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Abstract—The accuracy of wireless network packet simulation typically use simple disc-shape path-loss models, suches t
critically depends on the quality of the wireless channel models. free space model or the two ray ground model, in which path-
These modeLs d”‘fCtl'(y aﬁ‘fCt the fundamental networlg charac- 555 increases as a function of distance. However, in pecti
teristics, such as link quality, transmission range, and capture o o
effect, as well as their 3ynamic variation in time and space.pPath the path ,IOSS depends on the shadowing in the enwronmlent
loss is the stationary component of the channel model affected @nd how it affects the channel between a sender and a receiver
by the shadowing in the environment. Existing path loss models Disc-shape path-loss models do not account for shadowitdig an
are inaccurate, require very high measurement or computational are therefore not realistic. Statistical approaches tmumc
overhead, and/or often cannot be made to represent a given for shadowing, such as the log-normal shadowing model, are

environment. The paper contributes a flexible path loss model . .
that uses a novel approach for spatially coherent interpolation also not effective because they do not account for the Spatia

from available nearby channels to allow accurate and efficient correlation and the temporal stability of the path loss emwft
modeling of path loss. We show that the proposed model, called an independent path loss value is generated with every packe
Double Regression (DR), generates a correlated space, allowingtransmission even if no mobility is present.
both the sender and the receiver to move without abrupt change e yse of imprecise models can dramatically affect the
in path loss. Combining DR with a traditional temporal fading simulation leading to inaccurate results and false coramhgs
model, such as Rayleigh fading, provides an accurate and efficient >" g o - >
channel model that we integrate with the NS-2 simulator. We use With respect to path loss, it impacts the perceived signal
measurements to validate the accuracy of the model for a number power when a transmission occurs, which impacts both the
of scenarios. We also show that there is substantial impact on act of transmission in CSMA protocols, as well as the success
simulation behavior (e.g., up to 600% difference in throughput  of transmission at the receiver with or without the presence
for simple scenarios) when path loss is modeled accurately. of interfering transmissions. Moreover, spatial and terapo
I. INTRODUCTION correlation can influence the loss pattern. Th(_ese eﬁedﬂ$eat
) o ) ~ channel level can be compounded as they interact with the
‘Simulation is widely used for performance evaluation iypper protocol layers; for example, the packet loss pattern
wireless and mobile network research due to its flexibilityffects protocols such as TCP which adapt their sending rate
controllability and observability compared to testbed0r- with every lost packet. There is a great need for accurate

ulation studies. However, the validity of simulation sesli models of path loss to enable accurate simulation of wiseles
has been criticized due primarily to the poor accuracy of thetworks.

wireless channel models [1], [2], [3], [4], [5], [6], [7]. _ - S
In response to this criticism, more accurate and realistiz Site Specific Path Loss Estimation Approaches

temporally fading channel models, e.g., Rayleigh-Riceah f  There are two major approaches to accurate path loss
ing [8] and Nakagami fading [9], have been implemented isstimation: (1) site surveys use extensive measuremenapo m
network simulators. However, these models account for thg signal power from every location to every other location
fast fading component of the channel model which exhibitgsite [12]; and (2) Ray tracing: instead of measurementasig
temporal correlation but little Spatlal correlation [1@” the propagation in a site is tracked in detail using geogra¢|aind_
other hand, the stable component of a signal is determined fyterial information specific to the site; the direct, refie
shadows from large objects in an environment; this comppnefefracted, diffracted, and scattered rays between a semder
i.e., path loss component, is still commonly modeled assgmig receiver are summed to estimate the average received signa
idealized distributions. However, empirically, path losas strength for a specific location [13], [14], [15]. Both these
been show to be spatially correlated as RF shadows from lagg¢hroaches are accurate, but require significant measoteme
objects tend to affect nearby channels similarly. The pass | or computational overhead, which makes them unsuitable for
component determines the mean signal strength and therefgée in a packet simulator. Moreover, they cannot easily be
significantly affects link quality [11]. extended to model different environments.

