
A Trie Merging Approach with Incremental Updates
for Virtual Routers

Layong Luo*†, Gaogang Xie*, Kavé Salamatian‡, Steve Uhlig§, Laurent Mathy¶, Yingke Xie*

*Institute of Computing Technology, Chinese Academy of Sciences (CAS), China
†University of CAS, China, ‡University of Savoie, France

§Queen Mary, University of London, UK, ¶University of Liège, Belgium

{luolayong, xie, ykxie}@ict.ac.cn, kave.salamatian@univ-savoie.fr

steve@eecs.qmul.ac.uk, laurent.mathy@ulg.ac.be

Abstract—Virtual routers are increasingly being studied, as
an important building block to enable network virtualization.
In a virtual router platform, multiple virtual router instances
coexist, each having its own FIB (Forwarding Information Base).
In this context, memory scalability and route updates are two
major challenges. Existing approaches addressed one of these
challenges but not both. In this paper, we present a trie merging
approach, which compactly represents multiple FIBs by a merged
trie and a table of next-hop-pointer arrays to achieve good
memory scalability, while supporting fast incremental updates by
avoiding the use of leaf pushing during merging. Experimental
results show that storing the merged trie requires limited memory
space, e.g., we only need 10MB memory space to store the
merged trie for 14 full FIBs from IPv4 core routers, achieving a
memory reduction by 87% when compared to the total size of
the individual tries. We implement our approach in an SRAM
(Static Random Access Memory)-based lookup pipeline. Using
our approach, an on-chip SRAM-based lookup pipeline with
5 external stages is sufficient to store the 14 full IPv4 FIBs.
Furthermore, our approach can guarantee a minimum update
overhead of one write bubble per update, as well as a high lookup
throughput of one lookup per clock cycle, which corresponds
to a throughput of 251 million lookups per second in the
implementation.

I. INTRODUCTION

Network virtualization has recently attracted much interest

as it enables the coexistence of multiple virtual networks on a

shared physical substrate [1]. The virtual router platform has

emerged as a key building block of the physical substrate for

virtual networks [2–9]. In a virtual router platform, multiple

virtual router instances coexist, each with its own FIB (For-

warding Information Base). With a growing demand for virtual

networks, the number of virtual router instances running over

a single physical platform and their corresponding FIBs are

expected to increase. Generally, it is desirable to store FIBs

in high-speed memory to enable high lookup performance.

However, the size of high-speed SRAMs (Static Random

Access Memory) is limited in router line cards or in general-

purpose processors caches. Therefore, supporting as many

FIBs as possible in the limited available high-speed memory

is becoming a challenge.

With an increasing number of FIBs, more than one FIB

is expected to be stored on each high-speed memory chip,

and the number of updates to the content of each memory

chip becomes the aggregate of the updates of these FIBs.

This increases the update frequency, and decreases lookup

performance, potentially leading to packet drops, unless fast

incremental updates are possible to the multiple FIBs in a

single memory chip.
The two above challenges, namely memory scalability and

fast incremental updates for virtual routers, have attracted

lately some attention in the literature and several approaches

have been proposed. However, no previous work has addressed

both challenges. For example, [5] proposes a solution that

achieves good memory scalability but uses leaf pushing [10]

to reduce the node size, which leads to complicated and

slow updates [9]. In [8, 9], solutions enabling fast updates

fail to achieve good memory scalability. They require almost

linear memory increase since they do not actually apply node

sharing.
In our previous work [11], we proposed a hybrid IP lookup

architecture to address the update challenge, but did not target

the memory scalability issue for virtual routers. In this paper,

we present a trie merging approach that addresses both of

the above challenges simultaneously, i.e., both good memory

scalability through trie merging, and fast incremental updates

and fast lookups through a lookup pipeline that guarantees a

minimum update overhead of one write bubble per update,

and a lookup throughput of one lookup per clock cycle. More

precisely, the key contributions of this paper are as follows:

1) We propose a new data structure for the nodes of the

merged trie, different from the one used in classical

trie merging approaches [5]. This new data structure

introduces a prefix bitmap that enables the separation of

trie nodes and next-hop pointers. This keeps the node

size small even when the number of FIBs is large. This

data structure avoids leaf pushing during the merging

process, and facilitates fast incremental updates.

2) Based on the proposed trie merging approach, we imple-

ment an SRAM-based lookup pipeline that guarantees

a minimum update overhead of one write bubble per

update, as well as a high lookup throughput of one

lookup per clock cycle. We implement this lookup

pipeline for a virtual router platform with 14 full IPv4

FIBs and evaluate its performance.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1246

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

000* B4 0

B4

Fig. 1. (a) Two sample FIBs, and (b) their corresponding 1-bit tries

The rest of the paper is organized as follows. Section

II presents the background and our assumptions. Section

III introduces the proposed trie merging approach and its

corresponding lookup and update processes. In Section IV,

we evaluate the memory requirements. In Section V, we de-

scribe the pipelined implementation, and discuss the memory

consumption, update overhead and lookup performance. We

conclude in Section VI.

II. BACKGROUND AND ASSUMPTIONS

The literature proposes two types of approaches for storing

multiple FIBs in a virtual router platform: separated and

merged approaches.

