
An Ensemble of Replication and Erasure Codes for
Cloud File Systems

Yadi Ma
University of Wisconsin

Madison, WI, USA

Thyaga Nandagopal
Bell Labs, Alcatel-Lucent

Murray Hill, NJ, USA

Krishna P. N. Puttaswamy
Bell Labs, Alcatel-Lucent

Murray Hill, NJ, USA

Suman Banerjee
University of Wisconsin

Madison, WI, USA

Abstract—Geographically distributed storage is an important
method of ensuring high data availability in cloud computing
and storage systems. With the increasing demand for moving
file systems to the cloud, current methods of providing such
enterprise-grade resiliency are very inefficient. For example,
replication based methods incur large storage cost though they
provide low access latencies. While erasure coded schemes reduce
storage cost, they are associated with large access latencies
and high bandwidth cost. In this paper, we propose a novel
scheme named CAROM, an ensemble of replication and erasure
codes, to provide resiliency in cloud file systems with high
efficiency. While maintaining the same consistency semantics seen
in today’s cloud file systems, CAROM provides the benefit of
low bandwidth cost, low storage cost, and low access latencies.
We perform a large-scale evaluation using real-world file system
traces and demonstrate that CAROM outperforms replication
based schemes in storage cost by up to 60% and erasure coded
schemes in bandwidth cost by up to 43%, while maintaining low
access latencies close to those in replication based schemes.

I. INTRODUCTION

High data availability is an important property that most
cloud storage services such as Amazon S3, and Windows
Azure offer today. For instance, Amazon S3 offers four 9’s
of availability. Today’s cloud storage services provide these
availability SLAs (Service Level Agreements) by replicating
full copies [1], [2], [3] of a data object several times over
geographically diverse data centers [2] (referred to as M -way
replication in the literature, or AllReplica in this paper). When
a copy of the data object in a data center is inaccessible,
due to various transient failures, such as memory or disk
overloads, network congestion, equipment failure or upgrades,
or unplanned outages [4], [5], [6], the user is transparently
redirected to another copy of the data to maintain high
availability. Current storage services such as Amazon S3 and
Google FS provide such resiliency against two failures 1 [1],
[2] using this AllReplica model. However, with increasing
number of users and enterprises moving to the cloud, the cost
of replicating and keeping the huge amount of data consistent
across multiple locations will only increase, driving up the
bandwidth and storage costs. This necessitates a low-cost
solution that can maintain high availability as well as low
latency access times to this data object.

To reduce storage cost, cloud file systems (CFSs) are
transitioning from replication to erasure codes [7]. Erasure
codes have been employed by peer-to-peer (P2P) storage
systems to address the same problem in the past, in order to

1To tolerate two simultaneous failures, a total of three copies of each data
item are kept using replication model.

Fig. 1. An overview of our approach for cloud file systems. A file is divided
into m data chunks and k redundant chunks using an erasure code. In this
example, m = 3 and k = 2. Each chunk is stored in a different data center,
which is called a backup data center. A copy of the whole file is cached
temporarily in a primary data center upon write requests, in order to serve
subsequent read and write requests. Upon a read request, the requested blocks
can also be cached to serve subsequent reads of the same blocks.

provide high-availability and at the same time reduce storage
cost. The key idea behind the solution is to use different
encoding schemes to divide an object into multiple data chunks
(say m data chunks), and k redundant chunks are calculated
based on the data chunks to tolerate up to k failures. These
chunks, both data chunks and redundant chunks, are stored
in different locations [8], [9], [10]. Only m out of m + k
chunks are necessary to reconstruct the object. This scheme
(referred to as AllCode thereafter) is efficient because instead
of storing whole copies, it stores chunks and thus reduces
the overall cost of storage. However, the problem is that it
requires reconstructing the entire object and updating all the
redundant chunks upon write requests. When erasure codes
are applied to CFSs with both read and write workloads, they
lead to significantly high access latencies and large bandwidth
overhead between data centers.

As shown in Figure 1 (the details of our proposed scheme
shown in Figure 1 will be described later), a cloud provider
might have deployed eight data centers (DCs) in different
locations across the United States. The problem we are ad-
dressing is: Given a number of geographically diverse data

centers, how to provide a low latency and lower cost storage

mechanism for file systems in the cloud while maintaining the

same consistency semantics seen in today’s CFSs?

Unfortunately, neither AllReplica nor AllCode, deployed in
current systems, are best suited for this purpose, as mentioned

2

Fig. 2. Different methods to access files in a cloud file system.

before. Specifically, we want to provide k-resiliency, defined
as data is accessible even in the event of simultaneous failures
of k different DCs (data centers). Note that a single failure in
our model refers to when a DC is completely inaccessible to
the outside world. In reality, data stored in a particular DC is
internally replicated (on different networks in the same DC)
to tolerate equipment failures. A failure in our model could
be due to either a network unreachability, or some other set of
events that make all copies of the data in a DC inaccessible. In
addition, we would like to provide an access latency close to
that of the AllReplica scheme, and storage effectiveness close
to that of the AllCode scheme.

A Cloud File System (CFS) workload is particularly chal-
lenging to cope with because of the consistency requirements
of the file system in supporting applications such as users’
desktop in the cloud, network file systems, email servers,
document sharing portals, etc. These applications not only
store data, but they also edit stored data and expect consistent
response irrespective of where and when the data is accessed.
Current CFSs [11] provide “replication-on-close” semantics,
where all writes are kept at the local copy only, until the
file is closed at which point replication occurs. We want to
continue to provide the same consistency guarantees, but at a
lower cost, lower latency and higher resiliency.

