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WIRELESS CAPACITY AND ADMISSION CONTROL IN COGNITIVE RADIO

MAGNÚS M. HALLDÓRSSON AND PRADIPTA MITRA

Abstract. We give algorithms with constant-factor performance guarantees for several capacity
and throughput problems in the SINR model. The algorithms are all based on a novel LP for-
mulation for capacity problems. First, we give a new constant-factor approximation algorithm
for selecting the maximum subset of links that can be scheduled simultaneously, under any non-
decreasing and sublinear power assignment. For the case of uniform power, we extend this to
the case of variable QoS requirements and link-dependent noise terms. Second, we approximate a
problem related to cognitive radio: find a maximum set of links that can be simultaneously sched-
uled without affecting a given set of previously assigned links. Finally, we obtain constant-factor
approximation of weighted capacity under linear power assignment.

1. Introduction

How much communication can be active simultaneously in a given wireless network? This is a
topic of major research effort. We address this question in a more generalized setting than previously
considered, and give efficient algorithms that achieve good performance guarantees based on a novel
mathematical programming formulation.

In the capacity problem in wireless networks, we are given a set of communication links in
a metric space, each consisting of a sender-receiver pair, and we seek to find the largest subset
of links that can transmit simultaneously within the model of interference. We adopt the SINR
model of interference where transmission over a link succeeds if the received signal at the receiver
is sufficiently large, compared to ambient noise and interference from other transmissions. This
model has emerged as a superior model for wireless interference patterns, as it is both analytically
manageable, and reasonably realistic, especially in comparison to graph based models [11, 26, 29].
We assume that the powers have been pre-assigned to the links, based only on the length of the
links. Having such simple assignments can be of great benefit in a distributed context.

The basic capacity problem has been addressed in numerous recent works. Constant-factor
approximation algorithms have been given for uniform power [8] and more generally for any non-
decreasing sub-linear power assignment (see Sect. 2 for definitions) [16], and for arbitrary power
[21]. These results assume a uniformity of the links, both in their signal characteristics as well
as their value. They also assume that no other wireless activity is affecting these transmissions.
We aim to handle more general scenarios, allowing for heterogeneity in link characteristics and
environment. In particular, we address three extensions:

(1) (QoS) Each link has its own signal requirements and its own ambient noise term.
(2) (Weights) Each link has an associated weight, and the objective is to maximize the total

weight of the satisfied links.
(3) (Admission control) Certain communication is already taking place, which cannot be inter-

fered with (possibly for regulatory reasons).

We discuss each of these extensions further.

Quality-of-Service requirements. The SINR achieved at a particular link determines the data-
rate achieved at this link, or the quality of service (QoS). Different links may have a minimum
acceptable QoS requirements, for example if one link is used for video transmission and another for
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data transmission. In addition, the noise level at receivers may not be the same across the network.
This practically motivated version of the capacity problem has not been handled in much of the
previous research [8, 15, 16]. We tackle this problem, both as an interesting problem in its own
right, and as a stepping stone for the following problem.

Cognitive radio and admission control. Given are two sets of links P and L. The goal is to
find Q ⊆ L such that P ∪Q can transmit simultaneously and the size of Q is maximized. We refer
to this as the admission control problem.

This problem naturally arises in at least two application areas. The first is the so-called “cognitive
radio”, which has been the object of intense study of late (see [2, 33, 24] and their many refer-
ences). This area has gained great salience due to recent regulatory changes in wireless bandwidth
management. Though the exact technological scenario for cognitive radios is still being figured out,
the essential point is as follows: a wireless channel is allocated to a “primary user”; however, one
would like to accommodate more users in the channel, as long as the primary user remains feasible.
This clearly is an instance of the above mentioned problem, with P being typically small (in fact,
perhaps, just 1).

However, there is a more “classical” source of the same problem, referred to as admission control
or access control [7, 36], sometimes referred to as “active link protection” [5]. The capacity problem,
is its basic form, captures a scenario where each slot is independent of previous slots. In practice
however, links can require sustained communication (and different links for different periods of
time). Thus, in certain applications, a more realistic model is to maximize capacity under the
constraint that older links still communicating not be disturbed. This again, is exactly the problem
defined above (but perhaps with a typically larger P). Though heuristic approaches to this problem
abound, we are unaware of rigorous algorithmic results in the SINR model.

Weighted capacity. In this problem each link v is associated with a non-negative weight wv and
the goal is to find a feasible set OPT so as to maximize

∑

v∈OPT wv.
This weighted capacity problem is a natural extension of the capacity problem, and a case can

be made for theoretical investigation for this reason alone. As it happens, though, the problem is
further motivated by questions about stability in queuing theory. In this setting, packets arrive at
network nodes according to some stochastic process, and the problem is to characterize the set of
arrival rates under which the network can be stabilized, i.e., the network queues remain bounded.
In the case of wireless networking stability, the seminal work of Tassiulas and Ephremides [34]
established the existence policy that stabilizes the system under all arrival rates for which stability
is potentially possible. This policy can be seen to be equivalent to solving the maximum weighted
capacity problem in the SINR model.