In a separated approach, FIBs are stored in separate memory

space with possible different data structures. This approach

ensures strong FIBs isolation but at the cost of large memory

consumption. By using such an approach, Unnikrishnan et
al. [12] built virtual routers over the NetFPGA platform [13]

with only up to five virtual router instances due to the limited

memory in the hardware.

The second type of approach merges FIBs together to

improve memory scalability. In [5], an efficient approach is

proposed to merge multiple FIBs into a single trie, which

we will refer to as trie overlap. Unless otherwise stated, the

term “trie” means a 1-bit trie (i.e., a binary trie) as defined

in [14], with the next-hop pointer representing the next hop

information for simplicity, and an invalid next-hop pointer

being denoted as 0. In trie overlap, first a 1-bit trie is built

from each FIB (see Fig. 1). Then, as illustrated in Fig. 2(a),

the nodes corresponding to the same prefix in all the tries are

merged together in a merged node, and the number of next-

hop pointers in each merged node is equal to the number of

FIBs (see Fig. 3 for the data structure of a node in the merged

trie). As a large number of nodes are shared, the size of the

merged trie is smaller than the sum of the size of individual

tries.

However, as the number of FIBs increases, the node size

increases, leading to large trie size and multiple memory

accesses per node visit, degrading lookup and update perfor-

mance. The authors of [5] proposed to use leaf pushing [10] to

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

0 B4

0 0

A4 B2 A2 B3

0 0

A1 B1

A3 B1A3 B4

0 0

0 0

(a) (b)

Fig. 2. The merged trie. (a) in trie overlap without leaf pushing and (b) in
trie overlap with leaf pushing

left ptr right ptr NHI1 NHI2 NHIn

Fig. 3. Node data structure of the merged trie in trie overlap without leaf
pushing

reduce the node size in the merged trie, by pushing all the next-

hop pointers existing in intermediate nodes to leaf nodes (see

for example Fig. 2(b)). After leaf pushing, every intermediate

node has two children but no next-hop pointers, and every

leaf node has next-hop pointers but no children. Therefore,

each node can store only one pointer, pointing to its children

for intermediate nodes, or pointing to a next-hop-pointer array

containing n next-hop pointers, where n is the number of FIBs,

for leaf nodes. This reduces significantly the node size and the

trie size. However, leaf pushing makes incremental updates

complicated, and a single update may result in reconstructing

the entire leaf-pushed trie [15].

In particular, trie overlap works well when the individual

FIBs have similar original tries. However, the prefix sets of

different FIBs are not always similar, resulting in dissimilar

tries. To address this issue, Song et al. [6] introduced a

trie braiding mechanism that transforms dissimilar tries into

similar ones by allowing to swap freely the left and right sub-

tries of any node. Nonetheless, Ganegedara et al. [7] observed

that even by using trie braiding, the original tries built from

different Provider Edge (PE) routers are hard to be transformed

to similar ones. This is because most prefixes of any PE router

have a common portion, which is different among PE routers.

They therefore proposed a multiroot approach, which allows

tries to be merged at split nodes, rather than only at the root

nodes. The sub-tries rooted at the split nodes can be further

merged using trie overlap and trie braiding.

Trie overlap, trie braiding and multiroot are all based on

node sharing to reduce the memory usage. By contrast, Le et
al. [8] and Ganegedara et al. [9] applied a simple merging

approach without node sharing to achieve fast updates. How-

ever, the size of the merged tree (or trie) in their approaches

increases linearly with the number of prefixes (or tries) [8, 9],

resulting in poor memory scalability.

In this paper, we focus on the trie-based merging approach

with node sharing. Similarly to trie overlap, we assume that

tries to be merged are similar. By this, we mean that even if the

1247

tries to be merged are dissimilar, these can be transformed into

similar ones before merging, using existing approaches such as

trie braiding [6] and multiroot [7]. However, differently from

trie overlap that has to use leaf pushing in order to reduce

the node size of the merged trie, and significantly increases

the update overhead [9], in this paper, we propose a new trie

merging approach that does not rely on leaf pushing. In place

of leaf pushing, we reduce the node size of the merged trie

by introducing a prefix bitmap in each node to separate next-

hop pointers from the trie node. As a result, we can build a

memory-efficient merged trie that can support fast incremental

updates.

III. PROPOSED TRIE MERGING APPROACH

A. Observation

A key observation is that, in trie overlap without leaf

pushing, when an IP lookup is visiting a node in the merged

trie, the next-hop pointers (i.e., the next-hop-pointer array),

contained in it are not necessarily immediately accessed. In

fact, an IP lookup only needs to access the next-hop-pointer

array of the node corresponding to the longest matched prefix

after the trie search terminates. Therefore, it is possible to

separate the next-hop-pointer arrays from the merged trie and

store them in a different memory.

We illustrate this with an example. Suppose we are looking

up for IP address 100 in the merged trie in Fig. 2(a). The

nodes <0, 0>, <A2, 0>, and <A4, B2> will be visited in

sequence in the lookup. However, the next-hop-pointer array

is not necessarily accessed in any one of these nodes during

trie search. We only need to access the next-hop-pointer array

of node <A4, B2> that corresponds to the longest matched

prefix 10* after the trie search terminates. It is therefore not

necessary to store these next-hop-pointer arrays in the same

memory as the nodes of the merged trie. This observation is

the key motivation behind our new data structures.