In order to maintain this tighter consistency guarantees with-
out employing expensive distributed consensus algorithms,
we use the model followed by currently deployed file sys-
tems [11], where all writes are redirected to a “primary”
replica for a file. Figure 2 shows how data is accessed in
today’s CFS with read and write operations. Users could be
directed to the primary copy (P) of the data item (solid path
1), or could be directed to the nearest replica (R) of the
item (dotted path 2), if it exists. But, due to the consistency
semantics needed for a highly-available CFS, all access to data
needs to go through a consistent primary copy even if a replica
is closer to the user (as shown in dotted path 2). This primary
can be decided either at the granularity of a file or a user.

A. Our approach

In this paper, we evaluated several potential schemes for
CFSs and proposed CAROM, Cache A Replica On Modifi-
cation. As shown in Figure 1, CAROM combines the design
of AllReplica and AllCode in a unique and novel way. In
CAROM, when a file is stored, it is divided into m data
chunks, and k redundant chunks are calculated using a erasure
code, just as in the AllCode scheme. The m + k chunks are
stored in m + k different data centers which are referred to
as backup data centers in this paper. When a write operation

is issued to the file, if the requested data is not cached, it
is reconstructed by contacting any m backup data centers
and then cached in the primary data center designed for the
file until it is replaced out of cache; otherwise, if the file is
cached, read and write operations are applied to the cached
copy directly without the need to reconstruct the file.

CAROM is motivated by findings from prior work which
concluded that reads and writes exhibit temporal locality [6],
[12], [13] in file systems. Therefore the cached copy of a file
covers a significant number of subsequent reads and writes,
behaving like AllReplica. We explore various parameters in-
volved in the design of this scheme, such as the size of the
cache in each data center and the effect of caching on monetary
cost, in more detail in later sections.

B. Summary of our contributions

In this paper, we show that CAROM outperforms replication
as well as erasure coding solutions to provide k-resiliency at
lower costs and latency. Our key contributions are:

• We identify the problem of providing low-cost, low-
latency, k-resiliency with tight consistency semantics in
cloud file systems.

• We propose CAROM, Cache A Replica On Modification,
a bandwidth-, storage-, and latency-efficient resiliency
scheme for cloud file systems.

• We analyze a trace from a deployed network file system
obtained from two large-scale, enterprise-class file servers
containing more than 35TB of data with nearly 4 million
files. We use this trace to evaluate the performance of
CAROM and compare it with a number of other schemes.

• Using trace-driven experiments, we show that while
maintaining low access latencies close to replication
based schemes, CAROM outperforms currently known
replication schemes in storage cost by up to 60%, and
it outperforms erasure code based schemes in bandwidth
cost by up to 43%.

II. BACKGROUND: ERASURE CODED STORAGE

In a erasure coded storage system, a system of N disks is
partitioned into m disks that hold data and k disks that hold
coding information. The coding information is calculated from
the data using an erasure code. An erasure code generally has
two properties. First, it must be Maximum Distance Separable
(MDS), which means if any k of the N disks fail, their contents
can be recomputed from the m surviving disks. Once the disks
are restored, the failed redundant disks may be recalculated.
Second, it must by systematic, which means that the m data
disks hold unencoded data. There are many MDS erasure
codes that apply to storage system. Reed-Solomon codes are
defined for all values of m and k and is one of the most
well-known erasure codes [14].

Failure model of such a system is that of an erasure, which
means when a device fails, it shuts down, and the system
recognizes this shutting down. This is in contrast to an error, in
which a device failure is manifested by storing and retrieving
incorrect values.

It is worth noting that the computational overhead of erasure
codes is negligible compared to the overhead of reading, writ-
ing or sending data. When writing data, the dominant factor

3

is writing the erasure-coded chunks to disks, not calculating
the codes. Similarly, when reading data, the dominant factor
is reading the chunks from disks rather than decoding.

Though the schemes we present in this paper are indepen-
dent of the specific erasure code used, we employ a general
Reed-Solomon code in our evaluations. When a Reed-Solomon
code is applied to a CFS across multiple data centers as shown
in Figure 1, a data item is divided into multiple data chunks
and redundant chunks are calculated accordingly, and each
chunk is stored in a different data center.

III. DESIGN OVERVIEW

A cloud storage provider operates N data centers (DCs)
across geographically diverse locations. A cloud provider’s
SLA will state that data will be available despite k location
failures, where we use the term failure to indicate that the

copy within the data center is unreachable. Recall that for
an ideal enterprise-grade CFS, k > 1. We explore how we
can meet this goal of k-resiliency, while reducing the cost of
maintaining these copies, as well as the latency of accessing
information in these copies.

A. Design considerations

a) Consistency: A key issue that needs to be considered
in a CFS is the type of consistency. As described in Section I,
we seek to achieve the same level of consistency provided
in current cloud services, which is a replication-on-close

consistency model. Here, as soon as a file is closed after a
write, the next file open request will see the updated version
of the file. In a cloud environment, this requires that the
written parts of the file be updated before any other new file
open requests are processed. This is very hard to accomplish
in a distributed environment without incurring large delays.
However, in our model, we assume that all requests are sent
to a primary DC that is responsible for that file. Therefore, all
file operations are essentially serialized via the primary DC,
thus assuring such consistency can be achieved in the normal
course of operation.

