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Abstract—
Building and operating a large backbone network can take

months or even years, and it requires a substantial investment.
Therefore, there is an economical drive to increase the utilization
of network resources (links, switches, etc.) in order to improve the
cost efficiency of the network. At the same time, the utilization of
network components has a direct impact on the performance of
the network and its resilience to failure, and thus operational
considerations are a critical aspect of the decision regarding
the desired network load and utilization. However, the actual
utilization of the network resources is not easy to predict or
control. It depends on many parameters like the traffic demand
and the routing scheme (or Traffic Engineering if deployed), and
it varies over time and space. As a result it is very difficult to
actually define real network utilization and to understand the
reasons for this utilization.

In this paper we introduce a novel way to look at the
network utilization. Unlike traditional approaches that consider
the average link utilization, we take the flow perspective and
consider the network utilization in terms of the growth potential
of the flows in the network. After defining this new Flow
Utilization, and discussing how it differs from common definitions
of network utilization, we study ways to efficiently compute it
over large networks. We then show, using real backbone data,
that Flow Utilization is very useful in identifying network state
and evaluating performance of TE algorithms.

I. I NTRODUCTION

One of the worst kept secrets in the networking industry is
that utilization of backbone links is very low. In a paper titled
“Data Networks are Lightly Utilized, and Will Stay That Way”
Andrew Odlyzko (then at AT&T Research–Labs) argued that
this is a fundamental property of large scale networks and that
this situation is unlikely to change (see [1]). In this paperwe
re-examine these observations and challenge that conclusion.
Clearly, the economic pressure pushes operators to increase
the utilization and thus increase the return on their investment.
On the other hand higher utilization may have an operational
impact on the service and too high utilization may cause higher
levels of packet loss, or serious crisis in case of link failure.

The actual utilization of the network resources is not easy
to measure, let alone predict or control. It changes quicklyin
time and in space, and it is hard to draw decisive conclusions
by looking on summary statistics. However, hard as it may
be, understanding the utilization pattern is a crucial firststep
when considering ways to optimize a network and is therefore
important both from the operations point of view as well as
for cost saving.

In this paper we explore the current state of the art in
this area, try to identify the most important parameters and

introduce a novel utilization metric that can be used to allow
a better view of the network state.

Traditionally, the main parameter used to describe network
utilization is link utilization. For each link, utilization is
defined as the amount of traffic traversing it divided by the
link capacity. Since modern networks consist of many links,
the (weighted) average of the link utilization is used as a
single number representing network utilization. Note thatthe
time frame here is important since the average utilization of
a link over short time periods is very noisy. For performance
management usage it is common to average link utilization
over five minute periods.

While link utilization is an important metric and indeed
provides meaningful information, it is not always sufficient.
First, examining some percentiles or max link utilization do
not provide enough information. It is not clear how to evaluate
a given maximal link utilization. What really matters is the
link utilization distribution over all the network links and over
time.

Second, link utilization does not necessarily reflect network
performance, as it is possible and even common for the link
utilization to be much lower than the actual traffic, due to built
in redundancy (addressing possible failures) and in order to
allow flows (demands) to grow. The additional traffic that the
network can really accommodate depends on the specific TE
used as well as on the utilization of links and on the demand
pattern.

Finally, the link utilization does not tell the story from the
client side, and does not describe how any specific user is
experiencing the network.

In this paper we introduce a new view of network utilization
– the flow view1. We define a new notion,Generalized Flow
Utilization (GFU) which is a quantitative measure for the
ability of the TE mechanism to support the current demand
and possible growth (of the same set of demands). We compare
the traditional link utilization data from one of the Google
backbone networks to the flow utilization, given the TE
scheme, and show that the new view indeed provides more
insight regarding the full picture of network utilization than
the traditional link utilization.

As indicated by its name, GFU is a general framework
and can be used in different ways depending on the choice
of a specific utilization function. We study theoretically the

1Since we mainly deal with backbone networks, we consider longlived
aggregated flows.
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properties of this view from the computational point of view
and provide algorithms to compute it for a large set of
interesting utilization functions and hardness results for other
(also natural) utilization functions.

We then concentrate on two practical cases, one dealing
with traffic risk assessment and one with longer term planning
and the ability of the network to accommodate growth in
flows (demands). We show how to compute flow utilization
in these two cases, and demonstrate the applicability of using
the scheme in realistic backbones using real production data.