B. Data Structures

Based on the above observation, we separate the storage

of the next-hop-pointer arrays from the merged trie storage,

i.e., instead of storing a next-hop-pointer array in each node

(see Fig. 3), we only need a simple pointer, pointing to

the corresponding next-hop-pointer array in another memory

(see Fig. 4). However, we need also to indicate whether the

corresponding prefix of the node is a valid prefix for each one

of the merged FIBs so that we can find the longest matched

prefix. We add a prefix bitmap to each node to indicate the

prefix information, i.e., the ith bit (i ∈ [1, n]) of the prefix

bitmap is set to 1 when the prefix associated with this node is

a valid prefix in the ith FIB, where n denotes the number of

FIBs. The resulting data structures of the node in the merged

trie and its corresponding next-hop-pointer array are shown in

Fig. 4. Each node of the merged trie stores four elements: a

left child pointer (left ptr), a right child pointer (right ptr), an

array pointer (array ptr) pointing to its corresponding next-

hop-pointer array and a prefix bitmap with n-bit size. The

next-hop-pointer array is stored in a separate data structure

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

Fig. 4. Data structures of trie node and next-hop-pointer array

and eventually in a different memory, which contains n next-

hop pointers.

Compared to the node data structure in trie overlap without

leaf pushing (see Fig. 3), the proposed node data structure

scales better in terms of node size. In our approach, with

adding one additional trie to merge, only 1 bit of prefix bitmap

is added to the nodes of the merged trie, while one next-

hop pointer (e.g., 8 bits) has to be added in each node in

trie overlap without leaf pushing. Therefore, as the number

of tries increases, the node size of our proposed merged trie

stays much smaller than that of the merged trie in trie overlap

without leaf pushing.

C. Trie Merging Algorithm

In our approach, the trie merging algorithm is similar to

the one of trie overlap [5], except that the node data structure

of the merged trie is different. Initially, a 1-bit trie is built

from each FIB. To distinguish each FIB from each other in

the same virtual router platform, a unique virtual router ID

(VID) is assigned to each FIB. For merging, the root node of

a trie is first merged into the root node of the merged trie.

The prefix bitmap in the root node of the merged trie and

the corresponding next-hop-pointer array should be modified

according to the root node of the trie to be merged and its

VID. This algorithm is then called recursively to merge its

left sub-trie and right sub-trie, respectively.

The results of applying this merging algorithm to the two

tries shown in Fig. 1 are depicted in Fig. 5. The merging

process generates a merged trie and a table of next-hop-pointer

arrays. To show the difference between trie overlap without

leaf pushing and our merging approach, we take the prefix 1*

in Fig. 1 as an example. In FIB 1, prefix 1* is a valid prefix and

its associated next-hop pointer is A2; in FIB 2, prefix 1* is not

a valid prefix. Therefore, in trie overlap without leaf pushing

(as shown in Fig. 2(a)), a next-hop-pointer array <A2, 0>
should be stored in the corresponding node. In our approach,

instead of storing the entire next-hop-pointer array, we only

need to store a single pointer P3 pointing to the array <A2,

0> in the table of next-hop-pointer arrays stored in a separate

memory. To show whether prefix 1* is a valid prefix in each

FIB, a prefix bitmap “1,0” is attached in the corresponding

node, where the first bit ‘1’ denotes that prefix 1* is a valid

prefix in FIB 1, and the second bit ‘0’ denotes that prefix 1*

is not a valid prefix in FIB 2.

1248

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

P7

0,1

0 B4P7

Fig. 5. A merged trie and its corresponding table of next-hop-pointer arrays

D. Lookup Process

The lookup process on the merged trie is similar to that

on an original 1-bit trie [14]. The major difference is that we

check an extra prefix bitmap when accessing each node.

For each incoming packet, the destination IP address and the

VID are generated based on its packet header. The destination

IP address is used to traverse the merged trie and the VID is

used as an index to choose which bit of the prefix bitmap to

check. When visiting a node, if the chosen bit of the prefix

bitmap is set, the currently visited node is associated with

a valid prefix, and its array pointer should be recorded. The

recorded array pointer will be updated if the following visited

node is also associated with a valid prefix. When the trie

lookup terminates, we find the next-hop-pointer array through

the array pointer, and extract the V IDth next-hop pointer in

the array. In this way, a single memory access is needed to

find the next-hop pointer after the trie traversal terminates.

For example, suppose the destination IP address of a packet

is 100 and its VID is 1 and we are looking up in the merged

trie shown in Fig. 5. Nodes P1, P3 and P5 will be accessed

in sequence (for simplicity, we use the name of the array

pointer in each node to denote the node itself). First, node

P1 is accessed and since the first bit position in the prefix

bitmap is ‘0’, node P1 is not associated with a valid prefix

in FIB 1. Then, we continue to the next node P3, where the

corresponding prefix bit in the bitmap is ‘1’ so this node is

associated with a valid prefix in FIB 1 and P3 is recorded as the

array pointer. We continue to node P5 that is also associated

with a valid prefix in FIB 1 as its corresponding prefix bit is

‘1’. Therefore, P5 is recorded as a new array pointer. Since

node P5 is a leaf node, the trie traversal terminates and we

use the latest array pointer P5 as the memory address and the

VID 1 as the offset to get the next-hop pointer A4 from the

table of next-hop-pointer arrays.