Solution method. It is easy to verify whether a given set of links is feasible. In fact, an appropriate
power assignment that makes it feasible can be found efficiently. Namely, Eqn. 1 can be cast as
a linear program with Pv’s as variables, which can thus be solved optimally. Indeed, there is a
large body of work where one starts with a feasible set and then tries to optimize over some other
criteria, say to minimize the power consumed [5].

Naturally, one doesn’t expect this approach to work directly for the capacity problem introduced
before, which is “combinatorial” and in fact happens to be NP-hard [9]. What is perhaps more
surprising is that the capacity problem does not appear to easily admit a linear programming
relaxation either, even for simple cases. Most algorithms developed for the capacity problem have
thus been very simple greedy algorithms [8, 16, 21], with some exceptions [17, 4].

In this work, starting from a simple observation, we develop an integer program that approxi-
mates the capacity problem for a large class of oblivious power assignments. We then show how
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to round the corresponding linear programming relaxation to get a constant factor approxima-
tion. Thus we recover the main result of [16] but via linear programming as opposed to a greedy
algorithm. We also show that the LP formulation can be easily modified to tackle a class of impor-
tant problems where greedy algorithms do not appear to work very well, including the problems
discussed above.

2. Preliminaries and results

The capacity problem in the SINR model is defined as follows. We are given a set L of n links,
each consisting of a sender and receiver pair (sv, rv), which are points in a metric space with a
distance metric d. The asymmetric distance from link w to link v is the distance from w’s sender
to v’s receiver, denoted dwv = d(sw, rv). Each link v has been assigned transmission power Pv. A
link v succeeds if

(1)
Pv/d

α
vv

N +
∑

w∈S\{v} Pw/dαwv

≥ β ,

where N is the ambient noise, β is the required SINR level, α > 0 is the path loss constant, and
S ∋ v is the set of concurrent transmissions. A set S is feasible if the above constraint holds for all
v ∈ S. Thus the capacity problem is equivalent to finding the feasible subset S ⊆ L of maximum
size.

Let ℓv ≡ dvv denote the length of link v. Let ∆ denote the ratio between the maximum and
minimum length of a link. A power assignment P is non-decreasing if Pv ≥ Pw whenever ℓv ≥ ℓw
and sub-linear if Pv

ℓα
v

≤ Pw

ℓα
w

whenever ℓv ≥ ℓw. We will restrict our attention to this class or particular

assignments belonging to this class. Note that this class essentially contains all “natural” length
based assignments, and specifically all well studied length based power assignments. These include
the uniform power assignment, where all links use the same power, linear power assignment where

Pv = ℓαv (which is thought to be energy efficient), and mean power assignment where Pv = ℓ
α/2
v

which is known to be essentially the “best” length-based assignment as far as capacity is concerned
[13, 16].

Affectance. We will use the notion of affectance, introduced in [8, 15] and refined in [22] to the
thresholded form used here, which has a number of technical advantages. The affectance aPw(v) on
link v from another link w, with a given power assignment P , is the interference of w on v relative
to the power received, or

aPw(v) = min

{

1, cv
Pw

Pv
·
(

ℓv
dwv

)α}

,

where cv = β/(1 − βNvℓ
α
v /Pv) is a constant depending only on the parameters of the link v.

We will drop P when clear from context. Let av(v) = 0. For a set S of links and a link v, let
av(S) =

∑

w∈S av(w) and aS(v) =
∑

w∈S aw(v). For sets S and R, aR(S) =
∑

v∈R
∑

u∈S av(u).
Using such notation, Eqn. 1 can be rewritten as follows, which we will adopt:

(2) aS(v) ≤ 1

In the variable QoS version of the capacity problem, β and N are no longer constants, but can
be different for different links. Note that the definition of affectance stays the same apart from
a changed definition of cv = βv/(1 − βvNvℓ

α
v /Pv) where βv and Nv are respectively the signal

requirement and noise level for v.
For all problems that we consider, we will OPT to mean the optimal solution, which will apply

to the problem being discussed at that point.
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Our results. We prove the following results.

Theorem 1. For length monotone, sub-linear power assignments, there is constant-approximation
algorithm for the wireless capacity problem. For uniform power, there is a constant-approximation
algorithm in the QoS generalization.

The first part (not involving QoS) is the same as the main result proven in [16], but via a linear
programming relaxation.

Theorem 2. For the admission control problem with uniform power,

a) There is a O(|P|) approximation algorithm.

b) If the optimum solution |OPT | > γ1|P|
√

log |P| (for some constant γ1), there is a constant-
approximation algorithm.

Specifically, for the “cognitive radio” case of the problem where P = 1 (or small, at any rate)
we get a constant factor approximation for uniform power. There is no straight-forward greedy
algorithm to tackle this problem. We believe that a greedy algorithm for the variable QoS problem
is possible, but even if this is true, the resultant version for admission control would result in
approximation factor worse than our results by a O(log n) factor. Additionally, we see no way of

utilizing the OPT > |P|
√

log |P| condition in the greedy algorithm.
Finally,

Theorem 3. For linear power, there is constant-approximation algorithm for weighted capacity
problem.

