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Abstract—In Cognitive Radio Networks (CRNs), secondary
users (SUs) are allowed to opportunistically access the
unused/under-utilized channels of primary users (PUs). Toutilize
spectrum resources efficiently, an auction scheme is often applied
where an operator serves as an auctioneer and accepts spectrum
requests from SUs. Most existing works on spectrum auctions
assume that the operator has perfect knowledge of PU activities.
In practice, however, it is more likely that the operator only
has statistical information of the PU traffic when it is trading a
spectrum hole, and it is acquiring more accurate information
in real time. In this paper, we distinguish PU channels that
are under the control of the operator, where accurate channel
states are revealed in real-time, and channels that the operator
acquires from PUs out of its control, where a sense-before-
use paradigm has to be followed. Considering both spectrum
uncertainty and sensing inaccuracy, we study the social welfare
maximization problem for serving SUs with various levels ofdelay
tolerance. We first model the problem as a finite horizon Markov
decision process when the operator knows all spectrum requests
in advance, and propose an optimal dynamic programming based
algorithm. We then investigate the case when spectrum requests
are submitted online, and propose a greedy algorithm that is1/2-
competitive for homogeneous channels and is comparable to the
offline algorithm for more general settings. We further showthat
the online algorithm together with a payment scheme achieves
incentive compatibility for the SUs while guaranteeing a non-
negative revenue for the operator.

I. I NTRODUCTION

With the ever-growing demand for wireless spectrum, Cog-
nitive Radio Networks (CRNs) have been proposed to better
utilize spectrum holes in wireless networks. In CRNs, sec-
ondary users (SUs) are allowed to opportunistically accessthe
channels of primary users (PUs). To utilize spectrum resources
efficiently, an auction framework is often applied where an op-
erator serves as an auctioneer and accepts requests from SUs.
These frameworks are implemented via a resource allocation
and a payment scheme with the objective of maximizing either
social welfare or revenue [2], [4]–[6], [14].

Most existing works on spectrum auctions, however, assume
that the operator has perfect knowledge of PU activities
in a given period of time. They ignore the uncertainty of
channel states caused by the uncertain and frequent PU usage.

Hence, these existing auction schemes are mainly applicable
to spectrum resources that tend to be available for relatively
long periods of time. For instance, the interval between two
adjacent auctions is assumed to be 30 minutes or longer
in [4]. However, to allow more efficient spectrum utilization
and relieve spectrum congestion, spectrum holes at smaller
time scales need to be explored. A straightforward extension
of current approaches to this more dynamic environment
would require auctions to be conducted frequently, which
would incur high communication and management overhead.
A more reasonable approach is to again consider a relatively
long period of time, where the operator only has statistical
information of the PU traffic when trading spectrum holes.
More accurate information is acquired later in real-time.
Therefore, an auction scheme that takes spectrum uncertainty
into account is needed.

To further improve spectrum utilization, besides trading
spectrum holes that are fully under the control of the operator,
as commonly assumed in the spectrum auction literature,
the operator may choose to acquire licensed channels out
of its control to further improve social welfare or revenue.
To avoid interference with PUs, asense-before-useparadigm
must be followed in this case. The operator must first identify
spectrum holes in a channel, e.g., by coordinating SUs to
sense the channel, before allocating the holes to SUs. While
spectrum sensing has been extensively studied in the CRN
literature [8]–[10], the joint problem of sensing and spectrum
auction remains unexplored.

In this paper, we propose a spectrum allocation framework
that takes bothspectrum uncertaintyand sensing inaccuracy
into account. In particular, we consider two types spectrum
resources: PU channels that are under the control of the
operator, and the channels that the operator acquires from
PUs out of its control. In practice, wireless service providers
(WSP) act as operators, and they may cover areas that almost
completely overlap. SUs registered with one of them may
access spectrum from other WSPs as will be introduced in our
model. In both types of channels, PU traffic on each channel
is assumed to follow a known i.i.d. Bernoulli distribution.
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For the first type of channels, the real-time channel state can
be learned accurately by the operator. For the second type
of channels, a sense-before-use paradigm must be followed,
where a collision with the PU traffic due to sensing inaccuracy
incurs a penalty.

Using a fixed set of channels of each type, we study
the joint spectrum sensing and allocation problem to serve
spectrum requests with arbitrary valuations and arbitrarylevels
of delay tolerance. The objective of the operator is to maximize
social welfare, which equals to the valuations obtained from
successfully served requests minus the cost due to collisions.
We consider both the scenario where the operator knows all
spectrum requests in advance, and the setting when spectrum
requests are submitted online. While our online setting is
similar to the online spectrum auction schemes considered
in [3], [13], the key difference is that sensing inaccuracy is
not considered in these existing works. Hence, the approaches
in [3], [13] can only be applied to cases where accurate real
time channel states are obtainable, which is not always the
case.

Our contributions can be summarized as follows:
• We model the joint sensing and spectrum allocation prob-

lem as a finite horizon Markov decision process when
all spectrum requests are revealed to the operator offline,
i.e., ahead of time. We develop an optimal dynamic
programming based algorithm, which serves as a baseline
for the achievable social welfare.

• We propose a greedy algorithm for the case when spec-
trum requests are submitted online. We prove that the
online algorithm is 1/2-competitive for homogeneous
channels, and we show that it achieves performance
comparable to the offline algorithm for more general
settings by numerical results.

• We further extend the online algorithm by introducing
a payment scheme to ensure incentive compatibility for
SUs while guaranteeing a non-negative revenue for the
operator.

The paper is organized as follows: The system model
and problem formulation are introduced in Section II. Our
solutions to the problem with offline and online requests are
presented in Sections III and IV, respectively. The online
auction scheme for ensuring incentive compatibility for SUs
and non-negative revenue for the operator is then discussed
in Section V. In Section VI, numerical results are presented
to illustrate the performance of the greedy online algorithm
in general cases, and the tradeoff between social welfare and
revenue. We conclude the paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cognitive radio network with a single operator
and multiple SUs registered with it (see Figure 1). The
operator manages multiple orthogonal channels and controls
the corresponding network composed of PUs. We focus on
downlink transmission at the operator with power control.
A time slotted system is considered with all PU and SU
transmissions synchronized. All SUs are assumed to be in the
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Fig. 1. System model of the CRN. In the left figure, small circles are SUs,
squares represent PUs registered at the operator, and triangles are PUs out
of the operator’s control. The big circle is the coverage area of the operator.
The right figure shows the availability of channels inT1 and T2. The big
circle means the channel is busy and the small red circle means the channel
is sensed idle.

interference range of each other and that of PUs, and hence
each channel can be assigned to at most one SU at any time
when it is not used by PUs.

