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Abstract—The accuracy of wireless network packet simulation
critically depends on the quality of the wireless channel models.
These models directly affect the fundamental network charac-
teristics, such as link quality, transmission range, and capture
effect, as well as their dynamic variation in time and space. Path
loss is the stationary component of the channel model affected
by the shadowing in the environment. Existing path loss models
are inaccurate, require very high measurement or computational
overhead, and/or often cannot be made to represent a given
environment. The paper contributes a flexible path loss model
that uses a novel approach for spatially coherent interpolation
from available nearby channels to allow accurate and efficient
modeling of path loss. We show that the proposed model, called
Double Regression (DR), generates a correlated space, allowing
both the sender and the receiver to move without abrupt change
in path loss. Combining DR with a traditional temporal fading
model, such as Rayleigh fading, provides an accurate and efficient
channel model that we integrate with the NS-2 simulator. We use
measurements to validate the accuracy of the model for a number
of scenarios. We also show that there is substantial impact on
simulation behavior (e.g., up to 600% difference in throughput
for simple scenarios) when path loss is modeled accurately.

I. I NTRODUCTION

Simulation is widely used for performance evaluation in
wireless and mobile network research due to its flexibility,
controllability and observability compared to testbeds orem-
ulation studies. However, the validity of simulation studies
has been criticized due primarily to the poor accuracy of the
wireless channel models [1], [2], [3], [4], [5], [6], [7].

In response to this criticism, more accurate and realistic
temporally fading channel models, e.g., Rayleigh-Ricean fad-
ing [8] and Nakagami fading [9], have been implemented in
network simulators. However, these models account for the
fast fading component of the channel model which exhibits
temporal correlation but little spatial correlation [10].On the
other hand, the stable component of a signal is determined by
shadows from large objects in an environment; this component,
i.e., path loss component, is still commonly modeled assuming
idealized distributions. However, empirically, path losshas
been show to be spatially correlated as RF shadows from large
objects tend to affect nearby channels similarly. The path loss
component determines the mean signal strength and therefore
significantly affects link quality [11].

A. Path Loss Models are Important

Compared to the efforts in modeling temporal fading, less
attention has been paid to obtaining an accurate mean signal
strength for network packet simulation. Existing simulators

typically use simple disc-shape path-loss models, such as the
free space model or the two ray ground model, in which path-
loss increases as a function of distance. However, in practice,
the path loss depends on the shadowing in the environment
and how it affects the channel between a sender and a receiver.
Disc-shape path-loss models do not account for shadowing and
are therefore not realistic. Statistical approaches to account
for shadowing, such as the log-normal shadowing model, are
also not effective because they do not account for the spatial
correlation and the temporal stability of the path loss –often
an independent path loss value is generated with every packet
transmission even if no mobility is present.

The use of imprecise models can dramatically affect the
simulation leading to inaccurate results and false conclusions.
With respect to path loss, it impacts the perceived signal
power when a transmission occurs, which impacts both the
act of transmission in CSMA protocols, as well as the success
of transmission at the receiver with or without the presence
of interfering transmissions. Moreover, spatial and temporal
correlation can influence the loss pattern. These effects atthe
channel level can be compounded as they interact with the
upper protocol layers; for example, the packet loss pattern
affects protocols such as TCP which adapt their sending rate
with every lost packet. There is a great need for accurate
models of path loss to enable accurate simulation of wireless
networks.

B. Site Specific Path Loss Estimation Approaches

There are two major approaches to accurate path loss
estimation: (1) site surveys use extensive measurement to map
the signal power from every location to every other locationin
a site [12]; and (2) Ray tracing: instead of measurement, signal
propagation in a site is tracked in detail using geographical and
material information specific to the site; the direct, reflected,
refracted, diffracted, and scattered rays between a senderand
a receiver are summed to estimate the average received signal
strength for a specific location [13], [14], [15]. Both these
approaches are accurate, but require significant measurement
or computational overhead, which makes them unsuitable for
use in a packet simulator. Moreover, they cannot easily be
extended to model different environments.