For this problem, greedy algorithms combined with some basic observations can yield aO(min{log ∆, log n})-
approximation algorithm (we describe this algorithm in detail in Section 6 when we experimentally
compare it with our LP based algorithm).

We remark that our results holds in arbitrary metric space, independent of the path loss constant
α, and faithfully treat the ambient noise term.

Related Work. The first work to study capacity of randomly deployed networks was the work
of Gupta and Kumar [12]. Rigorous worst case algorithmic analysis started with the work of
Moscibroda and Wattenhofer [27], who studied of the scheduling complexity of arbitrary set of
wireless links. Early work on approximation algorithms produced approximation factors that grew
with structural properties of the network [30, 28, 3].

The first constant factor approximation algorithm was obtained for capacity problem for uniform
power in [8] (see also [15]) in R2 with α > 2. Fanghänel, Kesselheim and Vöcking [6] gave an
algorithm that uses at most O(OPT + log2 n) slots for the scheduling problem with linear power
assignment Pv = ℓαv , that holds in general distance metrics.

Recently, Kesselheim obtained a constant-approximation algorithm for the capacity problem
with power control for doubling metrics and O(log n) for general metrics [21]. In another work [16],
constant factor approximation was achieved for all non-decreasing, sub-linear power assignments.
The greedy algorithms of [8, 15, 16] can be modified to handle the problems we address here, and
these algorithms essentially constitute the previous best results on these problems.

As far as we can ascertain, the algorithmic situation for the admission control and weighted
capacity is somewhat similar to the situation the “basic” capacity problem was in before the array
of results mentioned above. Thus, we have a large body of works and results in different settings
motivating the study of these questions, but no worst case algorithmic results.

The works on the emergent field of cognitive radio are too numerous to adequately cover. We
refer the reader to [2] for a thorough discussion. For results on capacity of networks in a cognitive
radio context see [19, 32] etc. (“capacity” not necessarily meaning the exact same thing we do). For
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the stability problem in a queuing theory setting that gives rise to the weighted capacity problem
there are many works in graph based models [31, 20, 25] as well as recent ones on the SINR model
[23]. The weighted capacity problem was recently studied in [35], where the authors propose a
version of the greedy-based O(log n) approximation.

In terms of using a LP approach in the SINR setting, there is recent work of Hoefer et. al.
[17], using related insights in their formulation. In the context of throughput maximization, [4]
employed a linear programming solution. Being based on unit disc graphs, that approach does not
lead to performance bounds we seek here.

3. The basic capacity problem

Let us first consider how one would attempt to write an Integer program (and a subsequent
Linear programming relaxation) for the capacity problem. If the variable δv ∈ {0, 1} denotes that
link v was selected in the solution, we see that for selected links, the condition

∑

u∈L au(v)δv ≤ 1
would have to hold. This is quite nice and linear, except for the fact that we would have to somehow
indicate that this condition need only hold for {v : δv = 1}, and that no condition need hold for
links in {v : δv = 0}. There appears no way to do this in a linear program.

For clarity, we will first present our linear program (and the whole algorithm) below, and then
in proving its correctness, we will describe how out algorithm evades the problem elucidated above.

3.1. Algorithm. Our algorithm has three main steps:

• Linear Program The first step of our algorithm is to solve the following linear program,
with variables δu, one corresponding to every link ℓu. Let C be a large enough constant.

(LP) maximize
∑

δu subject to
∑

v,ℓv≥ℓu

av(u)δv ≤ C; ∀u(3)

∑

v,ℓv≥ℓu

au(v)δv ≤ C; ∀u(4)

0 ≤ δu ≤ 1; ∀u(5)

• Rounding We then “round” the fractional solution to this linear program in two steps.
Let LP ∗ be the value of the (fractional) solution to LP .
First, we select a set R = {u : su = 1}, defined by binary variables su, which are generated

independently at random such that P(su = 1) = δu (and thus P(su = 0) = 1− δu).
Next, we choose a subset of R named S defined by S = {u : s′u = 1}, where s′u is a binary

random variable corresponding to this second round of selection. The variable s′u is defined
as follows: s′u = 1 iff su = 1 and the following two conditions hold:

∑

v,ℓv≥ℓu

av(u)sv ≤ 3C(6)

∑

v,ℓv≥ℓu

au(v)sv ≤ 3C(7)

• Final Selection Finally, a feasible set is extracted from S using a simple signal-strengthening
technique which we will detail later.

3.2. Analysis. We need the following definitions.

Definition 4. A link set L is γ-feasible (resp., γ-anti-feasible), if aL(u) ≤ γ for all u ∈ L (resp.
if au(L) ≤ γ for all u ∈ L). A link set is γ-bi-feasible if it is both γ-feasible and γ-anti-feasible.
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We will simply write “feasible”, “anti-feasible” and “bi-feasible” when γ = 1.
Our first step is to show that the solution to the linear program is an approximation to the

capacity problem, or more formally:

Lemma 5. Let LP ∗ be the value of the optimal solution of LP . Then, LP ∗ = Ω(|OPT |).
Proof. To prove this, it suffices to construct a solution δu (for all u) to the LP such that

∑

u δu =
Ω(|OPT |), and that satisfies all the constraints in the linear program.