The spectrum pool consists of two types of channels, those
managed by the operator and those that are not. The operator is
aware of the downlink activity of its own PUs at the beginning
of each time slot. The set of the spectrum bands1 managed by
the operator is denoted byT1. However, the activities of PUs
not managed by the operator are unknown. Bands accessed
by these PUs are denoted byT2. To access bands inT2, SUs
cooperatively sense them and report their sensing results to
the operator. The operator then makes a fusion decision on
the activities of bands inT2 and selects a subset of channels
sensed idle to serve the SUs. We only consider the set of
PUs located in the coverage area of the operator so that all
SUs in the system have the cognitive capability and can sense
spectrum inT2. We assume that the sensing cost is low and
even negligible. In practice, wireless service providers (WSP)
act as operators, and they may cover areas that almost overlap.
SUs registered with one of them may access spectrum from
other WSPs as introduced in our model.

We assume that the spectrum bands inT1 andT2 have the
same capacity, which is normalized to1. PU activities on these
channels follow an i.i.d. Bernoulli distribution in each time
slot. For instance, in Figure 1, there are three channels inT1

and two channels inT2. In time slot1, channels 2 and 3 in
T1 are idle and channel 1 inT2 is idle. However, channel
1 in T2 is sensed busy and it will not be allocated. Also,
channel 2 inT2 is incorrectly sensed to be idle and scheduling
a request on this channel will lead to a collision. We letπ1(i)
denote the probability that channeli in T1 is idle andπ2(j) the
probability that channelj in T2 is idle. We also assume that
the prior distribution of the PU activity is accurately acquired
over time. We assume that state changes occur at the beginning

of a time slot. LetC
△
= |T1| + |T2| denote the total number

of channels, which remains constant over time. Some of our
technical results apply to the special case when all channels in
T2 are homogenous, that is, when the channels have the same
π2(i), Pm(i) andPf (i). Thus, they also have the sameP0(i)

1We use channel and spectrum band interchangeably.



3

TABLE I
NOTATION L IST

Symbol Meaning

N Set of spectrum requests submitted to the operator

T1 Set of channels managed by the operator

T2 Set of channels not managed by the operator

π1(i) Probability that channeli in T1 is idle

π2(j) Probability that channelj in T2 is idle

C The total number of channels (C = |T1|+ |T2|)

~I1(t) Availabilities of channels inT1 at t

~I2(t) Availabilities of channels inT2 at t

~Is
2 (t) Sensed availabilities of channels inT2 at t

Pf (k) Probability of false alarm for channelk ∈ T2

Pm(k) Probability of misdetection for channelk ∈ T2

PI (k) Probability that channelk is sensed idle

P0(k) Probability of channelk being idle given that it is sensed idle

ai Earliest service time for requesti

di Deadline of requesti

wi Valuation of the requesti

H The time period where spectrum allocation has to be made

r Maximum number of outstanding requests in the system at any time

Q Penalty price per collision

andPI(i).
The availabilities of channels inT1 andT2 at t are denoted

by binary vectors~I1(t) = (I11 (t), · · · , I
k
1 (t), · · · ) and ~I2(t) =

(I12 (t), · · · , I
l
2(t), · · · ), respectively, where0 represents idle

and 1 represents busy states. Moreover,~Is2 (t) denotes the
sensed availabilities of channels inT2 at t. LetPf (k), k ∈ T2,
denote theprobability of false alarm for channelk, i.e.,
the probability that SUs cooperatively sense channelk to be
busy given that it is actually idle. LetPm(k) represent the
probability of misdetection for channelk, i.e., the probability
that SUs cooperatively sense channelk to be idle given that
it is actually busy. We further definePI(k) as the probability
that channelk is sensed idle andP0(k) as the conditional
probability of channelk being idle given that it is sensed idle.
Note thatPI(k) = π2(k)(1−Pf (k))+(1−π2(k))Pm(k) and
P0(k) =

π2(k)(1−Pf (k))
PI(k)

. We assume thatPf (k) and Pm(k)
are constant for any channelk ∈ T2, which occurs e.g. when
SUs are static in the system.

We assume each spectrum request is for a single time-
frequency chunk, i.e., a single time slot of any channel in
T1 or T2. Each requesti submitted at timet is of the form
(ai, di, wi), whereai ≥ t is the required service starting time,
di is the deadline, andwi is the valuation of requesti, which
will be added to the social welfare if requesti is served bydi.
We denote the set of requests byN = {1, · · · , N}. H =
maxi∈N di − mini∈N ai denotes the time period spectrum
allocation needs to be made, andmini∈N ai is normalized
to 1. The maximum number of outstanding requests in the
system at any time is denoted asr. Table I summarizes the
notations used in the paper.

We are interested in maximizing the social welfare of the
operator and the SUs in the system: When an SU submits

a request, the operator will not make a commitment on the
service; the valuationwi is added to the social welfare if
requesti is served bydi. The social welfare is defined as the
total valuations from the requests served minus the collision
cost to channels inT2. Let Q denote the penalty incurred per
collision. Letxil(t) (i ∈ N , l ∈ T1∪T2, t = 1, · · · , H) denote
the allocation indicator:xil(t) = 1 if requesti is allocated to
channell at t; xil(t) = 0 otherwise.yi denotes the service
indicator:yi = 1 if requesti is served bydi; yi = 0 otherwise.
The social welfare maximization problem is then formulated
as follows, whereZ(·) denotes the number of0 elements in
a vector:

Problem (A):

max
x,~y

EI1,I2,Is2

[

∑

i∈N

yiwi −Q
∑

i∈N

∑

l∈T2

H
∑

t=1

xil(t)I
l
2(t)

]

s.t.
di
∑

t=ai

(

∑

l∈T1

xil(t) +
∑

k∈T2

xik(t)(1 − Ik2 (t))
)

≥ yi, (1)

for all i ∈ N
∑

i∈N

∑

l∈T1

xil(t) ≤ Z(~I1(t)), for all t = 1, · · · , H (2)

∑

i∈N

∑

k∈T2

xik(t) ≤ Z(~Is2 (t)), for all t = 1, · · · , H, (3)

wherex = (xil(t))i,l,t, ~y = (yi)i∈N , I1 = (~I1(t))t=1,··· ,H ,
I2 = (~I2(t))t=1,··· ,H , I

s
2 = (~Is2 (t))t=1,··· ,H . The cost

Q
∑

i∈N

∑

l∈T2

∑H
t=1 xil(t)I

l
2(t) takes into account the cur-

rent availabilities of channels inT2. Inequality (1) reflects the
relationship between the allocation indicatorxil(t) and the
service indicatoryi. Inequality (2) guarantees that a channel
in T1 will not be allocated unless it is observed idle. Likewise,
Inequality (3) guarantees that a channel inT2 will not be
allocated unless it is sensed idle.