In case of a failure between a file-close operation and a
file-update operation, the written data is inaccessible. This
behavior, which is present in current schemes, such as All-
Replica and AllCode, can be avoided by using a journaling file
system [15] that writes updates to a different DC. Given that
the amount of written data at any given time is very small (as
shown later), we can safely assume that such a file system can
indeed be used in our model without compromising latency or
storage any more than it would to an AllReplica or AllCode
based CFS.

b) Data accesses: Analysis of two sets of data traces
collected in [16], [17] shows that in file systems, bulk of data
is not accessed at all, or is accessed after very long intervals.
An analysis of the file system traces used in [16] shows that
file sizes do not have an impact on whether a file is written
after the initial store. This can be seen in Figure 3, where we
plot the cumulative fraction of the file system that all files and
unwritten files occupy, as a function of file sizes, from the data
in [16]. Regardless of the file sizes, we observe that around
two-third of the files stored are untouched (i.e., unwritten).
This observation suggests it is not always necessary to store

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
fi

le
 s

iz
es

File size in KB (log scale)

Total
Unwritten

Fig. 3. Cumulative fraction of file system that total and unwritten files occupy
vs. file sizes. Around two-third of stored files are not written.

multiple copies of a file in its uncoded form, considering the
high storage cost and infrequent writes.

In this paper, we use the traces from [17] to evaluate the
schemes for CFSs. It is important to note that these traces
only contain files that are accessed, and not the entire file-
system. In reality, the savings of our proposed CAROM will
be even larger over AllReplica than what we will see later in
our experiments.

B. CAROM: Cache A Replica On Modification

Based on the design aspects presented, we now outline our
strategy for providing low cost, low latency accesses along
with resiliency in a CFS. We name this strategy Cache A

Replica On Modification (CAROM). CAROM uses a com-
bination of caching and erasure coding to accomplish our
goals. We use erasure coding to save on storage, while we
use caching to improve file access latency. Our contribution
lies in our ability to merge these two policies effectively for
any file-system regardless of its size and access patterns.

1) Motivation: CAROM is motivated by the observation
that a large fraction of files remain unwritten in a file system,
as shown in Figure 3. This means that erasure coding is
acceptable because bandwidth-intensive reconstructions do not
happen frequently. Therefore, in CAROM, instead of stor-
ing multiple replicates of a file as in AllReplica, we store
erasure coded chunks to reduce storage cost. We duplicate
AllCode scheme in this sense. CAROM is also motivated
by observations from prior work which showed that file
accesses are temporally related in file systems [6], [12], [13].
Thus in CAROM, in addition to the chunks, we occasionally
cache a whole file (upon write requests) or partial file (upon
read requests) to serve subsequent read and write requests,
in order to reduce bandwidth costs incurred from frequent
reconstructions of the file.

Since different coding algorithms have their pros and cons,
we focus more on the architecture here without tying ourselves
to a specific coding algorithm. We assume a generic (m+k,m)
systematic Reed-Solomon erasure code is used, as in AllCode
scheme. Each of these (m+ k) chunks are stored on different
nodes, which are data centers in our case, and any m chunks
can reconstruct the original data. 2

2Although any m chunks can reconstruct the original data, we generally
prefer the m unencoded data chunks to reduce computational overhead. Other
strategies could be to choose the closest m data centers, or we can select more
than m data centers and choose the first m arrivals, as in [18], to reduce
latency.

4

Storage Cost

Cache Size

Bandwidth Cost
of data access

C
o

st

Total Cost

Fig. 4. Costs vs. cache size. Bandwidth cost is expected to decrease with the
increase of cache size, while storage cost increases as cache size increases.
Therefore, at some cache size, the total cost is minimized.

2) Caching: CAROM uses a block-level cache at each data
center. “Cache” here refers to local file accesses that can be
in a hard-disk or even DRAM at a local DC. Each DC acts
as the primary DC for a set of files in the CFS. Whenever
such files are being accessed, these accesses are sent to this
primary DC, which retrieves/updates the referred blocks. Any
block accessed for the first time is immediately cached. This is
motivated by the findings in [17] which states that in a typical
file system, the same block is often accessed in a very short
span of time. Therefore caching will reduce access latency of
successive operations on the same data block.

Recall that we store all files using a systematic erasure code.
For a read request, we retrieve requested data blocks from
unencoded data chunks and cache them in the primary DC. If
a subsequent read request arrives for those cached blocks, then
we use the cached data to serve this request, without having
to retrieve from the data chunks.

Whenever a write operation is performed, we perform two
operations in parallel: first, the written blocks are stored in
the cache of the primary DC and the write is acknowledged
to the user. Second, we reconstruct the entire file from any m
out of m+ k chunks and update it in cache. Once a file-close
operation is performed, the redundant chunks are recalculated
using Reed-Solomon erasure code and the updated chunks are
written across the other DCs. However, we still keep the entire

file in cache even after the update is complete. This is because
the same file can be accessed again.

We use the LRU (Least Recently Used) cache replacement
algorithm in CAROM to evict old blocks from cache whenever
the cache is full. The effectiveness of this scheme depends on
two factors, the cache size, and the amount of data accessed
in any given time window. We will explain in details below.
3) Cache size adaptation: While any amount of cache can

definitely help in reducing access latency, the right size is
important to reduce storage costs. Clearly, at one extreme we
can cache the entire file system at each DC, which leads to
huge storage costs. At the other extreme, keeping a very small
cache leads to higher bandwidth costs incurred in fetching
content from backup DCs to the primary DC. This behavior is
illustrated in Figure 4, where the total cost curve is most likely
a convex function. Please note that this figure is an illustration
figure and it is not based on real data. Please refer to Figure 8
in section V-E1 for real data plots. The optimal cache size
that minimizes the total cost is somewhere in the middle of
these two extremes. Given that bandwidth pricing is structured
to discourage its overuse, one can surmise that attempting to
minimize the cost of bandwidth transfers will also maximize

the effectiveness of caching. Our goal is to balance the trade-
off between the cache size and its effectiveness.