The paper is structured as follows. In the next section we
examine the traditional link utilization view, then in Section
III we define the new flow view and study some of its
theoretical properties. In Section IV we examine the growth
motivated utilization and in Section V the risk motivated one.
We provide related work in Section VII and conclude with a
short discussion.

II. L INK UTILIZATION IN BACKBONE NETWORKS

Historically, it is well accepted that backbone networks are
poorly utilized, due to the operational constraints and theneed
for stable fault resilient network solutions. However mostof
the information on this topic was kept confidential by the
operators and not very many research papers addressed this
important issue. One of the most notable early exceptions is
the 1999 paper by Andrew Odlyzko (then at AT&T Research–
Labs) titled: “Data Networks are Lightly Utilized, and Will
Stay That Way” (see [1]).

Later on, in the early 2000s, a series of papers described
backbone data from Sprint Networks (see [2], [3]). Again,
the average utilization of the links is very low (around
10%) and links are reported to be utilized over 50% only
when there are failures in the network. This common belief
about operators maintaining low utilization is well described
in the talk from NANOG 2002 (see: http://www.nanog.
org/meetings/nanog26/presentations/telkamp.pdf), where the
author explicitly talks about the backbone planning process
and says “... upgrade (buy new capacity) at 40% or 50%
utilization”, where the goal is to arrive at “maximum 75%
utilization under (a single) failure”. Similar utilization
numbers in backbone links during the years 2007–2008
are reported in http://arstechnica.com/uncategorized/2008/09/
what-exaflood-net-backbone-shows-no-signs-of-osteoporosis/.

Very recently, it was reported that the emerging use
of Software Designed Networks (SDN) (see [4]) on the
Google backbone was motivated partially by the need to
increase utilization from the aforementioned 40%–50% to
close to 100% utilization (see http://www.networkworld.com/
news/2012/060712-google-openflow-vahdat-259965.html).

Note that going in this direction (dramatically increasingthe
backbone utilization) requires a powerful network planning
component, an improved monitoring ability and a deeper
understanding of where the bottlenecks are.

During 2012, we collected data from a part of the Google
backbone that was not controlled by SDN. The data was
collected from backbone links over typical work days. This

data includes a measurement every minute throughout the day
for all relevant links, where for each link we collected the
capacity and actual utilization.
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Fig. 1. Typical Backbone Link Utilization.

A large backbone network has many links, and can have
even thousands of data points per day, depending on the time
scale at which we sample each of these links. This amount of
data can be overwhelming for humans to look at, hence the
need to present a compact yet meaningful view of the data. A
classical point of view is theLink Utilization view. Here, at
each point in time we look at the (weighted) average utilization
of all of the links. Per timestamp, we computelink flow

link capacity. We
average this number over all the links per timestamp weighted
by their capacity2. The results are presented in Figure 1. One
can see that the average link utilization varies over the day
between 17% and 29% with a typical daily pattern. The pattern
is very smooth and similar when examining different days.
This is expected, given the network size, as averaging the
utilization of links smooths out the extreme cases. However,
it is these extreme links, network operations care most about.
On the other hand, not all links that are highly utilized or not
utilized are always interesting. We would like to representthe
ability of the network to scale, or ability to accommodate for
more traffic somehow.

In terms of capacity planning, a link is useful if it was
utilized sometime during the relevant period. To check this,
we plotted in Figure 2 the cumulative peak daily utilization
of the links in two separate dates. The distribution is similar
in both days, about 6% of the links got to 100% utilization,
but only about 30% of the links were ever utilized over 50%
during that day.

This still reveals very little information about the actual
utilization of specific links over time. In Figure 3 we present
four typical graphs. We note that the type of traffic the link
carries and the geographical location of the link have a great
impact on this behavior. The real date was anonymized. Some
links are bursty while others are smooth, some are highly

2This is actually the sum of link flows over the entire network divided by
the sum of link capacities.
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Fig. 2. Cumulative Peak Utilization.
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Fig. 3. Link Utilization of several links.

utilized while other are not. Also, the geographical location
of links with similar behaviour can shift the time of their
peak utilization. In many cases operators manually monitor
important links. These could be links of critical impact on the
service level, links that are prone to fail, or expensive links.
For these links the exact behavior is studied and in many cases
manually optimized. However, it is not scalable to do this for
every link in the network and other methods are required in
order to monitor the performance level of the entire network.