A. Path Loss Models are Important C. Proposed Approach: Double Regression for spatially co-

Compared to the efforts in modeling temporal fading, led¥rent path loss modeling
attention has been paid to obtaining an accurate mean signdh this paper, we propose a path-loss model for wireless
strength for network packet simulation. Existing simufato network simulation capable of spatially coherent estioratf



path loss in the presence of both sender and receiver nyobildispersion, combine to make the received signal. Thustiegis
The model exploits the spatial correlation of path lossceinchannel models attempt to model the overall received signal
path loss depends on the shadowing from the environmeas, the sum of two components: (1) path loss models: which
if two links are close enough that they share the sandetermines the long term average received signal powes. Thi
environment, their path loss components are correlated. Tdomponent depends on the RF shadows from large static fea-
spatial correlation of path-loss has been empirically olesk tures of the environment (e.g., buildings); and (2) Smeidils
in both outdoor and indoor scenarios [16], [17], [18]. multi-path fading models: these models attempt to captuge t
To obtain a plausible path-loss value for a new link, weme-varying nature of the signal due to the multi-path etffe
use a novel regression algorithm to estimate the channel frdhis component is modeled using a zero mean multi-path
nearby links. Known links are stored in an R-tree (a dataodel, such as the Rayleigh fading model or the Nakagami-m
structure for spatial indexing [19]) indexed both by sendéading model.
and receiver location. When generating a new link, we search ] )
the R-tree for known nearby links. We then interpolate twic®- Typical Simulator Models
from these nearby links, once to account for the differenceTo implement a complete channel model for a packet
in receiver location and once for the sender; the algorithsimulation, the two models (path loss and small scale fading
is called Double Regressior{DR). If there are insufficient are needed, summing up to give the instantaneous received
reference data (known links that are sufficiently close) faignal power. This section overviews two commonly used
regression, we generate the path loss value from a log-riorrmambinations of path loss models and small-scale multi-
distribution with mean and variance obtained by interpofat path models: ideal path loss model with Rayleigh fading
so that the spatial correlation between existing neighbas model (IPL-Rayleigh) and log-normal shadowing model with
the random variables is kept. Finally, the newly generatdd | Rayleigh fading model (LNSM-Rayleigh).
is stored in the R-tree to serve as a known link. As a result, The ideal path loss model in the IPL-Rayleigh can be the
unlike existing models, the path loss remains spatiallyeceht free space model, the two-ray ground model, or any other
(correlated to nearby channels) and temporally consigperih isotropic distance dependent path loss model. IPL-Ralyleig
loss values are preserved over time, mirroring the longrteiis widely used because of its simplicity [8], [9]. Due to the
nature of shadowing which determines the path loss). small-scale multi-path fading channel model, it has a séali
We envision the model to be used in a way where @hannel in terms of temporally correlated fading. However,
set of known channels are built over time initially startingn parameter of the fading channel model, the mean power,
from stochastic values, and then using interpolation asemas obtained from the ideal path loss models; thus, the mean
channels are known. However, it is also possible to sepdwer and therefore the average link quality of a link do not
the model with measurement or ray-tracing channels cigatireflect a real site with characteristic shadowing effects.
simulations that are site specific. When seeded with knownThe LNSM-Rayleigh is more realistic because the path
channel values, the model can *fill-the-gap” with realistitoss is obtained by the log-normal shadowing model, which
values between the known measured ones, allowing faseer it widely accepted as a site-specific stochastic model [20].
surveys or ray-tracing analysis where only a few channes aowever, the LNSM model assumes independent and iden-
measured or ray-traced. tically distributed path loss for points at the same distanc
We integrate the path-loss with a temporal fading channiebm a sender; it does not consider the spatial correlation
model (Rayleigh fading) to provide a complete channel modd&letween nearby points [16], [18]. Gudmundson showed that
and show that different path loss estimates cause sulabantithe high space correlation between two nearby receivers,
different link quality estimates. We show that even in a $empbut showed that this correlation exponentially decreasés w
two-hop scenario, the use of spatially coherent models cdistance between them [16]. Jalden et al. measured signal
result in up to 600% difference in estimated throughput ovstrength along a route of 90 meters in an indoor scenario, and
existing models when there is only 10dBm difference ifound out path loss at close links are highly correlated .[18]
path loss. These experiments emphasize the fact that &ecura precise RT also supports the spatial correlation. Wang,
modeling of path loss is critical to plausible channel medelTameh and Nix discovered the same exponentially decreasing
The remainder of the paper is organized as follows. Sespatial correlation by using RT [21]. Thus, this model is not
tion Il overview some background and related work. In Seappropriate for the case where spatial correlation exises:
tion Il presents some background regarding regression. show later that spatial correlation has significant impatt o
Section IV, we present the proposed double regression algimulation performance.
rithm for spatially correlated path-loss estimation. Wegant ) i
our experimental evaluation of the channel model and tife Site Surveys and Ray Tracing
assessment of its impact on the accuracy of simulationestudi One approach to providing highly accurate path loss expo-
in Section V. Finally, Section VI presents some concludingent is to use a site survey. A site survey is a process where
remarks. signal power measurements are performed throughout an area
which will be used as the basis for simulation. However, this
process is extremely time consuming and expensive; often it
is only feasible to perform measurements in limited number
Wireless propagation is a complex phenomena: multipté locations, and the quality of measurement depends on
versions of the transmitted signal that take different patlequipment and skill [12]. Due to this reasons, several nastho
through the environment, suffering deflection, refractiand to reduce the number of required measurement in planning of