E. Update Process

In terms of route updates, the original 1-bit trie is an

excellent data structure [14, 15], as at most a single prefix

should be modified for each route update. By avoiding leaf

pushing during merging, we keep the merged trie very similar

to the original 1-bit trie. In our approach, the updates are

processed similarly to that on the original 1-bit trie, and at

most one prefix should be modified for each route update.

P4

P3

P5 P6

P1

P2

0,0

1,1 0,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

P7

0,1

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

0 B4P7

Fig. 6. Deletion of prefix 1* in FIB 1

For example, if we delete prefix 1* from FIB 1 shown in

Fig. 1, the corresponding modification in the merged trie is

shown in Fig. 6. First, we use prefix 1* to traverse the trie, and

find the node corresponding to prefix 1* (node P3). Then, VID

1 is used to choose the first bit of the prefix bitmap in node

P3 and this bit is reset to ‘0’, which makes prefix 1* invalid

for FIB 1. Note that the corresponding next-hop-pointer array

does not need to be modified in this case.

The insertion of a new prefix and the modification of an

existing prefix can be implemented similarly with a single

prefix change. The only difference is that, for insertions and

modifications, the table of next-hop-pointer arrays should also

be modified. In these cases, one additional memory access to

the table of next-hop-pointer arrays is needed after the update

on the merged trie terminates.

IV. EVALUATION OF MEMORY USAGE

In this section, we compare the memory requirements of

four approaches: separated approach, which stores each trie

separately without node sharing, trie overlap without leaf

pushing, trie overlap with leaf pushing, and our proposed

approach. The lookup and update performance will depend

on implementation details and will be evaluated in the imple-

mentation section.

A. Routing Tables

As router virtualization is still not widely used, limited data

is available. Instead, we use publicly available BGP routing

data and assume that these routing tables are used for virtual

routers. We rely on 14 full IPv4 BGP routing tables collected

from the RIPE RIS Project [16]. We extracted from each table

the unique prefixes and formed a FIB for it. A 1-bit trie was

built for each of them. We list in Table I the statistics of the

routing tables and the resulting tries.

B. Number of Trie Nodes

We show for the four techniques compared, in Fig. 7(a) the

total number of trie nodes in the merged trie as a function of

the number of virtual routers. As expected for the separated

approach, the total number of trie nodes increases linearly as

the number of virtual routers increases. Trie overlap without

leaf pushing and our proposed approach have the same number

of nodes in the merged trie as the prefix sets similarities are

1249

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

to
ta

l t
rie

 s
iz

e(
M

B
)

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14

of

 tr
ie

 n
od

es

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14

no
de

 s
iz

e(
bi

t)

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

(a) (b) (c)

Fig. 7. Memory comparison. (a) number of nodes, (b) node size, and (c) trie size

TABLE I
ROUTING TABLES (2011.09.29, 08:00)

Router Location
of

prefixes
of

nodes

of updates

Announce Withdraw

rrc00 Amsterdam 399,439 974,050 3,480,740 325,553

rrc01 London 375,751 918,417 2,040,708 227,723

rrc03 Amsterdam 373,306 913,538 1,418,791 1,416,709

rrc04 Geneva 382,122 936,888 768,336 59,345

rrc05 Vienna 375,196 915,995 1,476,029 218,630

rrc06 Otemachi 367,984 898,119 60,522 7,275

rrc07 Stockholm 379,788 927,129 572,376 36,230

rrc10 Milan 373,024 910,537 291,679 191,079

rrc11 New York 379,166 926,368 1,251,304 219,523

rrc12 Frankfurt 386,924 947,351 2,436,235 318,413

rrc13 Moscow 381,561 935,345 2,499,320 192,601

rrc14 Palo Alto 380,048 926,692 1,175,918 82,797

rrc15 Sao Paulo 392,537 957,129 5,275,719 397,876

rrc16 Miami 382,552 935,854 17,886 1,150

exploited in the same way. For these two approaches the total

number of nodes increases slowly. This can be explained by

observing that as the number of tries increases, the merged

trie become denser and more nodes are shared. After merging

14 tries, the merged trie contains 1,083,217 nodes, which are

just 11% more nodes than that in the largest individual trie

(trie relative to the rrc0 router). The behaviour for trie overlap

with leaf pushing is similar with a slow increase of the number

of nodes. However, leaf pushing adds some extra nodes and

the number of nodes becomes larger than that in trie overlap

without leaf pushing and our proposed approach.

C. Node Size

We can also compare the storage size of each node. We

have used 21 bits to store the left or right child pointer (a

21-bit pointer can represent 2,097,152 nodes, which is larger

than the total number of nodes in the merged trie after 14 tries

are merged), 8 bits to store the next-hop pointer and 21 bits

for the array pointer. The node sizes are shown in Fig. 7(b).

The node size of each individual node remains the same at

50 bits in the separated approach and does not depend on the

number of virtual routers. The node size in trie overlap with

leaf pushing also stays the same at 21 bits, as each node only

contains a single pointer (as mentioned in Section II). In trie

overlap without leaf pushing, every added trie leads to an 8-bit

(the size of a next-hop pointer) increase in the node size, since

one next-hop pointer has to be added into the node for every

added trie. In our approach, every added trie leads to only a

1-bit increase in the node size, since only 1 bit needs to be

added in the prefix bitmap.

D. Total Trie Size

The total trie size is determined by the total number of

nodes and the node size, which we have already evaluated in

the above two sub-sections. We now evaluate the total trie size.