One way to do this is of course the average utilization
number. A more detailed information is presented in the
cumulative utilization graph corresponding to one link. Figure
4 depicts such a graph for a specific link out of the many links
considered in Figure 1. The x-axis shows link utilization levels
and the matching y-axis is the fraction of time the link was
utilized above that level. For instance, the link we examined
was over 20% utilized 80% of the time, and reached a peak
utilization of almost 70% in a very small fraction of the time.
One can see here what fraction of the time the link was highly
utilized during this day, and from this get a better view of the
load distribution in the network.
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III. F LOW UTILIZATION

The utilization of backbone networks, as reflected from the
available link utilization data described in the previous section,
seems to be low. However, this view is based on link data and
it represents the state from the infrastructure point of view.
Another relevant aspect is the user (or customer) view which
may be better described by the flow in the network. Thus,
we suggest an alternative definition for the termbackbone
utilization based on looking at the problem from a flow
perspective. In the context of backbone networks, the flows
are long lived aggregated entities going from ingress nodes
to egress nodes over the backbone. This approach can provide
greater insight into the actual performance of the network since
it treats the flows as the “basic entities” rather than the links,
and uses metrics to measure flow utilization rather than link
utilization. One obvious gain from the flow point of view is
the ability to distinguish between different types of flow, and
give the required weight to the more “important” flows. This
is much more complicated to do in the link utilization view,
since the same link with its entire capacity serves many flows.

The link utilization view summarizes the network state by
a vector u = (u1, u2, . . . , un), where ui is the utilization
of link i, and n is the number of links in the network.
The network utilization is the average of all elementsui

weighted by their capacity. We wish to develop a similar vector
α = (α1, α2, . . . , αm), whereαi represents the state of flowi,
andm is the number of flows in the network.

There are various options or objectives when defining this
vector and the specific choice of the exact value ofαi will
represent a different aspect of the current network or the TE
performance state. We want to look at a subset of these vectors
which we calladmissible.

Consider a network with feasible flowsf1, f2, . . . , fm;
that is, the flowsf1, f2, . . . , fm are routed in the network
without violating the capacity constraints. We say that a vector
α1, α2, . . . , αm is admissible if it is possible to route the
flowsα1f1, α2f2, . . . , αmfm together in the network. Clearly,
if ∀i, αi = 1 then the vector is admissible. We only consider
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vectors withαi ≥ 1 for everyi. In most cases, the TE scheme
implies restrictions on the flows (e.g., by dictating that each
flow can only use a specific set of paths, or that the ratio
between the different paths of the same flow must be fixed).
In these cases, we require that the flowα1f1, α2f2, . . . , αmfm
will respect these restrictions.

As mentioned before when discussing link utilization, pre-
senting the data is an important issue and presenting a set of
parameters (theαi) for each timestamp is indeed problematic.
To address this point we define a single parameter, based on
the values ofαi, that represents the network flow utilization
state. Let F be the total flow in the network at a given time,
then theGeneralized Flow Utilization(GFU) is defined by:

GFU= 1/F

k∑

i=1

fiU(1/αi),

whereU is a nondecreasing utilization function. ForU(x) =
x, this value is the weighted average of1/αi, which is always
(like the average link utilization) a number between0 and1.
The exact meaning of this value depends on the exact set of
admissibleαs.

Given a set of flows, if there is an admissible vector
α1, α2, . . . , αm such that allαi’s are large, then the network
is under utilized. It is easy to check whether a given vector
α1, α2, . . . , αm is admissible, but it is computationally infeasi-
ble to characterize the set of all admissible vectors. Therefore,
we look for vectors which provide useful information regard-
ing the state of the network and the flows. We require the
following conditions from all the vectors we examine:

• Measuring utilization across the board. Commonly in
every network there is a flow that can easily be increased
(e.g. a flow between two adjacent nodes which happen
to be a source-destination pair of a link). The interesting
question is whether there are many flows which can be
increased simultaneously.

• Getting to the sweet spot. Over utilization of links in the
network can cause packet loss while under utilization is
a waste. We want a metric which captures the sweet spot,
with many values ofαi which are all slightly higher than
1.

• Computability. We need to be able to find such a vector
in an efficient way.