Since OPT is feasible, there is a 2-bi-feasible subset W such that |W | > |OPT |/2 (See [14] for
a simple proof of this fact).

Now construct the solution by setting δu = 1 if u ∈ W and δu = 0 otherwise. Thus
∑

u δu =
|W | ≥ |OPT |/2. Lemma 5 can be proven then if we can show that Conditions 3 and 4 hold for this
solution, and thus form a valid solution to LP . These follow directly from two Lemmas noted below
(Lemmas 6 and 7), by setting C to be larger than the implicit constants in those two Lemmas. �

The following Lemma was proven in [22]. For completeness, we give a proof in the appendix that
holds for arbitrary ambient noise.

Lemma 6. Assume L′ is γ-feasible using a non-decreasing, sub-linear power assignment. Let u be
any link such that ℓu ≤ ℓv for all v ∈ L′. Then aL′(u) = O(γ).

The next Lemma, something of a dual of the previous one, was proven recently in [14]:

Lemma 7. Assume L′ is γ-anti-feasible using a non-decreasing, sub-linear power assignment. Let
u be any link such that ℓu ≤ ℓv for all v ∈ L′. Then au(L

′) = O(γ).

Remarks: Lemmas 6 and 7 hold the crucial insight that allow us to circumvent the problem
mentioned at the beginning of this section. Note how these lemmas bound the affectance to and
from a link u without the condition that ℓu be a part of the feasible (or anti-feasible) set L. This
allows us to evade the issue of having to express conditions that only apply for links in the solution
set. Instead we can write constraints (Equations 3 and 4) which apply to all links.

The next step is to analyze the Rounding phase. In particular, we claim that

Lemma 8. E(|S|) = Ω(LP ∗) = Ω(|OPT |).
Proof. Recall that S = {u : s′u = 1}. Then by linearity of expectation,

E(|S|) = E(
∑

u

s′u) =
∑

u

E(s′u)

=
∑

u

P(s′u = 1) =
∑

u

P(s′u = 1|su = 1)P(su = 1)

=
∑

u

P(s′u = 1|su = 1)δu .(8)

where we use P(su = 1) = δu.
Let ρ(u) denote the indicator random variable of the event that both Cond. 6 and 7 are fulfilled

for link u. Then P(s′u = 1|su = 1) = P(ρ(u)|su = 1). The point to note here is that the events ρ(u)
and su = 1 are independent since the random variable su is not involved in the former (because
au(u) = 0).

We will prove below that P(s′u = 1) ≥ 1
3
(Lemma 9).

Thus, P(s′u = 1|su = 1) = P(s′u = 1) ≥ 1
3
. Now continuing with Eqn. 8, E(|S|) ≥ 1

3

∑

u δu ≥
1
3
LP ∗.

�
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As promised, we lower bound P(s′u = 1):

Lemma 9. P(s′u = 1) ≥ 1
3

Proof. By Eqn. 3, it holds that E(
∑

ℓv≥ℓu
av(u)sv) =

∑

ℓv≥ℓu
av(u)E(sv) =

∑

ℓv≥ℓu
av(u)δv ≤ C.

Thus by Markov inequality, the probability that Cond. 6 fails is at most 1/3. The same applies to
Cond. 7, using Eqn. 4. The Lemma then follows by the union bound. �

Finally, we need to show that we can extract a large feasible subset from S in the Final Selection
phase. The following signal-strengthening lemma from [15] will be frequently useful.

Lemma 10. [Thm. 1 of [15], slightly restated] If Sγ is an γ-feasible set, then Sγ can partitioned

in to O(
(γ
θ

)2
) θ-feasible sets, for any θ < γ.

Lemma 11. There is an efficient algorithm to find a feasible set S′ ⊆ S such that |S′| = Ω(|S|).
Proof. By conditions 6 and 7, the average affectance in the selected set S is

1

|S|
∑

v,u∈S
av(u) =

1

|S|
∑

u∈S

∑

v∈S,ℓv≥ℓu

(av(u) + au(v))

≤ 1

|S|
∑

u∈S
(3C + 3C) = 6C

Define S1 = {u ∈ S : aS(u) ≤ 12}. From the above bound on average affectance, it is easy to see
that |S1| ≥ |S|/2. Finally, by the signal strengthening lemma, we can find a feasible set S2 such
that |S2| = Ω(|S1|) = Ω(|S|). �

The first part of Thm. 1 now clearly follows. The part of Thm. 1 about uniform power in the
variable QoS case will be handled in the next section.

The algorithms in the following two sections will follow the same tri-partite design of LP, Round-
ing and Final Selection. Due to space constraints, we will mostly focus on the changes in the LP
formulation, and when appropriate, the changes in the Rounding phase, without proving everything
from scratch.

4. Cognitive radio/Admission control

Variable noise and signal requirements (QoS). Recall that in this variation of the problem
each link v has a separate QoS βv and noise level Nv and definition of affectance changes accordingly.
If a link set is such that Pv ≤ c1Pu for all u 6= v for some unspecified constant c1, we call the power
assignment nearly uniform. The following holds.