The challenges of Problem (A) are threefold: 1) The re-
quests are uncertain since they may be submitted at different
time slots; 2) Spectrum availabilities ofT1 and T2 in the
future are not known at the current time slot; 3) Sensing is not
accurate for channels inT2. In the following, we propose an
offline optimal solution in Section III and an online solution
in Section IV. We define the offline algorithm as an algorithm
that decides the channel allocation for outstanding requests in
each time slot with only the observed availabilities of channels
in T1 and sensed availabilities inT2 of the current slot. All
requests, including future arrivals, are assumed to be known.
For instance, SUs submit their requests at the beginning of
H . The operator then knows the full arrival information. In
each time slot, the operator has to make channel allocation
decisions based on the observed availabilities of its own
channels and the sensed availabilities of channels managedby
other operators. The only difference between online and offline
algorithms is that online algorithm does not assume the full
arrival information to be known ahead of time.Both algorithms
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are designed under the challenges of spectrum uncertainty and
sensing inaccuracy.

III. O PTIMAL OFFLINE ALGORITHM

In this section, we study Problem (A) under the assumption
that the operator has full knowledge of the spectrum requests
in advance. By our assumptions on channel statistics, the
problem can be modeled as a finite horizon Markov Decision
Process (MDP) [12]. In this section, we propose an optimal
dynamic programming based solution to the problem. We start
with the simple case whereT1 = ∅ and all the channels
for serving SUs are inT2, which models the case where all
the channels owned by the operator are overloaded by PU
traffic. Then, we proceed with the general case where bothT1

andT2 channels are available for use in the system. In each
time slot, based on the knowledge of the spectrum requests
and the current channel state, the operator makes a joint
decision including 1) which subset of requests to schedule;
2) which subset of channels to allocate; 3) which request
to assign to which channel. In our solution, we consider all
possible scenarios for each time slot and find the schedule
that maximizes the expected social welfare. Note that the
social welfare is composed of two parts: Valuations of SUs
that are served and the cost caused by collisions on the
channels inT2. We show that our algorithm has a complexity
of O(2r3C(max {C, r})min {C,r}HCr). When (ai, di) of re-
quests do not have a dense overlap, i.e.,r = O(logN) where
N is the total number of requests in[1, H ], our algorithms are
of polynomial complexity.

We first defineF (D, t) as the maximum expected social
welfare from the beginning of slott till the end of slotH
given that the set of outstanding requests isD. The expectation
takes into account all possible channel realizations and sensing
results. We defineF (D,H + 1) = 0 for all D. Our goal
is to calculateF (D, 1) whereD = {i : i ∈ N , ai = 1}
(Algorithm III.1). We calculate it backward fromt = H till
t = 1 is reached since requests requiring service in future
time slots have an impact on the current optimal scheduling
decision. Note that at any timet, it is sufficient to considerD
in F (D, t)’s for being any subset of the requests that satisfy
ai ≤ t < di.

A. With no available channels inT1

When no channel is inT1, the spectrum bands managed by
the operator, SUs can only be served by channels inT2. SUs
may request spectrum in arbitrary time slots. The success of
serving requesti contributeswi to the social welfare while the
assignment of a request to a busy channel causes collisions,
incurring a penalty ofQ.

We defineX(D,S, t) as the maximum expected social
welfare fromt (t = 1, · · · , H) to the end of the period, given
that the set of outstanding requests isD and channels inS
are sensed idle (S ⊆ T2). The expectation is taken over all

possible realizations ofI2. Then,

X(D,S, t) = max
x(t)

[

∑

S1⊆S

∏

l∈S1

P0(l)
∏

m∈S\S1

(1− P0(m))

(W (D,S, S1,x(t), t) + F (D′, t+ 1))

]

, (4)

whereW (D,S, S1,x(t), t)

=
∑

n∈D

[

wn

∑

k∈S1

xnk(t)−Q
∑

k∈S\S1

xnk(t)
]

is defined as the social welfare achieved in time slott, for
a givenD, the set of outstanding requests;S ⊆ T2, the set
of channels sensed idle;S1 ⊆ S, the set of channels that are
sensed idle and actually idle; andx(t), the channel allocation
at t. Recall thatxnk(t) is the allocation indicator used to
determine whether the SU is served by this allocation. We
form D′ based onD as follows: If requestm is allocated to
channels inS1, then removem from D, which means it is
served and the request no long exists. If requestn satisfies
an = t + 1, then addn to D, which indicates it is a new
request. Among the remaining requests, those that expire at
the beginning oft+ 1 are removed fromD.

Based onX(D,S, t), we calculateF (D, t) as follows. The
expectation inF (D, t) in the form of the product ofPI(l) and
(1− PI(m)) takes into account all realizations ofIs2.

F (D, t) =
∑

S⊆T2

∏

l∈S

PI(l)
∏

m∈T2\S

(1 − PI(m))X(D,S, t),

(5)

In Algorithm III.1, our objectiveF ({i : i ∈ N , ai = 1}, 1)
is calculated by dynamic programming. It first calculates the
maximum social welfare and the corresponding schedule for
each time slot, and then specifies the real time operations.
Lines 1-6 calculateF (D, t) backward fromH to 1 given
the initial condition defined earlierF (D,H + 1) = 0 for
all D. Line 5 calculates the optimal scheduling policy for
time t givenD, the request set;S, the set of channels sensed
idle; andS1, the set of channels sensed idle and actually idle,
according to Equation (4). The value ofF (D, t) is updated
in Line 6 according to Equation (5). The complexity of the
Equation (5) isO(3|T2|(max {|T2|, r})min {|T2|,r}|T2|r): The
number of possible channels realizations is3|T2| since different
social welfare values will be generated in the cases where
the channel is sensed idle but actually busy, it is sensed
idle and actually idle, and all other cases. It takes at most
(max {|T2|, r})min {|T2|,r} combinations to find the optimal
x in Equation (4). The complexity for the calculation of
W (D,S, S1,x(t), t is O(|T2|r). On the other hand, givent,
the number of possible argument combinations inF (D, t)
is O(2rH) by assumption. The total time complexity is
O(2r3C(max {C, r})min {C,r}HCr). Note thatC is assumed
to be a constant in our model.
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Algorithm III.1 Dynamic Programming based Optimal Algorithm for Social Welfare Maximization
Offline computation

1: for t = H to 1 do
2: for all D ⊆ {i : ai ≤ t < di} do
3: for all S ⊆ T2 do

4: X(D,S, t)← max
x(t)

[

∑

S1⊆S

∏

l∈S1

P0(l)
∏

m∈S\S1

(1− P0(m))(
∑

n∈D

[

wn

∑

k∈S1

xnk(t)−Q
∑

k∈S\S1

xnk(t)
]

+ F (D′, t+ 1))

]

5: F (D, t)←
∑

S⊆T2

∏

l∈S

PI(l)
∏

m∈T2\S

(1− PI(m))X(D,S, t)

Real-time scheduling
1: At each time slott with a set of requestsD that are currently in the system and a set of channelsS that are sensed idle,

allocate channels to the requests based on the schedulex(t) that maximizesX(D,S, t).