We start with a negative result. LetV (k, α) be the set of
vectors with withk entries equal toα for some valueα > 1,
and the rest of entries are equal to1. Is there an admissible
vector of α’s in V (k, α)? This question is interesting for
given k, α: it indicates thatk flows could be increased by
a factor ofα without hurting the rest. Thus, for example if
there is an admissible vector inV (0.95n, 1.2) then packet
loss in most flows should not be too high, and if there is
an admissible vector inV (0.8n, 4) then the network is under-
utilized. However, we show thatV (k, α) cannot be computed,
or even well approximated:

Lemma 1:For any α > 1 and ǫ > 0, it is NP hard to
distinguish between a network ofn flows in whichV (n1−ǫ, α)

is admissible and a network in whichV (nǫ, α) is admissible.
In particular, for k = Ω(n) it is NP hard to approximate
V (k, α) to within a factor ofn1−ǫ.

Proof: The proof is by reduction from independent set.
Let H = 〈VH , EH〉 be a graph, where we want to know ifH
has an independent set of sizek. We build a new graphG,
where all the capacities of all edges inG are exactly1 + α.
The graphG will have |VH |+ 2|EH |+ 1 vertices:

1) It will have one target vertext.
2) It will have |VH | source vertices, denotedsh for every

s ∈ VH . Each of these vertices will originate a flow tot.
3) For every edgee ∈ EH , it will have two verticesein

andeout.

Each flow can only use one specific path, and the edges of
G are the edges of all the these paths. For each source vertex
sh whereh ∈ VH we define a flow: Lete1, e2, . . . , eh be the
edges adjacent to the vertexh in the original graphH. The
path of the flow which starts fromsh is

sh → e1in → e1out → e2in → e2out . . . → ehin → ehout → t

The flowfi will consist ofsi passing one unit to the target.
The following claim is easy:

Claim 1: The graphH has an independent set of sizek if
and only if V (k, α) is admissible forG.

Proof: Suppose thatH has an independent setU of sizek.
For everyh ∈ U increase the flow fromsh by a factor ofα.
Given h, u ∈ U the paths they have tot do not intersect.

For the other direction, ifV (k, α) is admissible, letU be
the set of flows which are increased. For anysh, su ∈ U their
paths to the source do not intersect, and thusu, h are not
neighbors inH. Therefore, we can letUH = {h : sh ∈ U}
be an independent set inH.

This concludes the proof of the lemma.
On the positive side we can show, that for many natural

utility functions (i.e., choice ofU ) we can find the set of
valuesα1, α2, . . . , αn that minimize the value of the GFU.

Lemma 2:Let Up(x) = xp for some p ≥ 1. Given a
network with flowsf1, f2, . . . , fm one can efficiently find an
admissible vectorα1, α2, . . . , αm minimizing:

1/F
k∑

i=1

fiUp(1/αi) = 1/F
k∑

i=1

fi/α
p
i .

Proof: We find the vectorα1, . . . , αm by using convex
optimization methods. We write a convex program withm
variables,x1, x2, . . . , xm. The constraints are the flow con-
straints, wherexi corresponds to flowi. We also add the
constraint thatxi ≥ fi. The target function to minimize is:

k∑

i=1

fi(
fi
xi

)p

To show that one can solve this optimization problem
efficiently, we need to show that the target function is concave
(since this is a minimization problem). Formally, we need to
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show that ifx1, x2, . . . , xm andy1, y2, . . . , ym obey the flow
constraints, then:

2
k∑

i=1

fi(
2fi

xi + yi
)p ≤

k∑

i=1

fi(
fi
xi

)p +
k∑

i=1

fi(
fi
yi
)p.

We show that this holds for any term in the sum indepen-
dently. It is enough to show that for everyxi, yi,

2(
2

xi + yi
)p ≤ (

1

xi
)p + (

1

yi
)p.

Multiplying by (xi + yi)
p and denotingt = xi/(xi + yi), this

holds if and only if

∀t, 2p+1 ≤
1

tp
+

1

(1− t)p
.

The right-hand-side has a minimum att = 1/2, where equality
holds. This finishes the proof of the lemma.

It is possible to prove a generalization of Lemma 2 to the
case in which the TE restricts the possible flows, as long
as the restrictions done by the TE can be inserted into the
optimization. This is indeed the case for most TE algorithms,
and in particular to ones that only allow a subset of the routes
to be used for each flow.

To capture the idea of a sweet spot between over and under
utilization, one may consider a utility function which has
different behavior for different values ofx (e.g. U(x) = 1
if x ≥ 0.8 and U(x) = x otherwise). However, computing
the optimalαi’s for these functions is NP-complete, with a
similar reduction to the one in Lemma 1.