Lemma 12. Assume L′ is anti-feasible and u is some link. Assume that all links use a nearly
uniform power assignment. Then au(L

′) = O(1).

The proof is a standard modification of the same result for uniform power with constant β and
N (see, for example, Lemma 11 of [1]). Our proof of Lemma 6 provided in the appendix gives a
general idea of this type of proof, and we mention after that proof the main changes needed to
achieve Lemma 12.

The following modified LP can be used for uniform power capacity in this setting:

(LP2) maximize
∑

δu subject to
∑

v 6=u

au(v)δv ≤ C; ∀u(9)

0 ≤ δu ≤ 1; ∀u
7



The additional steps after solving the LP and the analysis follows the same lines as Thm. 1
(which we omit due to space constraints).

Admission control. Now we can focus on the admission control problem for which we will use
some ideas from the variable QoS case.

We will prove the following more general result first.

Theorem 13. Assume links in L use a nearly uniform power assignment. Assume that links in P
use some arbitrary power assignment. Then we can approximate the admission control problem up
to a factor of O(|P|).
Proof. Recall that the goal is to find OPT ⊆ L of maximum size such that OPT ∪ P is feasible.
Thus in choosing OPT , we have to be careful about the affectance of P on OPT and vice-versa.
Our approach is to handle the affectance from P as noise. In this regime, the new “noise” present
at each link is the original noise N , plus the interference received from all links in P. Specifically,
for u ∈ P ∪ L, we define a variable noise level Nu = N +

∑

v∈P,u 6=v
Pv

dα
vu

. Define âu(v) to be the

affectance taking this variable noise into account.
Now consider the following LP relaxation:

(LP2) maximize
∑

δu subject to
∑

w∈P

∑

v∈L
âv(w)δv ≤ |P|;(10)

∑

v∈L
âu(v)δv ≤ C; ∀u ∈ L(11)

0 ≤ δu ≤ 1; ∀u ∈ L
We show that the solution of LP2 is close to OPT .

Lemma 14. Let LP2∗ be the value of the solution to LP2. Then LP2∗ = Ω(|OPT |).
Proof. Consider a 2-anti-feasible subset of OPT , call this O. Consider the following solution to
the LP : set δu = 1 if u ∈ O and 0 otherwise. Cond. 10 is satisfied since the incoming affectance
on each link in P from OPT (and thus from O) is at most 1. The case of Cond. 11 follows from
Lemma 12. Thus LP2∗ ≥ |O| = Ω(|OPT |). �

The next step is to round the fractional solution achieved from solving the LP. As before, we
first set su = 1 with independent probability δu. Let us define the event A as the condition
∑

w∈P
∑

v∈L âv(w)sv ≤ 5|P| holding. Let us define the event Bu, for each link u ∈ L, as the
condition

∑

v∈L âu(v)sv ≤ 4C holding.
We derive another round of selections by setting s′u = 1 iff su = 1 and both Bu and A occur.

Thus,

E(s′u) = P(s′u = 1) = P(su = 1 ∧ Bu ∧ A) = P(Bu ∧A|su = 1)δu

Now P(Bu ∧ A|su = 1) ≥ 1 − P(B̄u|su = 1) − P(Ā|su = 1). As we have seen before, Bu is
independent of su, thus P(B̄u|su = 1) ≤ 1

4
(via Cond. 11 and Markov’s inequality).

On the other hand, A is not independent of su. However, A occurring given su = 1 is the
same as

∑

v∈L,v 6=u

∑

w∈P âv(w)sv ≤ 5|P| −∑w∈S âu(w) being true. But
∑

w∈P âu(w) ≤ |P|, by
the definition of affectance. Thus P(Ā|su = 1) ≤ P(

∑

v∈L,v 6=u

∑

w∈P âv(w)sv > 9|P|) ≤ 1
4
. Thus

finally, P(Bu ∧ A|su = 1) ≥ 1− 1
4
− 1

4
≥ 0.5. Therefore, E(s′u) ≥ 0.5δu.

After the last round of selection, we thus get a set R ⊆ L such that

• R = Ω(LP2∗), in expectation
8



• ∑w∈P
∑

v∈R âv(w) ≤ 5|P|
• ∑w∈R âv(w) ≤ 4C for all v ∈ R

Using averaging arguments and signal strengthening as before, we can extract R′ = Ω(R) which is
feasible. To complete the solution, we need to extract a subset of R′ such that

(12)
∑

v:s′
v
=1

âv(w) ≤ 1 for all w ∈ P

From the condition
∑

w∈P
∑

v∈L âv(w)s
′
v ≤ 10|P|, it is not hard to see that the set of selected

links from L can be partitioned into O(|P|) sets such that Eqn. 12 holds. This gives us the sought
after O(|P|)-approximation. �

Thm. 13 implies part a) of Thm. 2 directly. We note that this implies aO(|P| log ∆)-approximation
algorithm that holds under any other non-decreasing sublinear power assignment, by partitioning
the linkset into at most log∆ sets of nearly-uniform power.