II. BACKGROUND AND RELATED WORK



access points have been proposed [22], [23]. Stepanov e(ay., from measurement or those previously generatedéy th
use a commercial site survey tool (WinPROP) and present thienulation). Regression is a process of least square fitting
significance of using accurate propagation model in MANEUsed to estimate a dependent value (also called a response
study [24]. variable) from one or more independent variables (als@dall

In the second approach, called Ray Tracing (RT), detailedplanatory variables) [32]. The regression equation isng-f
geographical information about a site is used. In particuldion of independent variables. The regression coefficiémts
the direct, reflected, refracted, diffracted, and scaltesys the regression equation are estimated by a set of obsersatio
between a sender and a receiver are summed to estimateattthe dependent variables with the corresponding indeg@nd
average received signal strength for a specific location, [L¥ariables.
[14], [15]. RT is highly accurate if the precise geographic A general regression equation is expressed by
information (GIS) (e.g., materials, facets, and edgesyatie &
environment, as well as the sender and receiver is available _ &
However, when the typical number of facets and edges are p=rFot ZBJD @)

used, the computational complexity easily gets into thkoinis , . i
of rays [25]. This computational cost will be prohibitiverfo Where 5; represents the regression coefficient, andis a

packet simulation especially in the presence of mobilitlgge function of the independent variable. The most simple fofm o

the path loss would have to be continuously re-estimated).€gression equationis a linear regression that has trenfiolg
Dricot and Doncker attempted to implement the ray-tracirfgfluation:

model in a slowly moving environment in a network simula- p=Po+ Bz + P2y (2)

tor [26]. Because of the change of the environment, they gy this case,d; = = and &, = y. A factorial regression

calculated the ray-tracing result every 0.05sec, which &8s gquation involves the mixture of two independent variables
sumed to be coherent time in the 2.4GHz channel. Even thougR following:

they used the same result without re-calculation for 0.@5 se
they noticed that the simulation runtime is increased 10d. fo p = Bo+ Bz + Bay + B3y 3)
There is arich set of studies for increasing the efficienahef |, g cased; — x, By = y, andd; — xy. Given a set of

ray-tracing, however, the computational complexity remai ; (o N ;
very high [27]. For example, one solution for this problem ig?)gf?iscieé\rl]?tg;?]%Jéﬁ;{ééﬁ”)b‘)]/ = 1,2,..,m}, the regression
to store the precomputed ray-tracing result for a whole, city
if the location of the sender is fixed [27] (e.g., base station 8= (<I>T<I>)_1<I>Tp 4)
However, this is not applicable to ad-hoc networks wheré bot h _ T and & | 1 trix of
senders and receivers move. Due to computational inefeigien’’ '€ P=(P1,P2; - pm) ag. IS am x k& matnx o
and the expensive cost of detailed GIS data, RT is not us (@i 91 =01, kandj =1,2,..,m.

as a path-loss model for packet simulators. IV. DOUBLE REGRESSION SPATIALLY CO-HERENT