B. With at least one channel inT1

With channels inT1, requests can be served by channels
in both T1 andT2. Since the channel availabilities ofT1 are
known at the beginning of each time slot, they can serve SU
requests without any cost. Thus, once observed idle, channels
in T1 could be assigned to requests so as to maximize the sum
of valuations. Our focus is still the allocation of channelsin
T2 if they are sensed idle.

We define Y (D,S, t) as the maximum expected social
welfare from t to the end of the period, given that the set
of outstanding requests isD and channels inS are sensed
idle (S ⊆ T2). We also defineX̂(D,Γ, S, t) as the maximum
expected social welfare fromt to the end of the period, given
that the set of outstanding requests isD, channels inΓ are
observed to be idle (Γ ⊆ T1), and channels inS are sensed idle
(S ⊆ T2). The expectation inY (D,S, t) is for all realizations
of I1 and I2. The expectation inX̂(D,Γ, S, t) is for all
realizations ofI2. Then,

X̂(D,Γ, S, t) = max
x(t)

[

∑

S1⊆S

∏

l∈S1

P0(l)
∏

m∈S\S1

(1− P0(m))

(Ŵ (D,Γ, S, S1,x(t), t) + F (D′, t+ 1))

]

, (6)

where

Ŵ (D,Γ, S, S1,x(t), t) =
∑

n∈D

[

wn(
∑

l∈Γ

xnl(t) +
∑

k∈S1

xnk(t))

−Q
∑

k∈S\S1

xnk(t)
]

is defined as the social welfare achieved in time slott, given
D, the set of outstanding requests;Γ, the set of channels in
T1 that are observed to be idle;S, the set of channels sensed
idle; S1, the set of channels sensed idle and actually idle;
and x(t), the channel allocation att. The only difference
betweenW (D,S, S1,x(t), t) and Ŵ (D,Γ, S, S1,x(t), t) is
the addition of the valuations contributed by the service on
channels inT1. We form D′ based onD in a similar way
to Equation (4): If a requestm is allocated to channels in

S1∪Γ, then removem from D, which means it is served and
the request no long exists. If requestn satisfiesan = t + 1,
then addn into D, which indicates it is a new request. All
other SUi are removed fromD only whendi = t + 1. We
then calculateY (D,S, t) as:

Y (D,S, t) =
∑

Γ⊆T1

∏

l∈Γ

π1(l)
∏

m∈T1\Γ

(1 − π1(m))X̂(D,Γ, S, t).

(7)
Hence,

F (D, t) =
∑

S⊆T2

∏

l∈S

PI(l)
∏

m∈T2\S

(1− PI(m))Y (D,S, t),

(8)
which takes into account all realizations ofI1, the availabilities
of channels inT1; Is

2
, the sensed availabilities of channels in

T2; andI2, the actual availabilities of channels inT2.
The algorithm is similar to Algorithm III.1 except that

F (D, t) is updated according to Equation (8). The complexity
of Equation (8) isO(3|T2|2|T1|(max {|T2|, r})

min {|T2|,r}Cr).
The difference from the complexity of Equation (5) lies
in 2|T1|, which is caused by the number ofT1 chan-
nel realizations. Following a similar argument as in the
case where|T1| = 0, the total time complexity is still
O(2r3C(max {C, r})min {C,r}HCr). Note that, for homoge-
neous channels inT2, the allocation policy becomes simpler
since allocation to different channels inT2 makes no differ-
ence. Then, we can replace(max {C, r})min {C,r} with r in
total complexity, resulting in a complexity ofO(2r3CHCr2).

C. Discussion

In this section, we prove some structural properties of
the optimal solution, which helps to further reduce the time
complexity of the algorithm and also provides insight to the
design of the online algorithm discussed in Section IV. Note
that at any timet, for an active requesti and a channel
k ∈ T2 that is sensed idle,P0(k)wi − Q(1 − P0(k)) is the
expected immediate social welfare contributed by requesti if
i is assigned tok in the current slot. Proposition III.1 shows
that a non-negative immediate social welfare is necessary for
requesti to be served by channelk in the optimal solution,
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which turns out to be a sufficient condition in certain scenario
as stated in Proposition III.2, as well.

Proposition III.1. At any timet, if a requesti is scheduled
on channelk ∈ T2 in Algorithm III.1, thenP0(k)wi ≥ Q(1−
P0(k)).

Proof: We will prove Proposition III.1 for the case
without T1 channels. It can be shown for the general case
in a similar way. Suppose at timet, requesti is assigned to
channelk in the optimal solution, with the system state being
(D,S, S1) as defined before. Note thatk may or may not be in
S1. Letx(t) be the optimal schedule,DS be the set of requests
scheduled inx(t), andD′

S,S1
be the set of outstanding requests

for t+1 with DS scheduled int. Let x̂(t) be the same schedule
asx(t) except thati is excluded. To simplify the notation, let
R(S, S1) =

∏

l∈S1

P0(l)
∏

m∈S\S1

(1− P0(m)). Then we have

X(D,S, t) =

[

∑

S1⊆S,k∈S1

R(S, S1)(W (D,S, S1, x̂(t), t)

+wi + F (D′
S,S1

, t+ 1))

]

+

[

∑

S1⊆S,k/∈S1

R(S, S1)(W (D,S, S1, x̂(t), t)

−Q+ F (D′
S,S1

, t+ 1))

]

(9)

On the other hand, ifi is not scheduled, then the expected
social welfare fromt to H is

X ′(D,S, t) =

[

∑

S1⊆S,k∈S1

R(S, S1)(W (D,S, S1, x̂(t), t)

+F (D′
S,S1
∪ {i}, t+ 1))

]

=

[

∑

S1⊆S,k/∈S1

R(S, S1)(W (D,S, S1, x̂(t), t)

+ F (D′
S,S1

, t+ 1))

]

(10)

SinceDS is the optimal solution for Equation (4), we have
(9)-(10)≥ 0. By rearranging the terms, we obtain

∑

S1⊆S,k∈S1

R(S, S1)(F (D′
S,S1

, t+ 1)− F (D′
S,S1
∪ {i}, t+ 1))

+wi

∑

S1⊆S,k∈S1

R(S, S1)−Q
∑

S1⊆S,k/∈S1

R(S, S1)

=
∑

S1⊆S,k∈S1

R(S, S1)(F (D′
S,S1

, t+ 1)− F (D′
S,S1
∪ {i}, t+ 1))

+ (wiP0(k)−Q(1− P0(k)))
∑

S1⊆S\{k}

R(S, S1) ≥ 0, (11)

whereF (D′
S,S1

, t+ 1)− F (D′
S,S1
∪ {i}, t+ 1) ≤ 0 since the

social welfare is monotonic over the set of requests. Hence,
we must haveP0(k)wi ≥ Q(1−P0(k)) for Inequality (11) to
hold.