The results are shown in Fig. 7(c).

Trie overlap with leaf pushing scales best in terms of trie

size, as one node only needs to contain a single pointer.

Our approach can achieve a significant memory saving when

compared to the separated approach and the trie overlap

without leaf pushing. We need only 10MB memory space for

merging 14 tries and achieve a memory reduction by 87% and

50% respectively, when compared to the separated approach

and trie overlap without leaf pushing. Moreover, the growth

trend of the total trie size shows that, the memory requirement

in our approach increases more slowly than that of those two

approaches. This makes our approach a scalable solution for

virtual routers in terms of high-speed memory requirements.

E. Size of the Table of Next-hop-pointer Arrays

In both our approach and trie overlap with leaf pushing,

the next-hop pointers are separated from the merged trie.

Therefore, an extra table of next-hop-pointer arrays is needed.

However, as only a single memory access is needed to this

table after the end of trie traversal, this table can be stored in

a relatively slow and large external memory, making the size

of this table less important. In our approach, after merging 14

tries, the number of nodes becomes 1,083,217, and thus the

size of the table of next-hop-pointer arrays is about 14MB.

F. Size of the Complete Next Hops

We also need memory space to store the complete next hop

information that consists of the IP address of the next hop

1250

Stage 1 Stage 2 Stage nlookup

update
next hop
pointer

A table of
next-hop-

pointer
arrays

Fig. 8. A native pipeline for our merged trie

and the corresponding output interface. Most routers have less

than 40 output interfaces, so the total size of the next hop

information for a FIB is usually below 200 bytes [5], and is

the same for all approaches. Therefore, we will ignore the

complete next hops in the rest of this paper.

V. PIPELINED IMPLEMENTATION

The SRAM-based lookup pipeline [17] is a very good

implementation for trie-based data structures, as it scales

well in terms of lookup throughput [18]. In this section,

we implement an SRAM-based lookup pipeline for scalable

virtual routers, and compare the four approaches.

A. Native Pipeline

A native way for pipelining is to map each trie level into

a different pipeline stage, each with its own SRAM [19, 20].

For example, in Fig. 5, there are four trie levels: node P1

in level 1, node P2, P3 in level 2, node P4, P5, P6 in level

3 and node P7 in level 4. In a native pipeline, each stage

contains the nodes in one of the four levels. Fig. 8 shows the

native pipeline in our approach. It consists of n stages, where

n is the number of levels in the merged trie. In the ith stage,

all the nodes in the ith level of the trie are stored. As we

separate the next-hop-pointer arrays from the trie nodes, an

additional pipeline stage should be added at the end of the

pipeline to store the table of the next-hop-pointer arrays. An

IP lookup enters into the pipeline at stage 1, goes through

the pipeline by accessing at most one node in each stage, and

exits after the next-hop pointer is obtained at the final stage.

As each pipeline stage has its own separate SRAM, all stages

can be visited simultaneously. As a result, a new IP lookup

can be issued into the pipeline after the preceding IP lookup

moves to stage 2. If each node access can be completed in

just one clock cycle, the SRAM-based lookup pipeline can

achieve a lookup throughput of one lookup per clock cycle.

Updates in the pipeline can be performed in the form of write

bubbles [19]. A write bubble also goes through the pipeline by

accessing at most one node in each stage, at the same speed as

the lookup. The difference between a write bubble and an IP

lookup is that, a write bubble performs write operations in each

stage, while an IP lookup always performs read operations.

B. Memory Issues in Practical Pipelines

In practice, the native pipeline suffers from two memory

issues.

The first issue is the memory size. In the pipeline, a large

number of separate SRAMs are required, as each pipeline

stage has its own SRAM. For example, in the case of IPv4,

we need 33 separate SRAMs in the native pipeline. It is im-

practical to have so many separate SRAM chips in router line

(a) (b)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

0 2 4 6 8 101214161820222426283032

of

 n
od

es
 p

er
 l

ev
el

level

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05
4.5E+05

323028262422201816141210 8 6 4 2 0

of

 n
od

es
 p

er
 h

ei
gh

t

height

Fig. 9. (a) Node distribution based on trie level, and (b) node distribution
based on trie height

cards. FPGA is a natural candidate to implement an SRAM-

based pipeline, as it contains a large number of separate on-

chip SRAMs. For example, a large FPGA from Xilinx [21]

contains over 100 on-chip SRAMs. However, the total size of

on-chip SRAMs within the FPGA is too small to store a full

IPv4 FIB. For example, the total size of on-chip SRAMs in

large Virtex-6 FPGAs [21] is between 5Mb and 37Mb, while

a single 1-bit trie built from a full IPv4 FIB is 5.8MB (i.e.,
46.4Mb), see Fig. 7(c). The situation gets worse in the context

of virtual routers, where multiple FIBs exists. In order to solve

the memory size issue of the SRAM-based lookup pipeline

within the FPGA, large external SRAMs are required. These

large external SRAMs can be added into the pipeline in two

ways. First, the few largest levels of the trie can be moved to

external SRAMs [22]. Fig. 9(a) shows the node distribution of

the merged trie for 14 full IPv4 FIBs in our approach based

on trie levels. The few levels around level 24 contain many

more nodes than other levels, and thus these stages can be

moved to external SRAMs to significantly reduce the memory

requirement of the on-chip SRAM-based pipeline. We will call

this approach “level-based partitioning”. We propose another

way for adding external stages, by moving trie nodes based

on trie height to external SRAMs. For example, all the leaf

nodes (i.e., nodes with height 0) in Fig. 5 can be moved

to an external stage. More stages can be moved to external

SRAMs by removing leaf nodes repeatedly. Fig. 9(b) shows

the node distribution based on trie height. The few stages

around height 0 contain many more nodes than other stages.

