arriving at
each time slot follows a Binomial distribution with parameter
(α λi

130.5 , 100). We varied the parameter α from 0.5 to 1 in
our simulations, which varied the traffic intensity of the cloud
system from 0.5 to 1, where traffic intensity is the factor by
which the load vector has to be divided so that it lies on
the boundary of the capacity region. Each simulation was
run for 500, 000 time slots. First we study the difference
between power-of-two-choice routing and JSQ routing by
comparing the mean delays of the two algorithms at various
traffic intensities for different choices of frame sizes. Our
simulation results indicate that the delay performance of the
two algorithms was not very different. Due to page limitations,
we only provide a representative sample of our simulations
here for the case where the frame size is 4000 in Figure 4.

Next, we show the performance of our algorithms for
various values of the frame size T in Figure 5. Again, we
have only shown a representative sample for the power-of-two-
choices routing (with myopic MaxWeight scheduling). From
Theorems 3 and 5, we know that any load less than T−Smax

T is
supportable. The simulations indicate that the system is stable
even for the loads greater than this value. This is to be expected
since our proofs of Theorems 3 and 5 essentially ignore the
jobs that are scheduled in the last Smax time slots of a frame.
However, the fact that the stability region is larger for larger
values of T is confirmed by the simulations.

It is even more interesting to observe the delay performance
of our algorithms as T increases. Figure 5 indicates that
the delay performance does not degrade as T increases and
the throughput increases with T. So the use of queue-length
information seems to be the key ingredient of the algorithm
while the optimal implementation of the MaxWeight algorithm
seems to be secondary.
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Fig. 5. Comparison of power-of-two-choices routing algorithm for various
frame lengths T

VIII. CONCLUSIONS

We considered a stochastic model for load balancing and
scheduling in cloud computing clusters. A primary contribu-
tion is the development of frame-based non-preemptive VM
configuration policies. These policies can be made nearly
throughput-optimal by choosing sufficiently long frame dura-
tions, whereas the widely used best fit policy was shown to be
not throughput optimal. Simulations indicate that long frame
durations are not only good from a throughput perspective but
also seem to provide good delay performance.
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