A simple heuristic is: based on the needs and access patterns
of users, find an acceptable cache size that is large enough but
does not cost much in storage costs, and use it as the default
for a CFS. However, this requires careful fine-tuning given
that access patterns can change everyday as well as evolve
over time.

We therefore, propose an elegant adaptation method that
takes advantage of the potential convex nature of the total
cost. An important aspect of this adaptation algorithm is that
it constantly probes for the optimal cache size that minimizes
cost. It is described in Algorithm 1 below, where δ is initialized
to 1 GB and T is set to 1 day in our evaluation, while both
parameters can be configured by cloud operators.

Algorithm 1 Adaptive Cache Sizing in CAROM

1: δ = 1 GB, oldCacheSize = 0, currentCacheSize = δ
2: T = 1 day, τ = 0, currentTime t = 0
3: At time 0, T, 2T, 3T, . . ., run Cache Adapt()
4:

5: function Cache Adapt ()
6: for Every file access at t ∈ [τ, τ + T) do
7: Compute Storage and Transfer cost with currentCache-

Size
8: Compute Storage and Transfer cost with oldCacheSize
9: end for

10: S = currentCacheSize
11: if cost(currentCacheSize) > cost(oldCacheSize) then
12: if currentCacheSize > oldCacheSize then

13: Reduce currentCacheSize by δ
14: else

15: Increase currentCacheSize by δ
16: end if

17: else

18: if currentCacheSize > oldCacheSize then

19: Increase currentCacheSize by δ
20: else

21: Reduce currentCacheSize by δ
22: end if

23: end if

24: oldCacheSize = S
25: τ = τ + T

As is fairly evident from Lines 11-23 of this pseudo-code,
we try to seek and then stay within 1GB of the optimal
cache size, assuming the costs are similar over consecutive
days. Whenever the costs vary a lot over successive days,
the algorithm will try to adapt as quickly as it can. The
cloud operator can run this algorithm more frequently once
large changes in cost are detected. In our evaluation, however,
the access patterns do not vary so wildly to necessitate such
dynamic reconfiguration of update intervals.

C. Resilient schemes for cloud file systems

In this paper, we evaluated existing schemes AllReplica and
AllCode, our proposed scheme CAROM, and another scheme
we named Hybrid. Hybrid is also based on erasure codes. The

5

Scheme # of primary copy # of backups
AllReplica 1 (full copy) k (full copies)

Hybrid 1 (full copy)) m+ k (chunks)
AllCode 0 m+ k (chunks)
CAROM 0 (or 1 full copy if cached) m+ k (chunks)

TABLE I
SUMMARY OF SCHEMES EVALUATED.

difference between Hybrid and CAROM is that in Hybrid,
instead of caching a copy of a whole file temporarily (as in
CAROM upon writes), a copy of the file is kept permanently
in its primary DC. We compare CAROM with Hybrid to show
that caching in CAROM is effective in reducing storage cost
without sacrificing much on bandwidth cost, as shown later in
Section V.

Table I summarizes the different k-resiliency schemes de-
scribed in this paper for a quick reference. Next we describe
how each scheme handles basic read and write operations in
a CFS.

AllReplica: In this scheme, given any value of k, we store
k+1 full copies of each file in the system. One copy is stored
in a primary DC and k other copies are stored in k backup
DCs. The primary DC serves read and write requests directly.
Upon write operations, k backup DCs are updated on file-
close.

AllCode: In this scheme, all files are split using a (m+k,m)
erasure code, and m+ k chunks are stored in m+ k backup
DCs. Upon a read request, if a full copy of the file has already
been reconstructed after file-open, the primary DC serves the
read directly. Otherwise, the primary DC contacts other backup
DCs to get requested data and then it serves read. For the
first write operation after file-open, the primary DC contacts
other m− 1 backup DCs to reconstruct the whole file while it
performs write on the file. The full copy is kept until file-close
and subsequent read/write can be served directly from this
copy until file closes. The primary DC updates the modified
data chunks and all the redundant chunks on file-close.

Hybrid: In Hybrid, we store one complete primary copy of
the file, and the backup copies are split using a (m + k,m)
erasure code. The basic idea here is that the primary replica
with full copy of the file will, by default, answer the read/write
queries from users. The chunks are mainly used to provide
resiliency. In Hybrid, read and write requests are satisfied by
the primary copy as in AllReplica. Upon write requests, all
modified data chunks plus redundant chunks are updated on
file-close as in AllCode.

CAROM: To serve a read request, if the requested data
exists in the cache of its primary DC, the primary DC
serves the request directly. Otherwise, it behaves the same as
AllCode, except that the requested data will be cached in the
primary DC. Upon a write request, if the requested file resides
in the cache of the primary DC, the primary DC performs write
without the need to reconstruct the whole file. Otherwise, the
file is reconstructed as in AllCode while processing the write.
All the modified chunks are updated on file-close also as in
AllCode. However, different from AllCode, the reconstructed
copy is stored in the cache even after file-close in CAROM
(until file is replaced by the LRU algorithm).

IV. TRACE DETAILS

To evaluate our schemes, we use the CIFS network trace
collected from two larger-scale, enterprise-class file servers
deployed in the NetApp corporate headquarters. This trace was
collected in 2007, and is described in full detail in [17]. One
file server is deployed in the corporate data center that hosts
data used by over 1000 marketing, sales, and finance employ-
ees, and the other is deployed in the engineering data center
used by over 500 engineering employees [17], [19]. We refer
to these workloads as Corporate (or Corp) and Engineering (or
Eng), respectively. This trace is representative of a mid-sized
enterprise file system, and it is collected over a period of two
months for Corporate and three months for Engineering. While
the trace had complete details of I/O activities, as collected at
Ethernet layer, we parsed the trace and extracted the following
details of I/O operations: <timestamp, I/O command, I/O size,
File name>.