Proposition III.2 shows that the conditionP0(k)wi > Q(1−
P0(k)) is also sufficient for a request to be scheduled for
homogenous channels. To simplify notation, we drop the index
for channel related parameters for the homogeneous case.

Proposition III.2. In a system with no channels inT1 and
homogeneous channels inT2, if there exists at least one request
i that satisfiesP0wi > Q(1 − P0) in a slot t and there is at
least one channel sensed idle, then in the optimal solution
at least one of the requests satisfying this condition will be
scheduled, for allt.

Proof: Given the system state(D,S, S1) at time t,
consider a subset of requestsDS ⊆ D to be scheduled where
i ∈ DS . Let D′

S,S1
denote the set of the outstanding requests

at t+1 given thatDS is scheduled att, andk the channel as-
signed toi in the schedule. We want to show that the expected
social welfare fromt to the end of the time period withDS

scheduled att is at least as large as that withDS \ {i} sched-
uled. We defineU(T2, S) =

∏

l∈S

PI(l)
∏

m∈T2\S

(1− PI(m)).

We also defineF1(D, t) as the expected social welfare from
t till the end ofH by schedulingDS at time t andF2(D, t)
as the expected social welfare fromt till the end of H by
schedulingDS \ {i} in time t. By Equations (9), (10), and
(11) we obtain

F1(D, t)−F2(D, t) =
∑

S⊆T2

U(T2, S)

[

∑

S1⊆S,k∈S1

P
|S1|
0 (1− P0)

|S\S1|

[

F (D′
S,S1

, t+ 1)− F (D′
S,S1
∪ {i}, t+ 1)

]

+(wiP0 −Q(1− P0))
∑

S1⊆S\{k}

P
|S1|
0 (1− P0)

|S\S1|−1

]

=
∑

S⊆T2

U(T2, S)
[

P0(F (D′
S,S1

, t+ 1)− F (D′
S,S1
∪ {i}, t+ 1))

+(wiP0−Q(1−P0))
]

∑

S1⊆S\{k}

P
|S1|
0 (1 − P0)

|S\S1|−1 (12)

In the following we will show thatP0(F (D′
S,S1
∪ {i}, t+

1) − F (D′
S,S1

, t + 1)) ≤ wiP0 − Q(1 − P0). We first
observe thatF (D, t) ≤ F (D \ {i}, t) + F ({i}, t) for
any t, D and i ∈ D since i is competing with requests
in D \ {i} for the spectrum in the former case but not
in the latter case. in Hence we only need to prove that
P0(F ({i}, t + 1) − F (∅, t + 1)) ≤ wiP0 − Q(1 − P0)
for all t, that is, P0F ({i}, t + 1) ≤ wiP0 − Q(1 − P0)
for all t since F (∅, t + 1) = 0. We will prove it by
induction. We defineP̂I as the probability that at least
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one channel is sensed idle. We start witht = H and then
P0F ({i}, H) = P0P̂I(wiP0−Q(1−P0)) ≤ wiP0−Q(1−P0).
Suppose P0F ({i}, t) ≤ wiP0 − Q(1 − P0) for all
t > τ , then F ({i}, τ) = (1 − P̂I)F ({i}, τ + 1) +
P̂I max {wiP0 + (1− P0)(F ({i}, τ + 1)−Q), F ({i}, τ + 1)}.
We calculate

F ({i}, τ + 1)− (wiP0 + (1 − P0)(F ({i}, τ + 1)−Q))

= P0(F ({i}, τ + 1)− (wiP0 −Q(1− P0)))
(a)

≤ 0,

where (a) is by the induction assumption. Then we knowi
should be scheduled in the optimal solution atτ if it is the
only request. Hence,

P0F ({i}, τ) = P0((1− P̂I)F ({i}, τ + 1)

+P̂I(wiP0 + (1− P0)(F ({i}, τ + 1)−Q)))

= (1− P0P̂I)P0F ({i}, τ + 1) + P0P̂I(wiP0 −Q(1− P0)))

(b)

≤ wiP0 −Q(1− P0)),

where (b) is by the induction assumption. ThusP0(F (D ∪
{i}, t) − F (D, t)) ≤ wiP0 − Q(1 − P0) for all D and t.
Therefore, Equation (12)≥ 0, which means the expected social
welfare fromt to the end of the time period withDS scheduled
at t is always better than that withDS \ {i} scheduled.

Based on these propositions, we can reduce the candidate
set of requests for scheduling in each time slot. For instance,
no requests should be scheduled ifP0(k)wi ≤ Q(1− P0(k))
for all existing requestsi and all k sensed idle. Also, in a
system with no channels inT1 and homogeneous channels in
T2, the candidate set is composed of all requests that satisfy
P0(k)wi > Q(1−P0(k)). We utilize these propositions in the
design of our online algorithm.

IV. ONLINE ALGORITHM

In this section, we introduce a greedy online algorithm
(Algorithm IV.1) that does not need future arrival information.
For systems where requests are not submitted ahead of the
required service starting timeai, the online algorithm makes
decisions based on the information available in the current
slot.

In Algorithm IV.1, the main idea is to (greedily) offer
requests with higher valuation channels with better quality.

We defineck
△
= Q(1 − P0(k))/P0(k), which is the expected

cost of serving one request on channelk (will be shown in
Lemma IV.1). Note thatck = 0 for k ∈ T1. Lines 3 and 4
sort channels sensed idle byck and current requests bywj ,
respectively. Since accessing channels inT1 causes no cost if
observed idle, they are allocated first to requests with highest
valuations (Lines 6-11). In Lines 15-22, the remaining requests
are allocated to channels inT2 sensed idle from highest val-
uation to lowest if they satisfywn > θ(k) whereθ(k) serves
as areservation pricefor using channelk. We setθ(k) = ck
in this section, which is motivated by Propositions III.1 and
III.2. Allowing different values of reservation price provides a

Algorithm IV.1 Greedy Online Algorithm
In each time slott:

1: if D = ∅ then
2: exit
3: Sort channels inS (channels sensed idle inT2) by ck in

ascending order
4: Sort requests inD (outstanding ones) bywj in descending

order
5: i← 1
6: for all l in Γ (channels inT1 observed idle)do
7: xil(t)← 1
8: D ← D \ {i}
9: if D = ∅ then

10: break
11: i← i+ 1
12: if D = ∅ then
13: exit
14: n← |Γ|+ 1
15: for all k in S (channels sensed idle inT2) do
16: if wn ≤ θ(k) then
17: break
18: xnk ← 1
19: D ← D \ {n}
20: if D = ∅ then
21: break
22: n← n+ 1

way for trading off the social welfare and the revenue of the
operator, which will be discussed in detail in Section V.