C. Proposed Approach: Double Regression for spatially co-
herent path loss modeling

In this paper, we propose a path-loss model for wireless
network simulation capable of spatially coherent estimation of
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path loss in the presence of both sender and receiver mobility.
The model exploits the spatial correlation of path loss: since
path loss depends on the shadowing from the environment,
if two links are close enough that they share the same
environment, their path loss components are correlated. The
spatial correlation of path-loss has been empirically observed
in both outdoor and indoor scenarios [16], [17], [18].

To obtain a plausible path-loss value for a new link, we
use a novel regression algorithm to estimate the channel from
nearby links. Known links are stored in an R-tree (a data
structure for spatial indexing [19]) indexed both by sender
and receiver location. When generating a new link, we search
the R-tree for known nearby links. We then interpolate twice
from these nearby links, once to account for the difference
in receiver location and once for the sender; the algorithm
is called Double Regression(DR). If there are insufficient
reference data (known links that are sufficiently close) for
regression, we generate the path loss value from a log-normal
distribution with mean and variance obtained by interpolation
so that the spatial correlation between existing neighborsand
the random variables is kept. Finally, the newly generated link
is stored in the R-tree to serve as a known link. As a result,
unlike existing models, the path loss remains spatially coherent
(correlated to nearby channels) and temporally consistent(path
loss values are preserved over time, mirroring the long-term
nature of shadowing which determines the path loss).

We envision the model to be used in a way where a
set of known channels are built over time initially starting
from stochastic values, and then using interpolation as more
channels are known. However, it is also possible to seed
the model with measurement or ray-tracing channels creating
simulations that are site specific. When seeded with known
channel values, the model can “fill-the-gap” with realistic
values between the known measured ones, allowing faster site
surveys or ray-tracing analysis where only a few channels are
measured or ray-traced.

We integrate the path-loss with a temporal fading channel
model (Rayleigh fading) to provide a complete channel model,
and show that different path loss estimates cause substantially
different link quality estimates. We show that even in a simple
two-hop scenario, the use of spatially coherent models can
result in up to 600% difference in estimated throughput over
existing models when there is only 10dBm difference in
path loss. These experiments emphasize the fact that accurate
modeling of path loss is critical to plausible channel models.

The remainder of the paper is organized as follows. Sec-
tion II overview some background and related work. In Sec-
tion III presents some background regarding regression. In
Section IV, we present the proposed double regression algo-
rithm for spatially correlated path-loss estimation. We present
our experimental evaluation of the channel model and the
assessment of its impact on the accuracy of simulation studies
in Section V. Finally, Section VI presents some concluding
remarks.

II. BACKGROUND AND RELATED WORK

Wireless propagation is a complex phenomena: multiple
versions of the transmitted signal that take different paths
through the environment, suffering deflection, refraction, and

dispersion, combine to make the received signal. Thus, existing
channel models attempt to model the overall received signal
as the sum of two components: (1) path loss models: which
determines the long term average received signal power. This
component depends on the RF shadows from large static fea-
tures of the environment (e.g., buildings); and (2) Small-scale
multi-path fading models: these models attempt to capture the
time-varying nature of the signal due to the multi-path effect.
This component is modeled using a zero mean multi-path
model, such as the Rayleigh fading model or the Nakagami-m
fading model.

A. Typical Simulator Models

To implement a complete channel model for a packet
simulation, the two models (path loss and small scale fading)
are needed, summing up to give the instantaneous received
signal power. This section overviews two commonly used
combinations of path loss models and small-scale multi-
path models: ideal path loss model with Rayleigh fading
model (IPL-Rayleigh) and log-normal shadowing model with
Rayleigh fading model (LNSM-Rayleigh).

The ideal path loss model in the IPL-Rayleigh can be the
free space model, the two-ray ground model, or any other
isotropic distance dependent path loss model. IPL-Rayleigh
is widely used because of its simplicity [8], [9]. Due to the
small-scale multi-path fading channel model, it has a realistic
channel in terms of temporally correlated fading. However,
a parameter of the fading channel model, the mean power,
is obtained from the ideal path loss models; thus, the mean
power and therefore the average link quality of a link do not
reflect a real site with characteristic shadowing effects.