Corporate Engineering
Trace start date Sep 20, 2007 Aug 10, 2007
Trace end date Nov 23, 2007 Nov 14, 2007
Days 65 97
Total number of files (million) 1.51 2.29
Total size of files (TB) 1.58 33.49
Total number of reads (million) 30.46 48.82
Total number of writes (million) 9.38 22.65

TABLE II
HIGH LEVEL STATISTICS OF NETAPP TRACE USED FOR OUR EVALUATION.

Table II shows the statistics associated with these workloads.
We processed a total of 3.8 million unique files representing
over 35 TB of data. Engineering traces were collected for
50% longer duration than those of Corporate, and the number
of files reflects this. The total size of the Engineering files
is significantly larger (more than 30 times), which is due to
the larger average sizes of the files. The number of reads per
day, however, is roughly equal to 0.5 million in both traces.
In the case of Corporate, this corresponds to about 500 reads
per user per day, which is about 2MB of reads on an average
(using 4KB block size). The number for Engineering roughly
averages to around 4MB of reads per user. In terms of writes,
Engineering traces have more data written per user, around 2
MB per user per day. The key observation is that an erasure-
coded scheme, such as AllCode or CAROM, can easily handle
the processing of this level of data read/written with negligible
computational cost.

Given the low average utilization of the file systems seen
in this representative trace set, consolidating the file systems’
users and moving to cloud has significant financial incentives
to the companies, further supporting the premise of this paper.

While the scale of cloud is growing, a larger cloud environ-
ment can be treated as consisting of multiple instances of such
a trace. We believe this trace is quite representative and our
results will apply evenly across the growth in number of files,
file sizes, number of accesses, and CFS access distributions.

We used the parsed trace to understand the duration for
which the files are open and how far apart in time two open
requests to the same file are. This helps us to understand
the performance of the replicate-on-close model. Since file
open durations were already plotted in [17], we only plot
the duration between opens in this paper. From [17], files are

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

C
D

F
 o

f
fi

le
 o

p
en

 i
n
te

rv
al

s

Time (day)

Corporate
Engineering

Fig. 5. Cumulative distribution of open intervals for the entire trace. Time
between two consecutive opens of the same file is generally large.

opened for very short intervals. In fact, most files are for less
than 50 seconds, while nearly 80% of the files are opened for
about 1 second.

Figure 5 shows the cumulative distribution of the time
intervals between two consecutive opens of same files. Clearly,
time intervals between consecutive file opens of same files
are generally quite large. Only 18% of the total file opens in
Corporate and 33% of the opens in Engineering are within
one day of previous open. Intuitively, this large interval may
limit the effectiveness of caching in CAROM. However, we
will show in Section V that CAROM still leads to remarkable
improvement in the financial costs.

It is important to point out two unique aspects of this
trace: (a) many reads initiated by clients are served by client-
side caching, and are not captured by this trace, and (b) this
trace only contains data of files that were accessed, and does
not tell us anything about the fraction of the file-system that
was not accessed at all during the measurement period. The
former aspect reduces the effectiveness of caching somewhat,
while the latter aspect significantly reduces the storage cost of
AllReplica scheme. Thus, the performance improvements of
CAROM over competing schemes shown in the next section
are a worst-case scenario for CAROM. In practice, we expect
the savings to be even larger than what are reported here.

V. EVALUATION

A. Environment and metrics

Our main goal is to compare CAROM resiliency scheme
with AllReplica, Hybrid and AllCode in terms of: (a) storage
cost in storing the file systems, (b) total bandwidth consumed
in storing, reading, and writing the file systems, and (c) total
monetary cost of migrating and operating these file systems
on cloud.

In the following experiments, we vary k from 1 to 3 in
order to understand the performance of the four schemes
with different resiliency. In each of these experiments, unless
otherwise stated, the total number of data centers N is fixed
to 10, and the number of chunks that a file is divided into, m,
is set to 5.

When a file is opened for the first time, depending on the
resiliency scheme, a number of data centers are chosen for the
file to store replicas and/or coded chunks. Each time a file is
closed after performing writes, these replicas and/or chunks are
updated to keep data consistent. We compare the four schemes
described in Section III-C in terms of storage-time, bandwidth
and monetary cost.

B. Storage-time

Assume we have a file trace containing a set of files F , and
the trace has a start time of u and finish time v. Suppose the
total storage of a file f is sf (t) at time t. We define storage-
time of the trace to be:

∑

f∈F

v∑

t=u

sf (t)

This metric is useful because it can be directly translated to
monetary cost based on the storage cost per-GB-per-hour, as
priced by Amazon and other cloud providers.

Every time a file is closed after a write access, we update
the storage-time of the file. Figure 6 shows the storage-time
over the entire trace period for Corporate and Engineering,
respectively. The clear winners here are AllCode and CAROM.
AllCode essentially has only (1 + k/m) overhead for storing
the files. The performance of CAROM is very close to that
of AllCode. CAROM incurs an extra storage cost for caches.
However, since cache size is small compared to the file
system size (as shown later in Section V-E), this extra cost
is insignificant. AllReplica incurs an overhead of k times data
stored. This can be seen from the linear increase with k for
AllReplica, while AllCode and CAROM grow much slower
with increasing k. Hybrid outperforms AllReplica for k > 1,
since in Hybrid, always one copy and m+k chunks are stored,
instead of k copies as in AllReplica. For k = 1, Hybrid has
an extra overhead of k chunks for each file stored compared
to AllReplica.