Therefore, moving these few stages to external SRAMs can

also significantly reduce the memory requirement of the on-

chip SRAM-based pipeline. We will call this approach “height-
based partitioning”. Fig. 10 shows the ratio of the remaining

nodes in the on-chip pipeline after a few stages are moved to

external stages. We observe that after moving a given number

of stages to external SRAMs, the number of nodes left in on-

chip SRAMs when using height-based partitioning is smaller

than when using level-based partitioning. Therefore, we will

adopt height-based partitioning to solve the memory size issue

of the on-chip SRAM-based lookup pipeline within the FPGA.

The second memory issue of the native pipeline is the mem-

ory distribution. For level-based mapping, the node distribution

of the merged trie for the 14 FIBs is shown in Fig. 9(a). The

1251

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6

ra
tio

 o
f n

od
es

 in
 o

n-
ch

ip

st
ag

es
 (%

)

of external stages

height-based partitioning
level-based partitioning

Fig. 10. Ratio of nodes remaining in the on-chip pipeline

number of nodes in each stage varies substantially, leading to

inefficient memory utilization [19]. One solution is to assign

equal-size SRAMs to each stage, and then to balance nodes

across stages. Jiang et al. [20] proposed an approach called

OLP, which achieved balanced memory distribution across

stages. In our implementation, we adopt OLP to balance

memory across on-chip pipeline stages within the FPGA.

The goal of our implementation is to be able to map the 14

full IPv4 FIBs shown in Table I into an SRAM-based lookup

pipeline. The Xilinx FPGA XC6VLX240T containing 416

36Kb on-chip SRAMs, is used to build the on-chip SRAM-

based lookup pipeline. In our trie merging approach, about

80Mb memory is required to store the merged trie for the

14 full FIBs (see Fig. 7(c)). Therefore, less than 18% of the

total nodes can be left within the FPGA. Using the height-

based partitioning, we find that, after only 4 external stages

are added, the remaining nodes can fit in the on-chip SRAMs

within the given FPGA. We use OLP [20] to balance the

remaining nodes and build a 24-stage on-chip SRAM-based

pipeline. The number of nodes in each stage is almost the

same (about 8,625 nodes), and 407 on-chip 36Kb SRAMs are

needed in total, which is less than the total number of on-chip

SRAMs within the FPGA. Therefore, with the given FPGA

and 4 external stages (i.e., 4 external SRAMs), the merged trie

for 14 full IPv4 FIBs in our approach can be mapped into an

SRAM-based lookup pipeline. Additionally, one more external

stage for the table of next-hop-pointer arrays is required.

In a similar way, we map the tries in the other three

approaches into the SRAM-based pipeline within the same

FPGA. The number of external stages required in the pipeline

using the four approaches are summarized in Table II. These

results are consistent with those shown in Fig. 7(c). A smaller

trie can be mapped into the SRAM-based pipeline within the

FPGA with fewer external stages. Note that, the results in

our approach and in trie overlap with leaf pushing include an

external stage for the table of next-hop-pointer arrays.

C. Update Overhead

Although trie overlap with leaf pushing scales best in terms

of memory requirement, its update overhead is much higher

than that in the other three approaches, as leaf pushing makes

route updates complicated. In this section, we will evaluate

the update overhead in the pipeline based on all the four

TABLE II
NUMBER OF EXTERNAL STAGES

Approach # of external stages

separate 9

overlap w/o leaf pushing 6

overlap w/ leaf pushing 3

our approach 5

TABLE III
NUMBER OF WRITE BUBBLES PER UPDATE (THEORETICAL BOUNDS)

Approach Maximum Minimum

overlap w/ leaf pushing 2W−1 0

the other three approaches 1 1

approaches. The number of write bubbles per update can be

used as the metric to evaluate the update overhead in an

SRAM-based IP lookup pipeline [19].

In trie overlap with leaf pushing, the number of write

bubbles caused by one update depends largely on where the

update occurs. For example, if prefix <1*, B5> is added in

FIB 2 shown in Fig. 1, it changes nothing in the leaf-pushed

merged trie shown in Fig. 2(b) and no write bubbles are needed

for this update. If a route update changes the prefix <000*,

B4> in FIB 2 to <000*, B5>, only one node in the leaf-

pushed merged trie should be modified, which requires only

one write bubble. However, if a route update changes prefix

<00*, A3> in FIB 1 to <00*, A5>, two nodes in the leaf-

pushed merged trie should be modified. Since these two nodes

are in the same stage of the pipeline, two write bubbles are

needed for this update. Note that a write bubble can modify

at most one node in each stage [19]. In the theoretical worst

case, one route update on the leaf-pushed trie might change at

most 2W−1 nodes in the same stage, leading to 2W−1 write

bubbles for this update, where W is the maximum length of the

IP prefix. In the other three approaches, leaf pushing and any

other prefix expansion techniques are not used. As a result, the

tries in the other three approaches are similar to the original 1-

bit trie, and at most one node in each level should be modified

for one route update, which guarantees that one write bubble

is enough for one route update in any case. The theoretical

comparison of update overhead is summarized in Table III.