The LNSM-Rayleigh is more realistic because the path
loss is obtained by the log-normal shadowing model, which
is widely accepted as a site-specific stochastic model [20].
However, the LNSM model assumes independent and iden-
tically distributed path loss for points at the same distance
from a sender; it does not consider the spatial correlation
between nearby points [16], [18]. Gudmundson showed that
the high space correlation between two nearby receivers,
but showed that this correlation exponentially decreases with
distance between them [16]. Jalden et al. measured signal
strength along a route of 90 meters in an indoor scenario, and
found out path loss at close links are highly correlated [18].
A precise RT also supports the spatial correlation. Wang,
Tameh and Nix discovered the same exponentially decreasing
spatial correlation by using RT [21]. Thus, this model is not
appropriate for the case where spatial correlation exists:we
show later that spatial correlation has significant impact on
simulation performance.

B. Site Surveys and Ray Tracing

One approach to providing highly accurate path loss expo-
nent is to use a site survey. A site survey is a process where
signal power measurements are performed throughout an area
which will be used as the basis for simulation. However, this
process is extremely time consuming and expensive; often it
is only feasible to perform measurements in limited number
of locations, and the quality of measurement depends on
equipment and skill [12]. Due to this reasons, several methods
to reduce the number of required measurement in planning of
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access points have been proposed [22], [23]. Stepanov et al
use a commercial site survey tool (WinPROP) and present the
significance of using accurate propagation model in MANET
study [24].

In the second approach, called Ray Tracing (RT), detailed
geographical information about a site is used. In particular,
the direct, reflected, refracted, diffracted, and scattered rays
between a sender and a receiver are summed to estimate the
average received signal strength for a specific location [13],
[14], [15]. RT is highly accurate if the precise geographic
information (GIS) (e.g., materials, facets, and edges) about the
environment, as well as the sender and receiver is available.
However, when the typical number of facets and edges are
used, the computational complexity easily gets into the trillions
of rays [25]. This computational cost will be prohibitive for
packet simulation especially in the presence of mobility (since
the path loss would have to be continuously re-estimated).

Dricot and Doncker attempted to implement the ray-tracing
model in a slowly moving environment in a network simula-
tor [26]. Because of the change of the environment, they re-
calculated the ray-tracing result every 0.05sec, which wasas-
sumed to be coherent time in the 2.4GHz channel. Even though
they used the same result without re-calculation for 0.05 sec,
they noticed that the simulation runtime is increased 100 fold.
There is a rich set of studies for increasing the efficiency ofthe
ray-tracing, however, the computational complexity remains
very high [27]. For example, one solution for this problem is
to store the precomputed ray-tracing result for a whole city,
if the location of the sender is fixed [27] (e.g., base station).
However, this is not applicable to ad-hoc networks where both
senders and receivers move. Due to computational inefficiency
and the expensive cost of detailed GIS data, RT is not used
as a path-loss model for packet simulators.

C. Efficient Spatially Coherent Models

Our goal is to develop efficient spatially coherent models
that can also be used to model specific sites. Related to our
work, Xu et al [28] use regression to estimate link quality
to add spatial coherence to temporal correlation. They do not
consider separate regression from the source and destination
side. Moreover, they attempt to estimate the full link quality,
rather than just the stationary spatially coherent component
representing path loss. In particular, a sliding window of
recently perceived link qualities are maintained and as time
passes, the quality of the link can drift by arbitrary amounts.

The Sum-of-Sinusoids (SOS) model was initially developed
by Rice [29] and advanced and extended by others [30], [31],
[21]. For two arbitrary links, the autocorrelation is determined
by the distance between the senders and the receivers as each
link’s path-loss is a Gaussian random variable. Autocorrelation
is achieved by selecting the frequency set defined in the SOS
formula carefully. Like DR, SOS can generate a spatially cor-
related log-normal shadowing model and is computationally
efficient. However, unlike DR, SOS is completely stochastic
and cannot be used to create site specific models.

III. B ACKGROUND: REGRESSION

The proposed approach uses regression to estimate the path
loss of a link given nearby links whose path loss is known

(e.g., from measurement or those previously generated by the
simulation). Regression is a process of least square fitting
used to estimate a dependent value (also called a response
variable) from one or more independent variables (also called
explanatory variables) [32]. The regression equation is a func-
tion of independent variables. The regression coefficientsin
the regression equation are estimated by a set of observations
of the dependent variables with the corresponding independent
variables.