For k = 2, CAROM saves more than 50% (53%) in storage-
time compared to AllReplica, and more than 40% (42%)
compared to Hybrid. The percentage of savings compared to
AllReplica is as high as 60% for k = 3.

C. Bandwidth cost

In the default operational scenario, a file can be accessed at
any given time for either a read, or a write. A file access
operation is associated with a cost, which is expressed as
network traffic in a distributed storage system. We evaluate
the cost of such file accesses in terms of the total amount of
data read or written to serve all file access requests.

Under this scenario, a read access is served from a primary
replica of the data item in AllReplica and Hybrid, while in
AllCode, the primary DC has to get the requested data from
its fragments in backup DCs 3. CAROM behaves similar to
AllCode unless the requested data is already cached. If the
requested data is already cached in its primary DC, the read
request is served directly from the primary, saving the cost of
getting data from chunks as in AllCode.

Similarly, a write request is served from a primary replica in
AllReplica and Hybrid. While in AllCode, the whole file needs
to be reconstructed upon the first write request after file-open,
and the whole file is kept until file-close. CAROM outperforms
AllCode since once a file is reconstructed, it might be kept
in cache even after the file is closed. Thus, it saves the re-
assemble cost if the file is already in cache. Figure 7 shows
the total data transferred as a result of file accesses summarized
in Table II for both Corporate and Engineering workloads.

3This is true as long as a systematic code is being used.

7

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3

S
to

ra
g
e

ti
m

e(
T

B
*
m

o
n
th

)

k

AllReplica
Hybrid

AllCode
CAROM

(a) Corporate

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 3

S
to

ra
g
e

ti
m

e(
T

B
*
m

o
n
th

)

k

AllReplica
Hybrid

AllCode
CAROM

(b) Engineering

Fig. 6. Storage-time (in TB*month) during the whole trace periods (In CAROM, cache size for Corp and Eng is 2GB and 5GB, respectively).

An interesting observation from the graph is the sharp
increase in the data transfer overhead of AllReplica, with
the increase of value k. For k = 1, AllReplica outperforms
CAROM, but for values of k = 2 and k = 3, that are currently
in use by major cloud providers, the overhead of AllReplica
exceeds that of CAROM. When we compare CAROM with
AllCode, for k = 2, we see 32% and 40% savings in the
amount of data transferred for Corp and Eng, respectively.

It is worth noting that the bandwidth cost of CAROM is
only slightly higher than that of Hybrid, which indicates that
most read/write requests are served by cached copies. This
proves the effectiveness of caching in CAROM.

D. Monetary cost

Furthermore, we compared the four schemes in terms of
their monetary costs. Specifically, we compare the cost in US
dollar of storing and keeping the files in a cloud file system
under different schemes, using the prices of resources from
Amazon EBS [20] as on July 13, 2012. Table III shows a
summary of these prices.

Storage pricing $0.10 per GB-month
Request pricing $0.10 per 1 million I/O requests

Data transfer pricing
$0.000 per GB for data transfer in
$0.120 per GB for data transfer out

TABLE III
AMAZON EBS PRICING OF RESOURCES AS OF JULY 13, 2012 [20]

The storage cost of EBS has two components: (a) the cost of
storing the data for a month in terms of GBs, and (b) the cost of
I/O operation, and the cost of the bandwidth while transferring
data in and out of the data centers. We use these prices to
simplify the comparison. Note, however, that these storage
prices are the prices charged by Amazon to the customers.
In reality, the storage cost incurred by data center operators
will be lower.

Table IV summarizes the monetary cost of providing k-
resiliency CFS for our trace with various values of k and
four different schemes, where the column for CAROM is
highlighted in gray. Clearly, AllCode and CAROM outper-
form AllReplica and Hybrid in terms of storage cost. While
CAROM incurs slightly larger storage cost than AllCode, it
has lower bandwidth cost. Overall, CAROM is the best scheme
in term of total monetary cost. CAROM saves up to 59%
over AllReplica, 41% over Hybrid and 10% over AllCode,

respectively. We observe that CAROM works across all file-
system sizes, while AllCode performs as good as CAROM for
very large file systems where storage dominates read-writes.
With more and more file systems moving to cloud, we expect
that the savings of CAROM in bandwidth cost will be even
more for read/write intensive workloads.

Trace k Type AllReplica Hybrid AllCode CAROM

Corp

1
Storage 663 728 398 402

Transfer 116 128 209 140

2
Storage 994 797 464 468

Transfer 178 143 223 154

3
Storage 1325 865 530 534

Transfer 239 158 236 166

Eng

1
Storage 21904 24094 13143 13159

Transfer 268 317 576 332

2
Storage 32856 26289 15333 15349

Transfer 412 365 622 380

3
Storage 43808 28483 17524 17540

Transfer 557 412 670 429

TABLE IV
MONETARY COST IN $ FOR STORING AND ACCESSING THE FILE SYSTEMS

OF THE TRACES (m = 5, CACHE SIZE IN CAROM IS 2GB FOR CORP AND

5G FOR ENG).