We turn to study two natural flow utilization definitions,
each capturing a different objective, and we discuss how to
measure them and how to use them in practical network
setting.

IV. A CCOMMODATING FLOW GROWTH

In this section we consider a vector ofαi values which
predict the capability of the network to cope with larger
demands across the board. As we do not a-priori know which
demand will grow the most, we take a conservative view,
and require that the smallest values ofαi will be as large
as possible. We call this vectorαGrowth.

Formally letβ1 be the largest factor such that all demands
can be increased by a factor ofβ1 and still be satisfied by the
network. Now increase all demands byβ1, clearly at least one
link is saturated otherwiseβ1 is not maximal, and thus at least
one flow cannot be increased. We denote byb1 the set of flows
that were blocked at this point, and byl1 the size ofb1. We
setαGrowth

1 = . . . = αGrowth
l1

= β1, and continue to findβ2 the
largest constant such that all demands that were not blocked
in the previous steps can be increased by a factorβ2 and still
be satisfied by the network. Again there is a set of blocked
flows b2 and we set the value ofαGrowth

l1+1 = . . . = αGrowth
l1+l2

= β2,
and continue this process to generateαGrowth

i in general. This
is very similar to the “max-min-fair” vector in the sense of
[5].

Given demands, the iterative linear programming approach
of [6] can be used to compute optimal(αGrowth

i ) for all flows.
This view is useful for determining the relative performance
of existing network TE with the optimum possible unified
increase in demand.

In production backbones the paths of the flows are deter-
mined either by the IP routing protocol or more likely by
the TE scheme, and the utopian view that flows can be sent
over an unrestricted set of paths is far from reality. Thus, in
order to understand the current behavior of the network, it is
useful to compute the vector(αGrowth

i ) corresponding to the
current routing paths of the network flows. That is, all flows
can be increased by a factor of(αGrowth

1 ) without changing
their current paths, all non-blocked flows can be increased by
a factor of(αGrowth

2 ) without changing the current paths, and
so on. We present two ways to compute thisαGrowth in an
efficient manner: either by first examining flows, or by first
examining links.

To compute by examining flows we make use of a sequence
(bi) of the flows blocked at stepi. Define theresidual capacity
of link l at stepi as

ci(l) = c(l)−
∑

l ∈ path(f ):
∃j < i : f = bj

αGrowth
f · f,

wherec(l) is the capacity of linkl andf is the flow value
Similarly, define theresidual utilizationof link l at stepi as

ui(l) =
∑

l ∈ path(f ):
∀j<i:f 6=bj

f.

At step i, define a growth factor for each flowf as

gf,i = min
l ∈ path(f )

ci(l)

ui(l)
.

Select a flowf with minimal gf,i, and set

αGrowth
i = αGrowth

f = gf,i

bi = f

Note that in the above process, there is always a linkl
such that all unblocked flows throughl achieve the minimum
gf,i. This suggests examining the links directly. To compute
by examining links, it is useful to define the sequence ofα
values assigned to links before assigning these values to the
flows. SetB0 = ∅ and, iteratively fori = 1, 2, ...,

αGrowth
i = min

l: link

c(l)−
∑

l ∈ path(f ):
f∈∪j<iBj

αGrowth
f f

∑
l ∈ path(f ):
f /∈∪j<iBj

f
(1)

Bi = {set of allf throughl appearing above} \
⋃

j<i

Bj (2)

Now setαGrowth
f = αGrowth

i for every flowf wheref ∈ Bi.
Computing by links performs fewer operations than com-

puting by flows. In particular, fewer subtractions are needed,
and those subtractions can be performed once, before blocking
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a link and do not affect subsequent comparisons. This reduces
floating-point cancellation and stability issues when many
flows traverse the same link.

When computing the above process, every flow is blocked
exactly once. The per-link values appearing in Equation 1 can
be stored in a mutable priority queue. When blocking a flow,
all of the links that it traverses in the priority queue must
have their priorities updated. Removal of a flow with≤ k
links triggers≤ k updates of the priority queue, for complexity
O(k ·log n) of each flow removal. Accordingly, the complexity
for all updates isO(m · k · log n), where there aren flows
traversing at mostk links each, andm links. The total
complexity including initialization isO((n+m · k) · log n).

The order in which links are blocked is also of interest. This
order precisely prioritizes the links for procuring additional
capacity when max-min-fair TE is employed, or, alternatively,
the degree to which such TE is sensitive to congestion along
that link when comparable flow patterns exist.