ESTIMATION OF PATH LOSS

=1

C. Efficient Spatially Coherent Models

Our goal is to develop efficient spatially coherent models gy goal in this paper is to develop a plausible model for the
that can also be used to model specific sites. Related t0 @iq term stable component of a wireless channel. Plaitgibil
work, Xu et al [28] use regression to estimate link qualityyr this path loss component entails spatial correlatiochsu
to add spatial coherence to temporal correlation. They do RQat nearby channels have correlated path loss. If theraare
consider separate regression from the source and destinafjgjghhoring links (defined by emperically observed cotieta
side. Moreover, they attempt to estimate the full link qyali gistance), the estimated path loss can be independent.
rather than just the stationary spatially coherent compbne Thjs section explains how our proposed model generates a
representing path loss. In particular, a sliding window Qfjaysible estimated of path-loss in a computationally ieffic
recently perceived link qualities are maintained and a® tinyay This paper follows the notation used in log-normal shad
passes, the quality of the link can drift by arbitrary amsunt o\ying description by Rappaport [10]: L€, (ty, by, Ta1y) IS

The Sum-of-Sinusoids (SOS) model was initially developegl normally distributed random variabl€(0, 02) that models
by Rice [29] and advanced and extended by others [30], [34e path-loss component of a likz, y) — 7(z,y). The path
[21]. For two arbitrary links, the autocorrelation is deténed |oss component represents the long term average signar powe

by the distance between the senders and the receivers as @ach channel (to eliminate the zero mean multi-path fading
link’s path-loss is a Gaussian random variable. Autocatieh component).

is achieved by selecting the frequency set defined in the SOS o _ )
formula carefully. Like DR, SOS can generate a spatially coft- Path Loss Estimation using Double Regression
related log-normal shadowing model and is computationally Intuitively, DR applies regression from nearby channels to
efficient. However, unlike DR, SOS is completely stochastireate an estimate of path loss that is correlated to these
and cannot be used to create site specific models. channels. Note that the estimate includes an independent
component whose weight depends on the number and distance
from the nearby channels used in the estimate to produce
correlation consistent that observed empirically.

The proposed approach uses regression to estimate the paifhe primary difficulty in using regression is that the notion
loss of a link given nearby links whose path loss is knowof distance in regression is a scalar value reflecting Eeahd

Ill. BACKGROUND: REGRESSION



distance between the reference and projected points. In con2) Make an observation set for each sendgr as O,_,
trast, channels are line segments in 2-D or 3-D space with = {(rs_;;(w),7s.i;(v), X (i, 7s.i5))lJ = 1,2,...J},
no clear definition for distance between them. Our approach where.J is the number of receivers far.;.

solves this problem by applying regression in two stepstfFir 3) Apply Eq 4 to the observation séd
we apply regression based on the distance from the destinati regression coefficient's.

of the nearby links to the destination of the estimated link 4) Apply Eq 2 or 3 to the location of the target receiver
producing an intermediate estimate. In the second step, we (u,v) to get the estimated valuﬁfs(sﬂ,B).

apply regression based on the sender distances to the @term5) Repeat the estimation over all; € S;.

to get the

Sti

diate estimate to find the final path loss. The remainder of thi 6) Make an observation set O, =
subsection formalizes this process. {(sri(2),575(y), X (7, B))i = 1,2,,,.I}, where
Consider a path loss offséf (z, y, u, v) of a link (z,y) — I is the size ofS,.

(u,v) where (x,y) and (u,v) represents the location of a sender7) Apply Eq 4 to the observation sétto get the regression
and a receiver in a 2-D space respectively. Let the location  coefficients.

coordinatesz,y,u,v be the independent variables of the 8) Apply Eq 2 or 3 to the location of the target sender
regression and th& be the dependent variable. When a setof  to get the estimated valug (A, B).

neighboring links are given (from previous estimates, Wgfo o 515 algorithm applies regression twice, one for vecsi
measurement or pre-calculated ray tracing), ¥iev, y, u, v) gd one for senders. This method enables estimating any link

for a new link .needs to b_e 'estlmated. To estimate a pa cluding those whose sender and receiver are differemt fro
loss for a new link from existing channel data, only channe d nodes of reference links

that are in the sufficiently close distance from the new lin

should be considered. To distinguish those reference deta, invNe(;[EEIEehalig rlrt]hEeq(;J;stg)\r/]vﬁeli %btjg,:%% (Znilg r\:vor][e; tl(fifm:: i
define a correlation distance threshald,. If (z,y) is static, : q bp ”

andm observations fofu, vy ), .., (um, v,,) are given within if there are insufficient neighbors through the process, se& u