The time complexity of Algorithm IV.1 isO(C logC +
r log r) since the complexity of sorting in Lines 3 and 4
dominates that of allocation in Lines 5-22. We then study the
performance of the online algorithm. An online algorithm for
a maximization problem isc-competitive (c ≤ 1) if it achieves
at least a fractionc of the objective value of an optimal offline
algorithm for any finite input sequence [1]. We show that the
greedy online algorithm is 1/2-competitive when|T1| = 0
and channels inT2 are homogeneous in Proposition IV.1. For
heterogenous channels, we will show that the online algo-
rithm achieves performance comparable to the optimal offline
algorithm by numerical results in Section VI. To establish
Proposition IV.1, we first show thatck is the expected cost
per a request served by channelk in Lemma IV.1.

Lemma IV.1. For any scheduling policy,ck is the expected
cost of serving a request on channelk.

Proof: For any scheduling policy, consider the time
interval right after a request is served by channelk and before
the next request is served by channelk. Remove all time slots
in the interval when there are no requests in the system or
channelk is sensed but not allocated. Given that a channel is
sensed idle, the probability that collision happens is1−P0(k).
Thus the number of slots where collisions happen follows
a geometric distribution and the expected cost per a request
service on channelk is Q(1− P0(k))/P0(k).



8

Based on Lemma IV.1, we show the competitive ratio of
Algorithm IV.1 in special cases.

Proposition IV.1. If |T1| = 0, and channels inT2 are
homogeneous, then Algorithm IV.1 is 1/2-competitive.

Proof: Let the random variableγ denote the set of
requests that are eventually served by the algorithm. Let
P0 = P0(k) for any channelk ∈ T2. Since the channels in
T2 are homogeneous, we havec = Q(1 − P0)/P0, which is
the expected cost for serving a single request by Lemma IV.1.
Then the expected social welfare can be written as follows:

N
∑

k=1

[

(
∑

|γ|=k

Pr(γ)
∑

i∈γ

wi)− kcPr(|γ| = k)
]

=

N
∑

k=1

[

∑

|γ|=k

Pr(γ)
∑

i∈γ

(wi − c)
]

Note that the greedy algorithm always chooses the active
request with highest valuation. For any sample path, consider
the set of requests served by the optimal offline algorithm
and those by the greedy algorithm withw′

i = wi − c as the
valuation. We follow the same argument as in [7]: We consider
any requesti that is scheduled offline but not online. Since
requesti is not scheduled online, it is present at timet and
the greedy algorithm schedules another requestj in that slot,
the valuation of requestj should be as least as large as that of
requesti. For any requesti that is allocated offline and also
online, it makes the same contribution to the social welfare.
Then the offline solution achieves a social welfare at most
twice that in the online solution since

w′

j

w′

i
+w′

j
≥ 1

2 . Therefore,
Algorithm IV.1 is 1/2-competitive.

Note that the factor 2 in Proposition IV.1 does not depend
on request arrival patterns or channel related parameters.
Algorithm IV.1 can always achieve at least12 of the social
welfare of the optimal offline algorithm (Algorithm III.1) when
the system is only composed of homogeneousT2 channels.

V. ACHIEVING INCENTIVE COMPATIBILITY

In this section, we design an online auction scheme which
utilizes the online greedy algorithm (Algorithm IV.1) together
with a payment scheme to achieve incentive compatibility for
SUs. Due to the collision penalty, however, a social welfare
optimal auction may end up with a negative revenue for
the operator, which is not reasonable since the operator may
choose not to start the auction in the first place. We introduce
a reservation price for resolving this problem, which also
provides a way of trading off the social welfare and revenue.

A. Incentive Compatibility for SUs

When the available spectrum resource cannot satisfy all the
requests, which is often the case, a selfish SU may choose to
cheat on its valuation or arrival and deadline times to obtain
some priority of being served. Such strategic behavior leads
to a less efficient system. In this section, an online auction
scheme is presented (see Auction 1) to suppress the cheating

behavior. At any time slott, the operator accepts bids of the
form (âi, d̂i, ŵi), where âi = t and d̂i denote the reported
required service starting time and the deadline, respectively,
andŵi denotes the reported valuation. All these values could
be different from the true values of requesti. We assume there
is no early-arrival misreport and late-departure misreport in the
system, that is,̂ai ≥ ai and d̂i ≤ di in any bid. In practice,
both of them can easily be detected since the request is no
longer in the system when either misreport occurs.

Let pi denote the payment that the operator charges a SU
for having its requesti served. Thenet utility for requesti is
defined as:ui = wi − pi if requesti is served andui = 0
if not. A mechanism is said to bedominant-strategy incentive
compatible(DSIC) if for any given sample path of channel
state realizations and sensing realizations and a set of requests,
each request maximizes its utility when it truthfully reveals the
private information independent of the bids from other requests
(adapted from Definition 16.5 in [11]). In Auction 1, for every
request that is successfully served by its deadline, acritical
price is charged, which is defined as the maximum reported
valuation under which it will not be served assuming the other
bids are fixed.
Auction 1: Requests(âi, d̂i, ŵi) are reported to the operator
at time t = âi.
(i) At the beginning of eacht, allocate requests according to
Algorithm IV.1.
(ii) Every request successfully served pays its critical price,
collected at its reported deadline.

Proposition V.1. Auction 1 is DSIC with no early-arrival and
no late-departure misreports.

Proof: According to Theorem 16.13 in [11], to show that
Auction 1 is DISC, it is sufficient to show that the mechanism
is monotonic in terms of both valuation and timing. That is,
for a given sample path of channel realizations and sensing
realizations and a set of requests, if requesti submitting a bid
(âi, d̂i, ŵi) wins, then it continues to win if it instead submits a
bid (â′i, d̂

′
i, ŵ

′
i) with ŵ′

i > ŵi, â′i ≤ âi, andd̂′i ≥ d̂i, assuming
other bids are fixed. This condition can be easily verified. So,
Auction 1 is DSIC.