What can we infer on the network by looking at anαGrowth

vector? Many small values (near 1) indicate that the network
is over-utilized, and cannot accommodate growth. If the values
are consistently large over time, the network is under-utilized,
and one can probably serve the clients well with less resources
(contrast this to the link utilization view where low average
link utilization does not necessarily indicate a waste). The
worst situation is when there are both small values and large
ones. This means that some of the network cannot grow and
may even experience packet loss or delays, while other parts
of the network are under-utilized. Moreover, the TE algorithm
is unable to use the extra bandwidth it has available in the
under-utilized links to better serve the demands which are at
risk. This situation calls for an assessment of the TE or the
network structure.

The measureαGrowth is mostly concerned with accommo-
dating future demand growth. The next subsection presents a
measure tailored for risk assessment and for estimating the
current quality of service experienced by clients.

V. RISK ASSESSMENT

While the previous definition is very good for capturing
an overall network performance score, it is geared towards
long term effects and planning. In this section, we focus
our attention on the packet loss (and delays) different flows
experience in the current network state. Understanding which
flows are prone to failures and why is a crucial step in
minimizing traffic at risk, which is an important objective for
network operators.

Flows are bounded by the most congested link on their path
(or paths), so in a way, not all links are equally important. The
links that function as actual bottlenecks for certain flows are
the ones that have the most critical impact on performance (in
terms of delay and loss) and on the network ability to serve
more traffic. For simplicity, we begin by assuming that each
flow has a single path, and later expand the discussion to the
multi-path scenario.

This sets the ground for another metric capturing the risk
of each flow, or in other words, estimating the risk levels for
each service or user. We call this definitionαRisk and define
it formally as follows:

αRisk(fj) =
1

max{util(ei)|ei ∈ path(fj)}
,

wherec(e) is the capacity ofe and

util(e) =

∑m
i=1 fi(e)

c(e)
.

Directly computingαRisk is easy, for each flow along a
single path we find the bottleneck link and use it to compute
αRisk
i . This can be done independently for each flow path and

thus this computation can be easily distributed.
Since αRisk is defined in terms of bottleneck utilization

independently for each link we need first to show that it is
indeed admissible.

Lemma 3:αRisk
i is admissible.

Proof: Let ei be an edge and letβ = 1
util(ei)

. Let F (e) =∑m
i=1 fi|e ∈ fi be the total flow overe and letF ′(e) be the

total flow overe where every flowfj has been multiplied by
αRisk
j . Let f ′

i = fi ˙αRisk
i be the utilizations of the individual

flows for 1 ≤ i ≤ m. We will show thatF ′(ei) ≤ c(ei).
Indeed for alli,

F ′(ei) =
∑

fj∈ei

f ′
j =

∑

fj∈ei

fj
max {util(ek) | ek ∈ path(fj)}

(3)

≤ ci ·
∑

fj∈ei

fj
util(ei)

= ci. (4)

(5)

becauseei is one of the links in path(fj).

b c

d

3
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4 4
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Fig. 5. α
Risk is not maximal.

αRisk is conservative in the sense that it assumes that all
demands grow at once and therefore distributes the residual
capacity of each link along all the demands that traverse it.In
a way, this is a pessimistic point of view, which goes hand in
hand with risk assessments. The flow obtained by multiplying
each flowi by αRisk

i is not necessarily maximal, as can be seen
in Figure 5. Two demands are depicted, one froma to d and
another fromb to c. Both demands send one unit of flow. Link
capacities are shown in the figure. We get thatαRisk

(a,d) = 3/2,
since the bottleneck edge is(e, f) and has two units of flow on
it and a capacity of 3.αRisk

(b,c) = 1, since the bottleneck edge
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is (b, e) (or (f, c)) and is saturated. If we take each of the
flows and multiply by itsαRisk we get thatf(a−d) = 1.5 and
f(b−c) = 1. Note that this is not a maximal flow in the graph
– the flow(a−d) can still be increased. This demonstrates the
conservativeness of this definition and is due to the locality of
the computation. When computingαRisk

(a−d) we ignore the other
flow and assume it is not bottlenecked before(a− d).