We prove the last part of Thm. 2 below.

Theorem 15. Let k = |P|. If |OPT | ≥ γ1k
√
log k, for a large enough constant γ1, then there is a

constant-factor approximation algorithm for the admission control problem for uniform power.

First we show that if OPT is large, we can assume that the affectances from OPT to P are
small.

Lemma 16. Assume OPT ≥ γ1k
√
log k, for a large enough constant γ1. Define L′ = {u ∈ L :

au(v) ≤ 1

10
√
log k

for all v ∈ P} and OPT ′ = L′ ∩OPT . Then OPT ′ = Ω(OPT ).

Proof. To see this, note that aOPT (P) ≤ k, since P must be feasible in presence of OPT . Now,
defining OL = OPT \OPT ′, aOL(P) ≥ |OL| 1

10
√
log k

. Thus |OL| 1

10
√
log k

≤ k, or |OL| ≤ 10
√
log k ·k

and finally |OPT ′| ≥ |OPT | − |OL| ≥ (γ1 − 10)
√
log k · k = Ω(|OPT |) if γ1 is large enough. �

We can also claim a strengthening property.

Lemma 17. Assume R is a set such that for all u ∈ R, au(v) ≤ 1

10
√
log k

for all v ∈ P, and

aR(v) ≤ 1 for all v ∈ P. Then there is a subset R̂ with |R̂| = Ω(|R|), such that aR̂(ℓ) ≤ 1/3 for all
ℓ ∈ P and such a subset can be found in polynomial time with high probability.

Proof. Simply select each link in R with probability 1
6
. Let the set of selected links be Q. Then

E(aQ(v)) ≤ 1
6
for all v ∈ P. Consider a fixed v ∈ P. Now aQ(v) =

∑

u∈R au(v)su where su is the
iid random variable indicating selection in to Q. We can use Hoeffding’s inequality to get a large
deviation bound.

Theorem 18. [Hoeffding, [18]] Let the independent random variables X1, . . . Xn be bounded, i.e.,
Xu ∈ [bu, du], and let X =

∑

uXu. Then,

P(X − E(X) ≥ t) ≤ exp

(

− 2t2n2

∑

u(du − bu)2

)

.

Set Xu to be au(v)su. We can verify that given our assumptions, setting bu = 0 and du = 1

10
√
log k

suffices. Setting t = 1
6
,

P

(

aQ(v) ≥
1

3

)

≤ P

(

aQ(v)− E(aQ(v)) ≥
1

6

)

≤ exp

(

− 2n2

36n2( 1

10
√
log k

)2

)

≤ 1

10k
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This implies, by the union bound, that with probability at least 9
10
, aQ(v) ≤ 1

3
for all v ∈ P

simultaneously. We now have proof of not only the existential statement, but the algorithmic one,
since we can repeat the random experiments multiple times to get the high-probability result. �

Note that the above holds equally for any affectance function (specifically, the case â).
Now we can describe the linear programming relaxation. First note that by virtue of Lemma

16 it suffices to assume the input instance is L′ and the optimum is OPT ′ (links not in L′ can
be thrown out by simple pre-processing). Let us reuse notation L and OPT to refer to this new
instance after pre-processing.

Consider the following linear program (LP4)

(LP4) maximize
∑

δu subject to
∑

v∈L
âv(w)δv ≤ 1/3; ∀w ∈ P(13)

∑

v∈L
âu(v)δv ≤ C; ∀u ∈ L(14)

0 ≤ δu ≤ 1; ∀u ∈ L
We claim that this is a relaxation up to constant factors.

Lemma 19. Let LP ∗ be the optimal value of LP4. The LP ∗ = Ω(|OPT |).
Proof. (Sketch) By Lemma 17, there exists O ⊆ OPT such that aO(w) ≤ 1

3
for all w ∈ P. Now

consider a 2-anti-feasible subset O′ of O. Consider as the solution of the LP , δu = 1 if u ∈ O′ and
δu = 0 otherwise. That Cond. 13 is satisfied follows from the claim that aO(w) ≤ 1

3
for all w ∈ P.

Cond. 14 follows from anti-feasibility arguments along the lines made before. �

We can round this solution in the same way as before, with a two stage selection process. The
proof varies only in that we need to claim that after the second selection (characterized by Bernoulli
variable s′u),

∑

v∈L âv(w)s
′
v ≤ 1 with high probability, simultaneously for all w ∈ P. This follows

from an argument similar to Lemma 17 using the fact that affectances are bounded by 1

10
√
log k

and

using the Hoeffding’s inequality.

5. Weighted capacity

Recall that the result for weighted capacity applies only to linear power. For linear power the
following stronger version of Lemma 6 holds.

Lemma 20. Assume L′ is feasible using linear power and ℓ is any link (also using linear power).
Then, aL′(ℓ) = O(1).

The proof is nearly identical to that of Lemma 6, as elaborated in the appendix.
We can now write the following LP relaxation for the weighted capacity problem.