A general regression equation is expressed by

p = β0 +
k

∑

i=1

βiΦi (1)

where βi represents the regression coefficient, andΦi is a
function of the independent variable. The most simple form of
regression equation is a linear regression that has the following
equation:

p = β0 + β1x+ β2y (2)

In this case,Φ1 = x and Φ2 = y. A factorial regression
equation involves the mixture of two independent variablesas
the following:

p = β0 + β1x+ β2y + β3xy (3)

In this case,Φ1 = x, Φ2 = y, andΦ3 = xy. Given a set of
m observationsO={(xj , yj , pj)|j = 1, 2, ..,m}, the regression
coefficient can be obtained by

β = (ΦTΦ)−1ΦT p (4)

where p=(p1, p2, .., pm)T and Φ is a m × k matrix of
[Φi(xj , yj)], i = 0, 1, .., k and j = 1, 2, ..,m.

IV. D OUBLE REGRESSION: SPATIALLY CO -HERENT
ESTIMATION OF PATH LOSS

Our goal in this paper is to develop a plausible model for the
long term stable component of a wireless channel. Plausibility
for this path loss component entails spatial correlation such
that nearby channels have correlated path loss. If there areno
neighboring links (defined by emperically observed correlation
distance), the estimated path loss can be independent.

This section explains how our proposed model generates a
plausible estimated of path-loss in a computationally efficient
way. This paper follows the notation used in log-normal shad-
owing description by Rappaport [10]: i.e.,Xσ(tx, ty, rx, ry) is
a normally distributed random variableN(0, σ2) that models
the path-loss component of a linkt(x, y) → r(x, y). The path
loss component represents the long term average signal power
on a channel (to eliminate the zero mean multi-path fading
component).

A. Path Loss Estimation using Double Regression

Intuitively, DR applies regression from nearby channels to
create an estimate of path loss that is correlated to these
channels. Note that the estimate includes an independent
component whose weight depends on the number and distance
from the nearby channels used in the estimate to produce
correlation consistent that observed empirically.

The primary difficulty in using regression is that the notion
of distance in regression is a scalar value reflecting Euclidean
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distance between the reference and projected points. In con-
trast, channels are line segments in 2-D or 3-D space with
no clear definition for distance between them. Our approach
solves this problem by applying regression in two steps. First,
we apply regression based on the distance from the destination
of the nearby links to the destination of the estimated link
producing an intermediate estimate. In the second step, we
apply regression based on the sender distances to the interme-
diate estimate to find the final path loss. The remainder of this
subsection formalizes this process.

Consider a path loss offsetX(x, y, u, v) of a link (x, y) →
(u, v) where (x,y) and (u,v) represents the location of a sender
and a receiver in a 2-D space respectively. Let the location
coordinatesx, y, u, v be the independent variables of the
regression and theX be the dependent variable. When a set of
neighboring links are given (from previous estimates, through
measurement or pre-calculated ray tracing), theX(x, y, u, v)
for a new link needs to be estimated. To estimate a path-
loss for a new link from existing channel data, only channels
that are in the sufficiently close distance from the new link
should be considered. To distinguish those reference data,we
define a correlation distance threshold,Dn. If (x, y) is static,
andm observations for(u1, v1), .., (um, vm) are given within
Dn, a regression algorithm helps to estimate an offset for a
new link (x, y) → (u′, v′) based on the assumption that the
relationship between the independent variables (i.e., locations)
and their dependent variables (i.e., the path-loss) among the
observations continues to hold between the new independent
variable(u′, v′) and its dependent variableX(x, y, u′, v′). The
assumption relies on the dependent variables having spatial
correlation. We now describe the DR algorithm.