By the definition of critical price, we propose Algorithm V.1
that applies binary search to find the critical price for requests
scheduled by Algorithm IV.1. Algorithm V.1 runs in each slot
t when there are requests scheduled. In the binary search from
Lines 6-12, scheduling decisions must be remade fromt = ai
to di with wi updated by the new value ofwi (Line 7) till the
critical price is found.

B. Non-negative Revenue for the Operator

Our objective in Problem (A) is to maximize the social
welfare without considering the revenue at the operator side.
However, for an actual business model to be viable, it is
important that the revenue of the operator is taken into account.
The revenue is composed of two parts: Payments collected
from the SUs by serving their requests and the penalty paid
for causing collisions. UsingQ(1 − P0(k))/P0(k) as θ(k)
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Algorithm V.1 Critical Price Calculation for Requests
In each time slott:

1: for all i ∈ D do
2: if i is scheduled by Algorithm IV.1then
3: wlow ← 0
4: whigh ← wi

5: while wlow < whigh do
6: cpi ←

wlow+whigh

2
7: Run Algorithm IV.1 with the valuation of request

i updated bycpi from t = ai to di
8: if i is scheduledthen
9: whigh ← cpi

10: else
11: wlow ← cpi
12: Outputcpi as the critical price fori

in Algorithm IV.1, the operator may get a negative revenue,
which means the sum of payments by SUs does not exceed
the penalty paid to PUs out of its control. To overcome
this problem, we introduce areservation priceq, which is
a constant for fixed channel related parameters. We further
reset the value ofθ(k) to be q in Algorithm IV.1 and apply
Auction 1.

We interpret the reservation price as the expected cost
associated with each request served by channels inT2. Hence,
the revenue of the operator will always be non-negative if at
least the reservation price is paid by the SU for getting its
request served. Next, we show the form of the reservation
price for the special case in Proposition V.2.

Proposition V.2. If |T1| = 0 and channels inT2 are homoge-
neous, then a reservation priceq0 = Q(1 − P0)/P0 leads to
non-negative revenue for the operator.

Proof: The revenue of the operator is expected payment
collected from SUs by serving their requests minus the cost.
The payment of SUs is at least the reservation priceQ(1 −
P0)/P0. By Lemma IV.1, we know that the expected cost is
Q(1 − P0)/P0 as well. Hence, the expected revenue is non-
negative.

When there are heterogeneous channels, we try to find the
average expected cost of serving a request and set it as the
reservation price to guarantee a non-negative revenue. Recall
that ck is the expected cost of serving a request on channelk
by Lemma IV.1. Assume that channels have been sorted by a
non-decreasing order ofck. For ease of illustration, we index
channels inT1 from 1 to |T1|, and channels inT2 from |T1|+1
to |T1|+ |T2|. Let n′

j denote the expected fraction of requests
served by channelj for a given set of requests. Then, the

average expected cost per request isq′
△
=

∑

j∈T1∪T2

cjn
′
j. We

would like to have an estimate ofq′ that is independent of the
request set. To this end, letvk denote the probability that the
channelk is viewed as idle and it is really idle. That is,vk =

π1(k) if k ∈ T1, andvk = PI(k)P0(k) if k ∈ T2. Let mk
△
=

vk∑

l∈T1∪T2

vl
. We usemk as the estimated fraction of requests

served by channelk. Then we letq1
△
=

∑

j∈T1∪T2

cjmj, which

we use to estimate the average expected cost per request and
set it as the reservation price. We would like to show thatq1 ≥
q′ and hence usingq1 as a reservation price, a non-negative
expected revenue is obtained. We start with Lemma V.1 that
provides a sufficient condition forq1 ≥ q′.

Lemma V.1. If mj

mj+1
≤

n′

j

n′

j+1

for all j, thenq1 ≥ q′.

Proof: We calculateq1 − q′ =
∑

j∈T1∪T2

cj(mj − n′
j). In

the following, we will show that there existsi such that for
all j ≤ i we havemj ≤ n′

j and for all k > i we have

mk > n′
k. Since mj

mj+1
≤

n′

j

n′

j+1

for all j, it is easy to see that:

if mj ≥ n′
j , thenmk ≥ n′

k by multiplying mj+1

mj
· · · mk

mk−1
and

n′

j+1

n′

j
· · ·

n′

k

n′

k−1

, respectively, on both sides. Then we can find

suchi. We divideq1 − q′ into two parts:

q1 − q′ =
∑

j≤i

cj(mj − n′
j) +

∑

k>i

ck(mk − n′
k) (13)

If i = |T1| + |T2|, q1 − q′ =
∑

j∈T1∪T2

cj(mj − n′
j) ≥

( max
j∈T1∪T2

cj)
(

∑

j∈T1∪T2

mj −
∑

j∈T1∪T2

n′
j

)

= ( max
j∈T1∪T2

cj)(1 −

1) = 0. If i = 0, then all terms inq1 − q′ are positive. Next
we consider the case where neither sums in Equation (13)
has no terms. Since all terms in the first term in the sum are
non-positive and all terms in the second term in the sum are
positive, we obtain

q1 − q′ ≥ (max
j≤i

cj)
∑

j≤i

(mj − n′
j) + (min

k>i
ck)

∑

k>i

(mk − n′
k)

(a)

≥ (max
j≤i

cj)
(

∑

j≤i

(mj − n′
j) +

∑

k>i

(mk − n′
k)
)

= (max
j≤i

cj)
(

∑

j∈T1∪T2

mj −
∑

j∈T1∪T2

n′
j

)

= 0,

where (a) is by the assumption thatc1 ≤ · · · ≤ c|T1|+|T2|.
Henceq1 ≥ q′ holds.

Based on Lemma V.1, we claim that a reservation price of
q1 results in a non-negative revenue for the operator.

Proposition V.3. The operator achieves a non-negative ex-
pected revenue with reservation priceq1 when H is large
enough.

Proof: It suffices to show thatq1 ≥ q′. Consider any
sample path. Without loss of generality, consider the first two
channels in the sorted list. Letn1 andn2 denote the number
of requests served by channels1 and 2, respectively. Letsi
denote the number of time slots that are sensed in the interval
between(i− 1)th andi-th requests served by channel1, and
definebi similarly for channel2. LetA denote the total number
of time slots between0 andH that are not sensed for channel
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1 (because there is not enough requests or there is no benefit
to sense it), andA′ the number of time slots after the last
request is served by channel1. Define B and B′ similarly
for channel2. Note that by the ordering of channels, when
there is only one request in the system, and both channels are
available, channel 1 will be used. It follows thatA ≤ B. We
then haveH =

∑

si +A+A′ =
∑

bi +B +B′. Therefore,
H = E(

∑

si + A + A′) = E(n1)/m1 + E(A) + E(A′)
(by geometric distribution) andH = E(n2)/m2 + E(B) +
E(B′). Note thatE(A′)/H → 0 andE(B′)/H → 0 when
H → ∞. Thereforen′

1

n′

2

= E(n1)
E(n2)

= [H−E(A)]m1

[H−E(B)]m2
≥ m1

m2
since

H − E(A) ≥ H − E(B). It then follows thatq1 ≥ q′ by
Lemma V.1. Hence, a reservation price ofq1 leads to a non-
negative revenue at the operator.