To evaluate the update overhead in practice, we obtained

12-hour BGP update traces on all 14 full FIBs shown in

Table I. The number of prefix announcements and withdrawals

are shown in the last two columns of Table I, respectively.

These traces contain more than 26 million updates in total.

Fig. 11 shows the complementary cumulative distribution of

the update overhead in trie overlap with leaf pushing based on

the 12-hour BGP update traces. The number of write bubbles

per update varies significantly, as the overhead of each update

is largely dependent on where the update occurs on the merged

trie. During the 12 hours of the traces, there are 892 updates,

i.e., around 0.003% of the total updates, that require more

than 100 write bubbles per update in trie overlap with leaf

1252

Fig. 11. Complementary cumulative distribution function (CCDF) of actual
update overhead in trie overlap with leaf pushing

TABLE IV
NUMBER OF WRITE BUBBLES PER UPDATE IN PRACTICE

Approach Maximum Minimum

overlap w/ leaf pushing 21,200 0

the other three approaches 1 1

pushing. Although these do not occur often, once they happen,

such updates block the lookup pipeline for many clock cycles,

leading to many packet drops unless very large packet buffers

can store the incoming packets during these cycles. Table IV

summarizes the update overhead in the four approaches based

on the 12-hour update traces. In trie overlap with leaf pushing,

the worst-case update overhead is 21,200 write bubbles per

update. In this case, consider a link rate of 100Gbps (i.e.,
about 5.12ns per packet time for 64-byte packets) and a clock

frequency of 250MHz for the pipeline, as many as 16,563

packets may have to be buffered for this update to avoid packet

drops. Therefore, the high worst-case update overhead in trie

overlap with leaf pushing may impose a significant burden on

router buffers. In the other three approaches (i.e., the separated

approach, trie overlap without leaf pushing and our approach),

the update overhead is one write bubble per update in any case,

which is consistent with the result shown in Table III.

D. Lookup Performance Considerations

Generally speaking, for pipelined implementations, all the

four approaches can achieve the same lookup throughput of

one lookup per clock cycle. However, some subtle differences

exist due to the different node size.

For a given SRAM entry size, the lookup throughput of the

pipeline is affected by the node size of the trie. If the node

size is smaller than the SRAM entry size, a trie node can fit

in just one SRAM entry. As a result, one node access can be

completed in just one clock cycle, and a throughput of one

lookup per cycle can be achieved in the pipeline. However,

if the node size is larger than the SRAM entry size, multiple

SRAM entries are required to store one node, and thus multiple

memory accesses are needed for visiting one node. In this case,

one lookup per clock cycle cannot be guaranteed. Therefore,

it is easier to achieve a lookup throughput of one lookup per

clock cycle if the node size is smaller.

Among the four approaches, trie overlap without leaf push-

ing scales worst in terms of node size, as a next-hop pointer (8

bits) should be added into the node of the merged trie for every

added trie, as shown in Fig. 7(b). That means, as the number

of FIBs increases, the node size in trie overlap without leaf

pushing is easier to exceed the given SRAM entry size, which

may lead to degradation of lookup performance. Note that the

node size also affects the performance of write bubbles in the

same way.

Fortunately, in our implementations, the trie node in all

the four approaches for 14 full IPv4 FIBs, can fit in one

SRAM entry within the FPGA, as multiple on-chip SRAMs

can be combined together to form a large SRAM entry. As

a result, a throughput of one lookup per clock cycle can be

achieved. We have implemented the pipeline for our approach

within the FPGA, and the results show a maximum clock

frequency of 251MHz, which means that the pipeline can

achieve a throughput of 251 million lookups per second. All

the other three approaches can also achieve a comparable

lookup throughput in pipelined implementations.

E. Summary

Through the pipelined implementation, the following con-

clusions can be drawn.

(1) Separated Approach. For SRAM-based IP lookup

pipelines, the separated approach is good in terms of lookup

and update performance. However, the total size increases

drastically when the number of virtual routers increases, which

poses a memory scalability challenge on the SRAM-based

lookup pipeline. We have shown that, for 14 full IPv4 FIBs,

about 9 external stages are needed to reduce the memory

requirement for SRAM-based pipeline within the FPGA.

(2) Our Approach vs. Trie Overlap without Leaf Push-
ing. Our approach is an improvement to trie overlap without

leaf pushing, and the main difference is that, the node size

in our approach scales much better than that in trie overlap

without leaf pushing. Small nodes in our approach benefit the

pipeline in two aspects. First, it is easier for a trie with smaller

nodes to achieve higher lookup and update performance, as

mentioned in Section V.D. Second, the smaller trie size poses

a smaller memory size challenge on the SRAM-based lookup

pipeline within the FPGA, and thereby fewer external stages

are needed in our approach.

(3) Our Approach vs. Trie Overlap with Leaf Pushing.

Trie overlap with leaf pushing outperforms our approach in

terms of memory scalability. However, the main drawback

in trie overlap with leaf pushing is the large worst-case

update overhead, which may pose a challenge on router buffer

design. By contrast, our approach makes a good balance

between the memory scalability and the update overhead.