B. Algorithm

First, observations are stored in an R-tree [19] so that a link
can be efficiently indexed based on its location. A leaf node
of the R-tree contains the location of the sender, the receiver
and the observed pathloss. Since a path-loss is symmetric, a
link with opposite direction and the same path-loss value is
also stored in the R-tree. When a new estimation is requested,
reference links within a correlation distance threshold (Dn),
up to a limited number (L) are obtained from the R-tree. If
the number of reference links is not limited, the computation
time can increase as the number of measurements increases.
The distance between two links(x, y) → (u, v) and(x′, y′) →
(u′, v′) is calculated as follows.

dist =
√

dt2 + dr2

dt =
√

(x− x′)2 + (y − y′)2

dr =
√

(u− u′)2 + (v − v′)2

Let us consider a set of reference linksRL and a linkτ that
has a senderA and a receiverB. We denote each coordinate
of a node byid(e), wheree = x, y, u, or v. Then,τ = A → B
= (x, y) → (u, v), andXτ = X(A,B) = X(x, y, u, v). The
goal is to estimate the path loss offsetXτ denoted byX̂τ by
using the reference linksRL .

The proposed estimation algorithm is as follows.
1) Look up the senders for eachrl in the RL , and make a

reference sender setSτ .

2) Make an observation set for each sendersτi as Osτi

= {(rsτ ij(u), rsτ ij(v), X(sτi, rsτ ij))|j = 1, 2, .., J},
whereJ is the number of receivers forsτi.

3) Apply Eq 4 to the observation setOsτi
to get the

regression coefficientβs.
4) Apply Eq 2 or 3 to the location of the target receiver

(u, v) to get the estimated valuêXs(sτi, B).
5) Repeat the estimation over allsτi ∈ Sτ .
6) Make an observation set Osτ =

{(sτi(x), sτi(y), X̂(sτi, B))|i = 1, 2, , , .I}, where
I is the size ofSτ .

7) Apply Eq 4 to the observation setO to get the regression
coefficientβ.

8) Apply Eq 2 or 3 to the location of the target senderA
to get the estimated valuêX(A,B).

The above algorithm applies regression twice, one for receivers
and one for senders. This method enables estimating any link,
including those whose sender and receiver are different from
end nodes of reference links.

Note thatβ in Equation 4 is obtained only when theΦTΦ is
invertible. For the case when Equation 4 is not applicable, i.e.,
if there are insufficient neighbors through the process, we use
virtual neighbors in locations which are far enough to have
no correlation with existing measurements. Then, we apply
interpolation with the virtual neighbors (which contribute no
weight due to their distance) and existing neighbors to estimate
the path loss. Since a virtual neighbor does not need to be
correlated with any neighbor, the path loss for an imaginary
neighbor can have normal distributionN(0, σ2).

C. Discussion

DR applies regression when nearby known channels are
available. These channels could be obtained from measurement
data to produce a site specific simulation. In such scenarios,
the accuracy of the DR estimate relative to the site from which
the measurement data is obtained depends on the presence of
nearby measured (or ray-traced) links; absent such links, there
is no spatial correlation from measured links and the estimated
path loss is independent in the initial phase of the simulation
where the R-tree is sparsely populated.

DR always generates “plausible” path loss models even
when the provided measurement or ray-trace data is sparse
or even non-existant; the generated path loss values will be
consistent with path loss distribution in real environments and
are thus representative of a hypothetical real environment.
However, if the measurement (or ray-trace) data is sufficiently
dense, DR will generate site-specific path loss representative
of the actual environment from which the measurement data is
obtained. The measurement or ray-tracing data simply causes
the generated path loss values to correlate to this data making
the simulated area similar to the measured area. .

V. PERFORMANCEEVALUATION

The model is validated against a measurement experiment
in Section V-A. We show that DR can also be applied
without measurement results, and compare it with the Sum-
of-Sinusoids (SOS) model in Section V-B. Spatial coherence
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Fig. 1: Measurement

Heat Map for SOS Simulation
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Fig. 2: SOS simulation
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Fig. 3: DR simulation

is evaluated in V-C and V-D shows that DR can reduce site-
survey cost. Finally, we show the impact of plausible path loss
models on network performance and stability in Section V-E.

A. Measurement-based Validation of DR

In this study, we measure the path loss in a lecture hall that
has dimensions of 10m by 10m by 3m. We carry out mea-
surement experiments from six sender locations. The sender
broadcast packets every 10msec with transmission power of
16dBm, 802.11g in 2.471GHz frequency, and 6Mbps data
rate. To eliminate the multi-path effect (the temporal fading
component of the signal) and orientation effect [33], [34],we
averaged the signal power in a small area of 1.8m rotating the
receiver antenna in all directions.