VI. PRACTICAL USE OFFLOW UTILIZATION

In this section we show how flow utilization can be used
in practice to provide a better understanding of the network
state. Figure 6 depicts both the link and the flow utilizationin
the Google backbone. The Flow utilization is the Generalized
Flow Utilization (GFU) from Section III were we usedU(x) =
x. We averaged the flow and link utilization values over all
the links per timestamp and presented all the timestamps for
each hour on the x-point matching that hour. In this case the
flow utilization varies over the day between 40% and 50%,
so on average flows go through (fairly high) congested links
during peak utilization time during the day. This suggests that
the network is in fact much more utilized than indicated by
the link utilization curve alone.
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Fig. 6. Flow vs. Link Utilization.

We turn to show how to use different utilization functions.
Figure 7 depicts traffic at risk on the Google backbone. Each
line corresponds to a different risk level. The x-axis is thetime
and the y-axis shows the percentage of traffic (out of the total
Google backbone traffic) that is over the matching risk level.
In other words, we can see what percentage of Google traffic
hadαRisk greater than 1.42 (for 70%), 1.25 (for 80%) and 1.11
(for 90%). Since the timescales in which these were computed
is rather small, the data varies a lot. Smoothing can easily be
applied on this data. During the peak of this day, about 28%
of the traffic was atαRisk levels of 1.42, or in other words had
bottleneck links that were at least 70% utilized.

So far, we ignored the issue of how multiple paths should
be handled. Note that this is not an issue forαGrowth since
αGrowth computes by how much a flow can grow on all of
its paths. When there are multiple paths for each flow, we
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Fig. 7. Traffic at risk over a day.

compute for every flowi a vector of numbersαRisk
i,j wherej

is the j-th path for flow i. However, to analyze the quality
of service experienced by the client of flowi, it is desired to
aggregate this vector into a single number. This can be done
in two different ways, depending on what we are trying to
model:

1) To estimate the packet loss that flowi experiences due
to network contention, it makes sense to take a weighted
average ofαRisk

i,j , where the weights are the amount of
flow in each path.

2) To estimate the delay which flowi experiences due to
network contention, it makes sense to take the maxi-
mum, ormaxj α

Risk
i,j .

An interesting question is how big is the gap between
the two vectorsαGrowth and αRisk. Theoretically it can be
very large as shown in the following example. Specifically,
we show a scenario whereαGrowth = (1, n, n, n), while
αRisk ∼ (1, 2, 2, 2), wheren is the number of nodes in the
graph. In this example, we have four flows: S-T, A-B, C-D and
E-F. Edge capacities are shown on the graph. S-T is sending n
units of flow along the path S-A-B-C-D-E-F-T and is saturated,
while the other 3 are sending one unit of flow each on a path
(composed of a single edge) of capacity2n. Each of the edges
A → B, C → D, E → F still has available capacity ofn−1.

S T

A C E

B D F

n 2n n 2n n 2n

Fig. 8. Example for the gap betweenαGrowth andαRisk.

The flow S-T cannot grow, so it has anαGrowth of 1. All
the other flows can grow by factorn and therefore have an
αGrowth of n.
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The flow S-T cannot grow, so it also has anαRisk of value1.
Once this flow cannot grow further, all the other flows have a
bottleneck with two flows traversing it, completing a demand
for n+1 on the bottleneck. TheαRisk we get for these flows is
2n
n+1 ∼ 2. Overall, we getαGrowth = (1, n, n, n) while αRisk ∼
(1, 2, 2, 2).
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In reality the situation is somewhat different. While the two
definitions do address different aspect of flow view and are
definitely not identical, the gap between them is not so big.

Figure 9 depicts the flow utilization (GFU) using bothαRisk

and αGrowth and the link utilization values on the Google
backbone (over all links and all day). First, as expected the
GFU that usesαGrowth is smaller than the GFU that uses
αRisk since αGrowth ≥ αRisk as αRisk is more conservative.
Also, it clearly shown in the figure that both GFUs are higher
than the link utilization. The daily traffic pattern is shownon
all three lines, as expected. The actual network utilization is
around 30%-40% according toαRisk and theαGrowth is at 25%-
33%. On the other hand, the link utilization peaks at 20%.
In fact, that network can not grow by a factor of 5 as the

link utilization suggests. Under the Google demands and TE
scheme the network can only really grow by a factor closer
to 2.5.

Another interesting view is depicted in Figure 10 where we
show theαRisk αGrowth in one specific timestamp. We collected
both values for each link. The x-axis presents the percentage
of traffic that has an alpha of at most the matching y-value.
We left out very large alpha values which occur on links with
little or not utilization at this specific timestamp. About 50%
of the traffic hasαGrowth of at most 5, meaning it cannot grow
by a factor greater than 5, compared to 80% of the traffic
with αRisk of at most 5. This demonstates the fact thatαRisk

is in fact riskier. According to it 80% of the traffic isat risk
5 compared to 50% according toαGrowth.