Remark:With a lower reservation price, the online algo-
rithm tends to access the channels more aggressively, thus,the
revenue of operator is harmed. On the other hand, a higher
reservation price prevents more requests from accessing the
channels, which harms the social welfare and further affects
the revenue, as well. We will evaluate the tradeoff between
social welfare and revenue by setting different reservation
prices in Section VI.

VI. N UMERICAL RESULT

In this section, we evaluate the performance of the greedy
online algorithm (Algorithm IV.1) and the tradeoff between
social welfare and revenue for different reservation prices. We
first show the competitive ratio of the greedy online algorithm
with different channel settings and request related parameters,
respectively. We then apply Auction 1 with varying reservation
prices and show the performances of social welfare and
revenue.

A. Simulation Setting

We let the arrivalsai of requests follow a Poisson dis-
tribution and the durationdi − ai of the requests follow
an exponential distribution. The valuations follow a uniform
distribution in [1,15]. We chooseQ = 10, the penalty per
collision, comparable to the valuations in all our simulations.
We fix the number of requests as20, and the inter-arrival
mean as3 slots, and vary the mean of request duration to
adjust the density of requests. Given the means of inter-arrival
and request durations, we generate50 groups of requests
and compare the average for the metrics we consider. We
generate the channel availabilities in each time slot based
on our assumption that channel states follow i.i.d Bernoulli
distribution and100 samples of channel realizations are taken
for our simulations. The channel parameters we use will be
introduced in Section VI-B.

B. Performance of Greedy Online Algorithm

In Figure 2(a), we compare the performance of Algo-
rithm IV.1 with that of Algorithm III.1 when there are three
homogeneousT2 channels in the system withπ2 = 0.6324,
Pm = 0.2218, Pf = 0.6595 and various number ofT1

channels. They-axis denotes the achieved competitive ratio,
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(a) HomogeneousT2 channels.
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(b) HeterogeneousT2 channels.

Fig. 2. Performance of online algorithm versus offline algorithm over various
request duration means with homogeneous and heterogeneousT2 channels
(|T2| = 3), respectively.

i.e., the ratio between the social welfare of the online algorithm
and that of the optimal offline algorithm. When|T1| = 1, we
set π1 = 0.5058; When |T1| = 2, we setπ1(1) = 0.8147
and π1(2) = 0.1270. We observe that the performance of
Algorithm IV.1 degrades as|T1| increases, independent of the
request duration mean. With a high number ofT1 channels,
a wrong decision made by the greedy online algorithm to
schedule a request affects the performance more. Also, the
greedy online algorithm serves requests of a larger density
better than requests of a smaller density. When the system is
overloaded with requests, even the optimal offline algorithm
can not satisfy all requests. Thus, those with larger valuations
tend to be chosen, as in the greedy online algorithm. All ratios
plotted are strictly above12 , even for those with|T1| 6= 0.

In Figure 2(b), we evaluate the performance of Algo-
rithm IV.1 with heterogeneousT2 channels. We use the same
T1 channel parameters as in the homogeneous case. The
parameters related toT2 channels are as follows:π2(1) =
0.9134, π2(2) = 0.6324, π2(3) = 0.0975, Pm(1) = 0.1419,
Pf (1) = 0.7922, Pm(2) = 0.2218, Pf (2) = 0.6595,
Pm(3) = 0.6557, Pf (3) = 0.2157. We observe similar results
as in Figure 2(a): Algorithm IV.1 performs better with fewer
T1 channels and denser requests. Again all ratios are above1

2 .

C. Tradeoff between Social Welfare and Revenue

We now study the tradeoff between social welfare and
revenue generated by Auction 1. In Figure 3, we vary the
values of reservation price. Note that it is now a constant
over requests given the channel related parameters, which are
the same as in Section VI-B. We first show the tradeoff in
a system with homogeneousT2 channels and noT1 channels
in Figure 3(a). Both social welfare and revenue first increase
and then decrease as the reservation price increases. At a
low reservation price (< 3), the payment collected cannot
recover the expected cost and hence the average revenue
becomes negative. A low reservation price may also hurt
social welfare by our necessary condition for serving requests
(Proposition III.1). On the other hand, when the reservation
price is too high, fewer requests will be accepted, which hurts
both social welfare and revenue. We note that when the
reservation price isq0 = Q(1−P0)/P0 = 3.8, a non-negative
revenue is obtained, which is consistent with Proposition V.2.
At a very high reservation price (≥ 8), the social welfare and
the revenue converge, where the payment actually becomes
the same as the valuation for requests served. Note that the
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Fig. 3. Tradeoff between social welfare and revenue over reservation price
with homogeneous and heterogeneousT2 channels (|T2| = 3), respectively.

revenue never exceeds the social welfare by the definition of
critical price.

In Figure 3(b), we show the tradeoff in a system withT1

and heterogeneousT2 channels. The trend of social welfare
and revenue is similar to that in Figure 3(a). Note that with
the reservation priceq1 = 6.9 (defined in Section V), the
revenue obtained is right above 0, which is consistent with
Proposition V.3 and also shows thatq1 is nearly a tight upper
bound of the expected cost for this case.

VII. C ONCLUSION

In this paper, we study the joint sensing and spectrum
allocation problem for serving secondary users in cognitive
radio networks with the objective of maximizing the social
welfare. Our problem formulation takes into account both
spectrum uncertainty and sensing inaccuracy, which enables
dynamic spectrum access at small time scales. Using only
channel statistics and real time channel states, we developan
optimal solution for serving a given set of spectrum requests
with various time elasticity. We further propose an online
algorithm, which does not require future information on the
arrival process, and achieves a comparable performance as
the offline algorithm. In addition, we show that the online
algorithm together with a payment scheme achieves incentive
compatibility for the SUs and a non-negative revenue for the
operator. There are several open problems to be solved. First,
in practice, a more flexible form of spectrum requests will be
desirable. For instance, a request may ask for multiple chunks
that may or may not be preemptive. Extending the current
offline and online algorithms to this more general setting
will be part of our future work. Second, we plan to extend
the problem formulation by including the notion of spatial
spectrum reuse in addition to the time dimension considered
in the paper. Third, we plan to relax the assumption on the i.i.d
Bernoulli channels by considering correlated channels, which
involves solving anexploration vs. exploitationproblem in the
context of an auction.
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