To extract the offsetX(ti, ri) from the measuredS(ti, ri),
d0, P (d0), β andσ need to be determined. First,P is roughly
obtained byS−95 [35]. P0 is obtained from the measurement
by settingd0 to be1. σ is determined depending onβ. So,β
is chosen to make the zero mean and the smallestσ. In our
testbed, the valuesP0 = −33dB, β = 2.8, σ = 8 result from
this approach.

Figure 1 depicts the signal strength map (heat map) when
the sender is located at point(1, 5) on the figure. The(x, y)
coordinate represents the location of a receiver and the color
represents the RSSI value. We compared the simulated path
loss with the measurement of the corresponding physical
location as well as path loss values generated by the SOS
model (we set the SOS parameters as recommended [21]).

For the DR experiment, we use DR to interpolate each
link from a preset number of neighboring measurements.
Figure 2and 3 show the corresponding heat maps obtained
from SOS and DR respectively. DR clearly generates the
more similar heat map to the measurement obtained one. The
reason is that our model estimates signal strength at each
location from a few reference links that are obtained through
measurement, while the SOS method estimates them with only
overall statistics and is not able to incorporate measurement
values.

For a more quantitative evaluation, we calculated the
root mean square (RMS) of the estimation error defined as

xRMS =
√

1
n

∑n
i=1(xi −mi)2, wheren is the number of

measured links,xi and mi are the simulated value and the
measured value for theith link, respectively. If the RMS for
all 174 measured links are investigated, SOS RMS value is

SOS 0.522
DR L 2 3 4 5

xRMS 0.239 0.243 0.254 0.35
| RL| 12 18 24 30
xRMS 0.258 0.24 0.25 0.25

TABLE I: Comparison of RMS of estimation errors

0.522, while DR achieves 0.24 RMS with only two reference
links for each estimate.

Table I shows the RMS of estimation errors for various
number of links used in the DR. In all cases, the RMS values
achieved by DR are smaller than that of SOS method. If
L = 5, i.e., 5 neighbors of a target receiver are involved in
the estimation, it will include some far nodes that actually
are uncorrelated with the target. Thus, the reference links
for a target are chosen based on distance in practice. The
number of reference links does not affect the estimation error
significantly.

B. DR without Measurement: Correlated Gaussian Process

DR can also generate a geographically-independent space
when no measurement data is available to seed the model.
The geographically-independent space is particularly useful
when the size of network increases, and physical mapping to
a specific site is not required.

First, a distance threshold (Dn) can be set to a decorrelation
distance [21] because points at this distance away from each
other experience weak correlation in path loss. In this case,
the R-tree is originally empty. We can generate some initial
reference links (e.g., on a gridDn meters apart) to seed the
R-tree, or see it on demand whenever a new link is needed and
no nearby reference links exist. When no nearby links exist
for a new channel, a Gaussian random variable fromN(0, σ)
is used to assign the path loss at that point. The new estimate
is added to the R-tree such that future nearby channels can
use it in generating their estimate.

Figure 4 depicts a realization of the virtual space by factorial
regression, where the sender is fixed at the middle of the
topology and the(rx, ry) coordinate represents the location of
a receiver. The number of reference neighbors is set to 3, and
the distance thresholdDn is set to 6 meters that is typical in an
urban area [21]. We first generated channels at grid pointsDn
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apart; those points are generated independently because ofthe
lack of nearby reference links. The spatial correlation among
the receivers, i.e., the similarity among the neighbor receivers,
is plotted. We obtained similar results when a receiver is
fixed and the(x, y) coordinate represents the location of a
sender. As a result, a small location change for either senders
or receivers does not cause abrupt change of path loss, and
the new link has plausible path loss consistent with empirical
results that show spatial correlation of path loss. While the
spatial variation changes smoothly in most areas, it changes
abruptly at the grid points which are generated randomly (i.e.,
with no correlation).