One can see that the general notion of flow utilization
is useful when presenting complex network data. Different
aspects like the long term ability to accommodate growth in
the demand or the acute risk can be examine and appropriate
action can then be taken.

VII. R ELATED WORK

As mentioned in Section II only a handful of papers were
devoted to the utilization of production backbone network.In
addition to the papers mentioned there (in Section II), several
papers study traffic over backbones, and specifically mention
changes in backbone link utilization (see [7], [8], [9], and
[10]). The overall picture is that traffic varies significantly
over time and that random anomalies occur. The flow uti-
lization view described in this paper can be helpful for long
term network design, and potentially also evaluating network
performance and for real time anomaly detection.

Traffic engineering has been heavily studied both in the
theoretical and empirical aspects. Many works compare TE
approaches on real-life networks (see [5], [11], [12], [13])
using various metrics such as fairness, throughput and uti-
lization. The authors of [11] discuss the problem of finding
a routing scheme that optimizes the network under several
(possible contradicting) objectives and how to match these
to the TE goals. While their experiments compare important
metrics such as the maximal and mean link utilization, as well
as latency metrics and the amount of residual bandwidth in the
network, it is not clear that these parameters reflect the actual
traffic growth factor that could be routed by the network.

The authors of [12] compare of metrics widely used to
evaluate the effects of TE on application level performance.
Based on their empirical results, link utilization is not a good
measurement for this. In this paper we use a flow centric view
to address the same issues. Furthermore, the flow utilization
view can be used with utility functions to put extra emphasis
on certain applications that are business critical.

Several recent works, such as [14], [15], and [16], discuss
possible ways to change peers, services and links to achieve
optimal TE under specified metrics. This demonstrates the key
role of TE performance assessment and the importance of
good metrics that provide meaningful information regarding
the state of the network with respect to TE performance.
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This is even more important today, when networks and
services are both being changed continuously, and software
defined networks (SDNs) (see for example [4]) are gaining
popularity in the intra-cluster domain, and more recently also
addressing the backbone scenario [17].

VIII. C ONCLUSION

Network utilization is a key metric in operating a network,
as well as in planning future upgrades. However, looking at the
links does not tell the whole story – the average utilizationcan
look good, since one area of the network is over utilized, and
the other is under-utilized. Even looking at the distribution of
the utilization across links does not tell us much – for example
a single link operating at capacity can mean a local problem,
or a bottleneck which clogs the entire network. Moreover, this
link can be used for high priority or low priority traffic, and
the traffic traversing it can have different levels of sensitivity
to delays and loss.

To circumvent these problems, and to offer a better un-
derstanding of the state of the network, we propose taking
the flow perspective, and keeping track of the GFU of the
network, or more concretely atαGrowth andαRisk (other GFU
vectors may also come in handy in some cases). By looking
at these vectors, one can:

1) Take the user perspective, and understand how she
experiences the network. This can also allow the net-
work planner (and the network operator) to discriminate
between high priority users and low priority ones, e.g.
by upgrading the network when the high priority users
experience low quality.

2) Focus the attention on the traffic at risk. By looking at
αRisk one can identify if there is traffic at risk, how much
of it is in risk, and where is the risk coming from.

3) Tune the network to be in the sweet spot, where it is not
under utilized and not over utilized. Relatively uniform
values ofαGrowth, which are bounded between1.2 and
1.8 indicate that the network is properly utilized.

There are several important directions to pursue. It is not
clear how to assess the network utilization under failure,
without simulating a failure, solving the TE, and computing
the utilization. Moreover, as failures can occur at many places,
one needs to find some aggregate metric for this.

A related question is how to use the network utilization for
capacity planing and network upgrades. UsingαGrowth, one can
know where are the bottlenecks, and what should be upgraded.
However, predicting the full impact of the upgrade on the
utilization is non trivial, as the TE may use the new links
in unexpected ways. One can simulate the new network and
see its behavior, but there is a limit to the accuracy of any
such simulation.

Finally, now that we have the new metrics for utilization, it
is important to measure it in many different networks, and see
how they evolve over time, and especially how they behave
under special network conditions (due either to faults or to
rapid changes in the demand such as breaking news or the
opening ceremony of the Olympiad).
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