We can achieve good memory scalability and guarantee fast

incremental updates simultaneously. Therefore, our approach

is a viable alternative to trie overlap with leaf pushing for

virtual routers.

1253

VI. CONCLUSION

In this paper, we proposed a trie merging approach with fast

updates to address both memory scalability and route updates

challenges for virtual routers. We introduced a prefix bitmap

in each node of the merged trie to separate next-hop pointers

from trie nodes, which brings scalability to node size and

therefore the whole merged trie size. Moreover, through the

prefix bitmap, we completely avoided leaf pushing to reduce

the node size, and by this enabled fast incremental updates. We

implemented an SRAM-based lookup pipeline for the merged

trie. We proposed an efficient approach called height-based

partitioning, to address the memory size issue of the on-chip

SRAM-based pipeline. We evaluated how leaf pushing behaves

with real update traces and showed that leaf pushing leads to

high worst-case update overhead in practice. Based on our

approach, an on-chip SRAM-based lookup pipeline with 5

external stages can store 14 full IPv4 FIBs, and guarantee

a low update overhead of one write bubble per route update,

as well as a high lookup throughput of one lookup per clock

cycle.

The relatively small size of the merged trie in our approach,

e.g., 10MB (see Fig. 7(c)), suggests that the trie processing can

be done mainly in the cache memory of modern processors.

This opens opportunities to exploit the massive parallelism

available in modern multi-core or many-core processors, to

achieve good memory scalability, fast lookups and fast updates

for virtual routers.

ACKNOWLEDGMENT

This work was supported in part by National Basic Re-

search Program of China with Grant 2012CB315801, by

National Natural Science Foundation of China (NSFC) with

Grants 61133015 and 61202411, by National High-tech R&D

Program of China with Grant 2013AA013501, by Strategic

Priority Research Program of CAS with Grant XDA06010303,

by the Instrument Developing Project of CAS with Grant

YZ201229.

REFERENCES

[1] N. M. M. K. Chowdhury and R. Boutaba, “A survey of

network virtualization,” Computer Networks, 2010.

[2] G. Xie, P. He, H. Guan, Z. Li, Y. Xie, L. Luo, J. Zhang,

Y. Wang, and K. Salamatian, “PEARL: a programmable

virtual router platform,” IEEE Communications Maga-
zine, 2011.

[3] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici,

and L. Mathy, “Towards high performance virtual routers

on commodity hardware,” in Proc. ACM CoNEXT, 2008.

[4] M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feam-

ster, “Switchblade: a platform for rapid deployment of

network protocols on programmable hardware,” in Proc.
ACM SIGCOMM, 2010.

[5] J. Fu and J. Rexford, “Efficient IP-address lookup with a

shared forwarding table for multiple virtual routers,” in

Proc. ACM CoNEXT, 2008.

[6] H. Song, M. Kodialam, F. Hao, and T. Lakshman, “Build-

ing scalable virtual routers with trie braiding,” in Proc.
IEEE INFOCOM, 2010.

[7] T. Ganegedara, W. Jiang, and V. Prasanna, “Multiroot:

Towards memory-efficient router virtualization,” in Proc.
IEEE ICC, 2011.

[8] H. Le, T. Ganegedara, and V. K. Prasanna, “Memory-

efficient and scalable virtual routers using FPGA,” in

Proc. FPGA, 2011.

[9] T. Ganegedara, H. Le, and V. K. Prasanna, “Towards On-

the-Fly Incremental Updates for Virtualized Routers on

FPGA,” in Proc. FPL, 2011.

[10] V. Srinivasan and G. Varghese, “Fast address lookups

using controlled prefix expansion,” ACM Transactions on
Computer Systems, 1999.

[11] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian,

“A hybrid IP lookup architecture with fast updates,” in

Proc. IEEE INFOCOM, 2012.

[12] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki,

J. Crenne, L. Gao, and R. Tessier, “Scalable network

virtualization using FPGAs,” in Proc. FPGA, 2010.

[13] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and

N. McKeown, “NetFPGA - an open platform for teaching

how to build gigabit-rate network switches and routers,”

IEEE Transactions on Education, 2008.

[14] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous,

“Survey and taxonomy of IP address lookup algorithms,”

IEEE Network, 2001.

[15] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap:

Hardware/software IP lookups with incremental updates,”

Computer Communication Review, 2004.

[16] RIPE RIS Raw Data. [Online]. Available:

http://www.ripe.net/data-tools/stats/ris/ris-raw-data

[17] S. Sikka and G. Varghese, “Memory-efficient state

lookups with fast updates,” in Proc. ACM SIGCOMM,

2000.

[18] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining:

Making IP-lookup truly scalable,” in Proc. ACM SIG-
COMM, 2005.

[19] A. Basu and G. Narlikar, “Fast incremental updates for

pipelined forwarding engines,” in Proc. IEEE INFO-
COM, 2003.

[20] W. Jiang and V. K. Prasanna, “A memory-balanced linear

pipeline architecture for trie-based IP lookup,” in Proc.
IEEE HOTI, 2007.

[21] Xilinx Inc. [Online]. Available: http://www.xilinx.com/

[22] W. Jiang and V. Prasanna, “Towards practical archi-

tectures for SRAM-based pipelined lookup engines,” in

Proc. IEEE INFOCOM Work-in-Progress Track, 2010.

1254