Figure 5 compares the CDF of overall space to that at the
grid points. The distribution of grid points shows 3 times larger
variance than the distribution of overall space since they were
generated independently. Averagingn random variables for
the target receiver and sender results in a reduced variance
by

√
n×√

n by the central limit theorem. Since we used an
average of 3 reference links, the reduction in variance relative
to the grid points follows the expected distribution.
Finally, Figure 6 shows the joint autocorrelation with respect
to dt and dr. The DR generated path loss shows a good
agreement with theory [21]

C. Spatial Coherence Analysis

In this section, we analyze DR with respect to the spatial
correlation among the generated path loss estimates. Primarily,
when no nearby links are available for regression, DR uses
an uncorrelated Gaussian estimate for path loss. The density
of the observations is varied by changing the correlation
distance threshold (Dn), which defines the distance beyond
which links are no longer considered neighbors. WhenDn

is large, simulating dense measurements, more neighbors will
be included in the DR estimate. When it is small, simulating
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sparse measurements, many points will have no measured
neighbors and would have to be generated using the Gaussian
distribution, increasing randomness.

Figure 7 and 8 show autocorrelation when the receiver dis-
tance (dr) and transmitter distance (dt) between the reference
and estimated link increases. When the distance between links
is small (e.g., 1), the autocorrelation should be high (closer to
1). A lower autocorrelation indicates that the estimated path
loss is not correlated in space. The topology size is 400x400,
and 2000 reference observations are generated fromN(0, σ2).
WhenDn=30 is used, explicit exponential autocorrelation is
shown, which means if there are sufficient neighbor links,
DR generates spatially correlated path loss. However, due to
the random variables involved in the regression process when
distance from reference links is large or insufficient nearby
reference links exist, the autocorrelation does not look smooth.
Each point represents an average of 720 simulation runs.

We vary the number of reference links in the same size of
topology. If fewer reference is used, more links are generated
independently because they do not have sufficient neighbors
for interpolation. Figure 9 shows that the autocorrelationis
not seriously affected when the number of initial channels is
reduced to 300.

Figure 10 shows the autocorrelation when between points
that are 1 and 5 meters apart as the number of links in
the simulation increases. At first, there is no reference link
(x=0). As a new link appears and an estimation for the link
is stored in the R-tree, there will be more data that can be
referred by a new link. When the number of links is small,
the autocorrelation is low. Figure 10 shows that when the
number of links reaches 2000 (x=2000), the autocorrelation
converges to match the empirical values. Each point represents
the average of 30 simulation runs.

D. Using DR to Interpolate Measurement Data

Site Surveys require a large number of measurements. Sim-
ilarly Ray Tracing requires many computationally intensive
computations. In this section we evaluate the success of DR
to interpolate when only a few number of measurements is
available. If it is successful, DR can significantly lower the
cost of site surveys and Ray Tracing.

We use a measurement data set from the CRAWDAD
repository measuring path loss in part of the Colorado Uni-
versity campus [36]. The data contains RSS measurements
collected using the CU Wide Area Radio Testbed (CU-WART).
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Fig. 10: Path loss stability as the number of generated links
increases

Figure 11a shows a heatmap of the measured RSS. The total
number of used links is about 900. The unmeasured areas are
shown as white. To show our proposed method can regenerate
a RSS map with small number of measurement data, we
reproduce a heatmap of RSSI with 1/4 sample measurement
that are randomly selected. Figure 11b that the proposed
method can regenerate realistic path loss.

E. Impact on Network Stability

The path loss models the long time average of the signal
power; it has substantial impact on the simulation results,
affecting the signal and interference components of SINR and
how they change as the nodes move. This impact percolates
up the protocol stack to the routing and application layers;
the use of inaccurate path loss models can lead to substantial
inaccuracy in the simulation. To demonstrate this effect, in

this section, we evaluate the impact of path loss models on
the behavior of two representative simulation studies.

One of the most notable impacts of the spatial correlation is
on network stability. A representative reactive routing protocol
for a mobile ad-hoc network, Dynamic Source Routing (DSR),
detects a route failure after consequent link failures, then re-
issues DSR route discovery packets. As mobile nodes move,
the path loss and the link qualities between nodes keep
changing, which causes route failure and rediscovery process.