(LP5) maximize
∑

wuδu subject to
∑

v

av(u)δv ≤ C; ∀u(15)

0 ≤ δu ≤ 1; ∀u ∈ L

Proof. of Thm. 3 (sketch) The proof is rather like that of Thm. 1. Once again, we select each link
into a set R with probability δu (characterized by Bernoulli variable su for each link u) and then do
a further selection by setting S = {u : s′u = 1} where s′u = 1 iff su = 1 and

∑

v∈R av(u) ≤ 4C. As
in the proof of Thm. 1, one can show that E(s′u) = Ω(δu) and thus the expected weighted output is

10



Ω(
∑

uwuδu) which is within a constant factor of the optimum. Finally, the set S can be partitioned
into a constant number of feasible subsets using signal strengthening (Lemma 10), completing the
proof. �

For other power assignments, such as uniform power, we seem to be within striking distance of
a O(1)-approximation. This is unfortunately not the case, we can only claim a poly-logarithmic
approximation, worse than the greedy case. However, as we show in Section 6, in practice the LP
approach might be applicable to these other power assignments as well.

6. Simulations

In this section, we present results from simulation experiments. We focus on the weighted
capacity problem for our experiments. It is difficult to conduct a comparative experiment for the
admission control problem, there being no obvious previous algorithm to compare it with.

In contrast, the weighted capacity problem admits straightforward modifications of to the greedy
algorithm, and thus a better comparative benchmark for our algorithm. Two natural greedy algo-
rithms can be proposed:

• Using weight classes: Let maxu wu = n (by scaling). Now we can assume that all
wu ∈ [1, n]. This is because links with smaller weights can be discarded without losing
more than a factor of 2 in the approximation quality. Now divide the links into log n weight
classes, the weight class Wt is defined by Wt = {u : wu ∈ [2t, 2t+1]} for t = 0 to log n − 1.
Now if we consider links belonging to a single Wt, the weights do not matter (up to a factor
of 2). We simply run the greedy algorithm of [16] for each Wt, and output the solution for
the best weight class. This gives a straightforward O(log n) approximation factor.

• Using length classes: Let minu ℓu = 1 by scaling and let maxu ℓu = ∆. Divide the
links into length classes Lt = {u : ℓu ∈ [2t, 2t+1]} for t = 0 to log∆. Within Lt we can
choose to run the greedy algorithm on the links in any order since the lengths are essentially
the same, thus we go through links according to descending order of weights, achieving a
constant factor approximation on Lt. We choose the solution for the best Lt, thus getting
a O(log∆) approximation.

Thus, comparing the two greedy algorithms, we achieve a O(min(log n, log∆)) approximation. In
what follows, we shall refer to this joint algorithm as “greedy algorithm”.

Experimental setup. We randomly generated the instances. Some important parameters of the
experiments are as follows:

(1) ∆: The maximum length of a link (the implicit minimum being 1)
(2) R: A number indicating that the sender of a link is chosen from a R×R square
(3) n: number of links

We also use N = 0, β = 1, and α = 2.5. The instances were generated as follows. For each link, the
sender was chosen randomly from a R×R square. The length of the link was chosen randomly from
[1,∆]. The receiver was thus placed at this distance from the sender and at a random direction.
The weight was chosen independently from [1, n]. We will mention different weight distributions
later, and mention this initial choice of weight distribution as the ordinary distribution.

One crucial aspect of both greedy algorithms as well as the LP algorithm is the constants used.
For the LP algorithm, this is the constant C in Eqn. 15. The greedy algorithm of [16] also depends
on a constant. Though theoretical bounds for these constants are available, it has been observed
before that these theoretical bounds do not perform the best in practice [1]. We run all algorithms
with different values of the constant in question, running over reasonable values in small increments,
and choosing the best solution for each algorithm separately. We ran our experiments in MATLAB,
and used the convex optimization package CVX [10] to solve the LP.
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Figure 1. Simulation with linear power and n = 400 (ordinary weight assignment).
Individual lines refer to different values of ∆. The ratio of the solution from the LP
algorithm to the greedy algorithm is plotted on the Y-axis against the density.
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Figure 2. Simulation with linear power and n = 600 (ordinary weight assignment).

The overall message from the experiments is that using the linear programming formulation gives
a substantial improvement in the solution quality in many cases. On the other hand, the greedy
algorithm is also not without merit, and can outperform the LP in certain other situations. It
appears that the smaller the maximum feasible set is, the better greedy does, while as the solution
size/quality improves, LP outperforms greedy. This is not surprising. When the set is really dense
and the link lengths are large, the quality of the solution is bad and the cost incurred by greedy
due to length-class or weight-class partitions is minimal.

In Fig. 1, we see the results for linear power with 400 links. On Y-axis is plotted SLP
SG , where

SLP and SG are, respectively, the quality of the solution found from the linear programming
algorithm and the greedy algorithm. As alluded before, the greedy algorithm does better when ∆
and density are both large (these are the points for which the Y-axis value is lesser than 1), with
the trend reversing when these change. Running the same experiment run for an increased number
of links n = 600 confirms these trends (Fig. 2).

We experimented with different distributions on the weights, to see if changes here change the
solution trend significantly. We tried the following weight distributions.