E. Discussion

1) Cache size vs. monetary cost: All of the results reported
so far assume that CAROM uses a cache size of 2GB for Corp
and 5GB for Eng. We now present the rationale behind these
choices. We evaluated the overall cost of CAROM by sampling
over different cache sizes at each DC. The resultant plot is
shown in Figure 8 for both traces. It can be seen that the cost is
minimized when the cache size is 2GB and 5GB for the Corp
and Eng respectively. This is not necessarily the optimum,
since this value is set to be the same at all DCs. Each DC
might have a different optimal cache size, depending on the
access patterns of its files. However, the numbers shown here
are an upper bound on the optimum cost. It also confirms our
estimate that the cost curve is convex in nature as a function
of cache size (Figure 4).
2) Performance of cache adaptation: We evaluated our

cache adaptation algorithm presented in Algorithm 1, and
compared the costs derived from this algorithm to those from
the optimal cache above. Note that the adaptation algorithm
lets the cache at each DC adapt independently. We present the
cost in Table V along with the average cache size in brackets
for each trace. We can see that the Adaptive Caching scheme
works very well in reaching the optimal cost.

8

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3

T
o
ta

l
d
at

a
tr

an
sf

er
re

d
(T

B
)

k

AllReplica
Hybrid

AllCode
CAROM

(a) Corporate

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3

T
o
ta

l
d
at

a
tr

an
sf

er
re

d
(T

B
)

k

AllReplica
Hybrid

AllCode
CAROM

(b) Engineering

Fig. 7. The total amount of data read or written in response to file access requests (reads and writes) (In CAROM, cache size for Corp and Eng is 2GB and
5GB, respectively).

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

 1 10 100 1000

M
o

n
et

ar
y

 c
o

st
 (

$
)

Cache size in GB (log scale)

AllCode
CAROM

(a) Corporate

 15700

 15800

 15900

 16000

 16100

 16200

 16300

 16400

 1 10 100 1000

M
o

n
et

ar
y

 c
o

st
 (

$
)

Cache size in GB (log scale)

AllCode
CAROM

(b) Engineering

Fig. 8. Overall monetary cost of Corp and Eng for different cache sizes
(k=2). CAROM can save up to 10% in monetary cost compared to AllCode.

Corporate Engineering
Optimal Caching $625 (2 GB) $15729 (5 GB)
Adaptive Caching $628 (1.76 GB) $15811 (1.95 GB)

TABLE V
MONETARY COST OF OPTIMAL CACHING AND ADAPTIVE CACHING.

3) Access latency: Table VI shows the cache hit ratios of
CAROM for read and write accesses. In each open-close cycle
of a file, we only count cache hits and misses for the read
requests of the file before any write request, and for the first
write request to a data block. The subsequent reads/writes will
be served from the copy in the primary DC. We can see that
the hit ratios for both Corp and Eng are very high, while those
of Corp are even higher.

We convert this data into the access latency of a data block
at the primary DC. A cache hit implies that data is available at
the local disk in the primary, while a cache miss implies that
data has to be fetched from a backup DC elsewhere, which
takes longer. In AllCode scheme, all data has to be fetched
from the backup DCs, while in AllReplica data is always
available at the local disk. Remote disk access latencies can
range anywhere from 20 milliseconds (for nearby DCs) to
up to 100 milliseconds (for DCs across continents) among
different DCs belonging to the same CSP [21]. We use the
notation (A, B) to denote local disk access latency (A) and
remote disk access latency (B) in units of milli-seconds. We
present the access latencies for read operations in Table VI
with different values of (A, B). Note that a well-designed
implementation of AllCode and CAROM can parallelize write
and data fetch to provide the same write access latency as
that of AllReplica. From the table, we can see that CAROM
provides read access latencies that are close to those of
AllReplica (local disk access latencies), rather than those of

AllCode (remote disk access latencies).

Corporate Engineering
Write cache hit ratio 91.32% 83.40%

Read

cache hit ratio 96.43% 87.96%
latency (10,20) 10.3ms 11.2ms
latency (10,50) 11.4ms 14.8ms
latency (10,100) 13.2ms 20.8ms

TABLE VI
CACHE HIT RATIO AND LATENCY FOR READ ACCESSES (K=2, CACHE SIZE

FOR CORP AND ENG IS 2GB AND 5GB RESPECTIVELY).

4) Fault Tolerance: Though we do not have access to
real traces with failure information, we expect CAROM to
outperform AllCode. Erasure codes, especially MDS codes
such as Reed-Solomon codes, require to retrieve m chunks to
repair one single chunk. While in CAROM, our preliminary
results show that in case of transient failures, the cached
copy could serve a significant percentage of read or write
requests without the need to retrieve the chunks, thus reducing
bandwidth cost incurred by failures in the data centers.

VI. RELATED WORK

The simplest erasure code is the parity code, which pro-
tects against a single failure. There are other well-known
erasure codes such as the Reed-Solomon code, part of a
large class of optimal erasure codes called MDS codes and
LDPC codes [14]. These can be used to design k-resilient
coding schemes suited to CFS applications. A code minimiz-
ing the repair bandwidth when a chunk gets erased is called a
minimum-bandwidth regenerating (MBR) code [22]. In [23],
the construction of MBR codes with arbitrary parameters has
been proposed. In [24], the authors introduce a new family
of regenerating codes for the storage cloud, namely DRESS
codes, which is highly optimized for recovery. In [7], a
new class of rotated Reed-Solomon codes is defined which
performs degraded reads more efficiently. While they describe
algorithms to do the coding, the architecture of the system and
the replication policies will have to be the one that we propose
here in order to conserve bandwidth. In that sense, our work is
complementary to these kind of work. More efficient erasure
codes might reduce the bandwidth overhead further, but our
contributions are independent of, and can co-exist with, the
recovery schemes used by any coding algorithm.