We investigated how many times the re-discovery process
occurs in the i.i.d. log-normal shadowing path loss model,
which is commonly used in simulators such as NS-2, and
the DR path loss model in a general mobile ad-hoc network
scenario. The scenario includes 20 nodes in a 30mx30m
topology in which each node moves at maximum speed of
1m/sec. To make sure that the network includes connection
and disconnection through multi-hops, the path loss exponent
is set to 5. Since the nodes move, a Rayleigh fading channel
is used in addition to the path loss model to account for multi-
path fading.

Fig. 12 shows the number of route discovery DSR packets
normalized by the number of data packets. When the DR path
loss model is used, the link quality of a pair of mobile nodes
will change slowly, because the path loss is highly correlated
with the distance. Thus, a small change of location probably
not causes a route failure. However, i.i.d shadowing path loss
model does not guarantee the consistent link quality as nodes
move even slowly, because the path loss for different location
is determined independently. As a result, the i.i.d shadowing
path loss model overestimates route failures and re-discovery
processes as the standard deviation increases, while the DR
model shows very stable behavior. A less stable routing layer
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Fig. 11: Estimated RSS using DR for the CU Wireless Trace
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will reduce the throughput, because the time and channel
capacity are waisted by the routing overhead. Our investigation
of the impact on the throughput showed that using i.i.d
shadowing channel model will underestimate the throughput
by up to 42%. This result highlights the significance of using
correct channel model in a simulation-based research.

F. Impact on Throughput

This section shows the impact of the realistic path-loss
model on throughput when we feed it to a temporally fading
model (Rayleigh fading). The symbol loss rate in the Rayleigh
fading channel is:1− e−ρ2

, whereρ = Rthreshold

RRMS
. Figure 14

depicts the delivery ratio of packet size of 30, 512, and
1024 bytes. X-axis represents attenuated signal strength due
to path loss,RRMS =

√
10(A(d)−30)/10, and the threshold
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Rthreshold =
√
10(−90dBm−30)/10. Since the signal strength

under the Rayleigh fading channel fluctuates over time, the
packet delivery ratio increases gradually around the threshold
as the attenuated signal strength due to path loss increases.
Note that small difference in path-loss results in big difference
in PDR. For example, if the packet size is 1024, if the PDRs
when the attenuated signal = -50dBm and -40dBm are 0.4 and
0.8 respectively.

The impact of realistic path loss on throughput can be shown
by the impact of different PDR on throughput. We consider
a two-hop connection A-B-C. We keep the PDR of A-B at
a relatively high (0.83) and investigate the throughput as the
PDR of B-C varies. Figure 15 depicts the impact of the various
PDR on the throughput when various fading rapidity (fm)
of the Rayleigh fading channel is used for each hop. If the
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PDR of the second hop are 0.4 and 0.8, the throughput are
25kbps and 150kbps when second hop’sfm = 12Hz, i.e.,
the throughput difference is up to 600%. This result supports
the significance of estimating accurate path-loss in a multi-hop
ad-hoc connection.

VI. CONCLUSION

Accurate and efficient channel models are a critical need for
improving the fidelity of wireless network simulation. In this
paper, we considered the problem of path loss channel models;
this is the component of the channel model that estimates
the long term average signal power between a sender and a
receiver. Path loss is affected by the RF shadows in the en-
vironment. Existing stochastic models are inaccurate because
they do not consider spatial correlation. In addition, theyare
difficult to configure to parameters representative of realistic
environments such as corridors or building shadows. On the
other hand, accurate models can be built using either detailed
site-surveys (requiring a prohibitive number of measurement
experiments) or ray tracing (which is computationally very
difficult and requiring precise GIS). Thus, there is a need for
accurate and efficient path loss models.

In response to this need, we proposed a novel solution
for a geographically accurate, efficient, and flexible path loss
model. The key idea of the proposed model is to estimate a
plausible value for new channels using regression from nearby
known channels. The algorithm uses a highly efficient double
regression procedure: in the first step, we use regression to
estimate a channel by moving one of the communication ends,
while the second step moves the other. The known channels
can be those obtained from measurement experiments, ray-
tracing, or previous models generated by the simulation. By
using regression, we preserve spatial correlation as measured
in previous studies, leading to plausible channel models.
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