• Reversed: Set the weight of link v to be 1/wv where wv is chosen according to the ordinary
distribution.

• Length determined: Set weight of the link to be equal to its length.
12
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Figure 3. Simulation with linear power and n = 600 and Reversed weight assignment.

500 1000 2000 5000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R

LP
/g

re
ed

y

 

 

Delta = 20

Delta = 40

Delta = 100

Delta = 150

Delta = 200

Figure 4. Simulation with uniform power and n = 400 and the ordinary weight assignment.

• Weight class: Choose a parameter t randomly from [1, log n] and set weight to 2t.

The overall trend is similar. For reversed and length determined distributions, LP did extremely
well, whereas for the case of weight class distribution, greedy did much better, with LP only barely
outperforming it in a few cases. This further points to the benefit of combining these algorithms
in practice. The results for the reversed case are shown in Fig. 3.

Next we experimented with uniform power. As we discussed in Section 5, for uniform power
we can only claim a poly-logarithmic approximation factor. However, the bounds are only so bad
on rather pathological instances and one needs to do some work to come up with them. Thus in
practice, it is reasonable to assume that an LP approach will be not without benefit. This is indeed
borne out by our experiments, as seen in Fig. 4.
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[8] O. Goussevskaia, M. Halldórsson, R. Wattenhofer, and E. Welzl. Capacity of Arbitrary Wireless Networks. In
INFOCOM, pages 1872–1880, April 2009.

[9] Olga Goussevskaia and Roger Wattenhofer. Complexity of scheduling with analog network coding. In FOWANC,
May 2008.

[10] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 1.21.
http://cvxr.com/cvx, April 2011.

[11] Jimmi Grönkvist and Anders Hansson. Comparison between graph-based and interference-based STDMA sched-
uling. In Mobihoc, pages 255–258, 2001.

[12] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Trans. Information Theory, 46(2):388–404,
2000.
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We give a proof of Lemma 6, originally due [22], that holds also in the presence of arbitrary
noise.

Lemma 6: If L is γ-feasible using a non-decreasing sublinear power assignment and u is a link
such that ℓu ≤ ℓv for all v ∈ L, then aL(u) = O(γ).

Proof. Assume that L is a 1/3α-feasible set. By the signal strengthening (Lemma 10), this affects
only the constant factor.

Consider the link v ∈ L such that d(ru, rv) is minimum. Also consider the link w ∈ L with
d(sw, ru) minimum. Let D = d(ru, rv). We claim that for all links x in L, x 6= w,

(16) d(sx, ru) ≥
1

2
D .

To prove this, assume, for contradiction, that d(sx, ru) <
1
2
D. Then, d(sw, ru) <

1
2
D, by definition

of w. Now, again by the definition of v, d(rx, ru) ≥ D and d(rw, ru) ≥ D. Thus ℓw ≥ d(ru, rw) −
d(sw, ru) >

D
2
and similarly ℓx > D

2
. On the other hand d(sw, sx) ≤ d(sw, ru)+d(sx, ru) <

D
2
+ D

2
<

D. Now, dwx · dxw ≤ (ℓx + d(sw, sx))(ℓw + d(sw, sx)) < (ℓx +D)(ℓw +D) < 9ℓwℓx, contradicting
the following:

Lemma 21 ([13]). Let u, v be links in a 1/qα-feasible set. Then, duv · dvu ≥ q2 · ℓuℓv.
Consider now any link x in L, x 6= w. By the triangle inquality and Eqn. 16, dxv = d(sx, rv) ≤

d(rv , ru) + d(sx, ru) = D + d(sx, ru) ≤ 3d(sx, ru) = 3dxu. Now ax(u) ≤ cu
Px

dα
xu

ℓα
u

Pu

. Since ℓu ≤ ℓv, it

holds that cu ≤ cv and by sub-linearity it holds that Pu/ℓ
α
u ≥ Pv/ℓ

α
v . Thus,

ax(u) ≤ cv
Px

dαxu

ℓαv
Pv

≤ cv
3αPx

dαxv

ℓαv
Pv

= 3αav(x),(17)

where the final equality follows from the feasibility of L. Finally, summing over all links in L

aL(u) =
∑

x∈L
ax(u) = aw(u) +

∑

x∈L\{w}
ax(u)

≤ 1 + 3α
∑

x∈L\{w}
au(v) ≤ 1 + 3α · γ = O(1) ,

since
∑

x∈L\{w} ax(u) ≤ aL(u) ≤ γ by assumption. �

Proofs of other lemmas: When using linear power, it holds for all links u and v that cu = cv and
the signal received Pu/ℓ

α
u = Pv/ℓ

α
v , satisfying Eqn. 17 holds without the condition ℓu ≤ ℓv. This

yields Lemma 20.
By inverting the role of senders and receivers, we can obtain similar bounds on out-affectance

(au(L)) as above on in-affectance (aL(u)). Modulo this change, the proof of Lemma 7 is nearly
15
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identical to the above proof of Lemma 6, and the argument for Lemma 12 mirrors that of Lemma
20.
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