There is wide-spread literature about the use of resiliency
schemes in P2P storage systems. In [8], the authors quantified

9

the resiliency and durability gained by erasure codes over
replication in P2P systems and showed that erasure coded
system can be many orders of magnitude better than replicated
system in terms of storage, bandwidth and disk seeks. In [10],
the authors modeled the behavior of a P2P system as a
Markov Chain and concluded that for a P2P system with low
availability of peers, replication is better than using erasure
code. On the contrary, in [9], the authors presented that coding
wins for low peer availability, while replication wins when
peer availability is high. In [9], the authors consider a read-
only workload with a cached copy of the data item plus
multiple erasure-coded chunks for each data object. The paper
makes several points against the use of coding which might
be true for a read-only workload in a P2P system, but it is
not true in a cloud-based file system as the workload includes
both reads and writes.

The authors in [25] proposed another class of erasure codes,
called Hierarchical Codes, aiming to reduce the network traffic
caused by maintenance. While the repair cost is on average
smaller compared to erasure codes, the worst-case repair
bandwidth is the same as that of conventional erasure codes.
In [26], the authors implemented Random Linear Regenerating
Codes and found that these can result in a significant reduction
of the communication overhead at the expense of storage and
computation cost. However, their low encoding/decoding rates
make them impractical in situations where data items have
to be written. Overall, the existing P2P literature is mainly
focused on read-only workload, which is the main reason
existing P2P solutions will not work for cloud file systems.

In [27], the authors look into a setting where either only
M-way replication is used or only erasure coding is used.
Then they explore different trade-offs with different data center
applications. In [18], the authors target append-only distributed
file systems and implement erasure coding as a complementary
technique to full data replication in Windows Azure Storage.
Our focus is read-write file systems and we implement erasure
coding with caching (caching decisions are based on file
read/write requests).

Several recent measurement studies have studied file sys-
tems and networked file systems in detail. In [16], the authors
conducted a five year study of a large amount of Windows
PC file systems. They observed that file sizes are growing,
and around 33% of the files in these file systems are written
at least once. A recent measurement study [17] of a network
file system has made similar observations. They note that the
write-read ratio observed is higher than prior studies, due to
more caching on clients that absorbs the reads.

VII. CONCLUSION

With an increase in the benefits of cloud computing, more
and more users and enterprises are moving to the cloud,
pushing critical systems such as file systems and applications
atop the cloud. These applications not only demand high avail-
ability, but also require the consistency semantics provided
by today’s file systems running on end-users’ machines. In
this paper we propose CAROM for cloud based file systems
which novelly combines the deployed replication schemes and
erasure coded schemes. CAROM is as responsive, consistent,
and resilient as the deployed replication schemes, and yet

is much more efficient in terms of storage and bandwidth
costs. We evaluate CAROM and compare it with existing
schemes using real-world file system traces containing more
than 35TB of data with nearly 4 million files. Our results
show that CAROM significantly outperforms existing schemes
in efficiently using the cloud resources to support k-resiliency
and also leads to significant monetary benefits to the provider
of such an enterprise-grade file system.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in
ACM SOSP, 2003.

[2] Amazon, “Amazon simple storage service faqs,”
http://aws.amazon.com/s3/faqs/.

[3] Gluster, “Gluster virtual storage appliance,”
http://www.gluster.com/products/public-cloud/rightscale/.

[4] R. Miller, “Major data center outages of 2009,”
http://www.datacenterknowledge.com/archives/2009/12/16/major-
data-center-outages-of-2009/ .

[5] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver:
Handling memory overload in an oversubscribed cloud,” in Proceedings
Virtual Execution Environments (VEE), 2011.

[6] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowstron,
“Everest: Scaling down peak loads through i/o off-loading,” in OSDI,
2008.

[7] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: Minimizing i/o for recovery and
degraded reads,” in FAST, 2012.

[8] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in IPTPS, 2002.

[9] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in IPTPS, 2005.

[10] G. Utard and A. Vernois, “Data durability in peer to peer storage
systems,” in CGRID, 2004.

[11] XtreemFS, “A cloud file system,” http://www.xtreemfs.org.
[12] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:

practical power management for enterprise storage,” in FAST, 2008.
[13] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,

“Extending ssd lifetimes with disk-based write caches,” in FAST, 2010.
[14] T. Cover and J. Thomas, “Elements of information theory,” in Wiley

Series in Telecommunications, 2006.
[15] M. T. Jones, “Anatomy of linux journaling file systems,” in IBM

DeveloperWorks, 2008.
[16] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-year

study of file-system metadata,” in FAST, 2007.
[17] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller, “Measurement

and analysis of large-scale network file system workloads,” in In
Proceedings of Annual Technical Conference, 2008.

[18] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in USENIX
ATC, 2012.

[19] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz, “Design implications
for enterprise storage systems via multi-dimensional trace analysis,” in
ACM SOSP, 2011.

[20] “Amazon ec2 pricing,” http://aws.amazon.com/ec2/pricing/.
[21] Verizon, “Internet protocol latency statistics,”

http://www.verizonbusiness.com/about/network/latency/.
[22] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on

network codes for distributed storage,” in arXiv:1004.4438v1, April
2010.

[23] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” 2012.

[24] S. Pawar, N. Noorshams, S. E. Rouayheb, and K. Ramchandran, “Dress
codes for the storage cloud: Simple randomized constructions,” in
Symposium on Information Theory (ISIT), 2011.

[25] A. Duminuco and E. Biersack, “Hierarchical codes: How to make
erasure codes attractive for peer-to-peer storage systems,” in Proceedings
of Peer-to-Peer Computing (P2P), 2008.

[26] A. Duminuco, “A practical study of regenrating codes for p2p backup
systems,” in Proceedings of ICDCS, 2009.

[27] Z. Zhang, A. Deshp, X. Ma, E. Thereska, and D. Narayanan, “Does
erasure coding have a role to play in my data center?” in Microsoft
Research Technical Report MSR-TR-2010-52, 2010.