D,., a regression algorithm helps to estimate an offset for*{Ual neighbors in locations which are far enough to have
new link (z,y) — (u/,v') based on the assumption that th&0 correlation with existing measurements. Then, we apply

; - ; ; L terpolation with the virtual neighbors (which contribuho
relationship between the independent variables (i.eatiows) inte - L : .
and their dependent variables (i.e., the path-loss) amoeg eight due to their distance) and existing neighbors toregt

observations continues to hold between the new independcomgl‘zlttgdlOvs\;list'h S(;;\cen; vr:rgg?l tﬂg'ggtt’ﬁ rlc?soseiorngtnni?ne: itr?arbe
variable(u’,v") and its dependent variabfé(x, y, ', v"). The iahbor can haveynorr?]al di’stribugd\di(() 2) gmnary
assumption relies on the dependent variables having Spaﬂgg o)

correlation. We now describe the DR algorithm. i i
C. Discussion

B. Algorithm DR applies regression when nearby known channels are
First, observations are stored in an R-tree [19] so thatla ligvailable. These channels could be obtained from measateme
can be efficiently indexed based on its location. A leaf nodfata to produce a site specific simulation. In such scenarios
of the R-tree contains the location of the sender, the receithe accuracy of the DR estimate relative to the site from twvhic
and the observed pathloss. Since a path-loss is symmetrigh@ measurement data is obtained depends on the presence of
link with opposite direction and the same path-loss value fearby measured (or ray-traced) links; absent such lihkset
also stored in the R-tree. When a new estimation is requestgtho spatial correlation from measured links and the eséitha
reference links within a correlation distance threshaly,); path loss is independent in the initial phase of the simuati
up to a limited number If) are obtained from the R-tree. If where the R-tree is sparsely populated.
the number of reference links is not limited, the computatio pRr always generates “plausible” path loss models even
time can increase as the number of measurements increag@@n the provided measurement or ray-trace data is sparse
The distance between two links, y) — (u,v) and(z’,4’) =  or even non-existant; the generated path loss values will be

(u',0") is calculated as follows. consistent with path loss distribution in real environnsesnd
are thus representative of a hypothetical real environment
dist — \/m However, if th_e measurement (or rgy-trace) data is suﬁjly’en
B 3 3 dense, DR will generate site-specific path loss represeatat
dt = /(z—a)?+ @y -y of the actual environment from which the measurement data is
dr = (u—u)2+ (v—1)2 obtained. The measurement or ray-tracing data simply sause

. . . the generated path loss values to correlate to this datangaki
Let us consider a set of reference lifrRk and a linkr that the simulated area similar to the measured area. .

has a sended and a receiveB. We denote each coordinate
of a node byid(e), wheree = z,y,u, orv. Then,r = A — B

= (2,y) — (w,v), and X, = X(4, B) = X(z,y,u,v). The V. PERFORMANCEEVALUATION

goal is to estimate the path loss offs€t denoted byX, by

using the reference linkBL. o The model is validated against a measurement experiment
The proposed estimation algorithm is as follows. in Section V-A. We show that DR can also be applied

1) Look up the senders for eaehin the RL, and make a without measurement results, and compare it with the Sum-
reference sender s&t. of-Sinusoids (SOS) model in Section V-B. Spatial coherence
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Fig. 1. Measurement Fig. 2: SOS simulation Fig. 3: DR simulation
is evaluated in V-C and V-D shows that DR can reduce siﬂe-SOS 0.522
survey cost. Finally, we show the impact of plausible pagslo| DR | L 2 3 4 5

xrms | 0.239| 0.243| 0.254| 0.35
| RL| | 12 18 24 30
A. Measurement-based Validation of DR rrms | 0.2581 0.24 | 0.25 | 0.25

models on network performance and stability in Section V-

TABLE I: Comparison of RMS of estimation errors

In this study, we measure the path loss in a lecture hall that
has dimensions of 10m by 10m by 3m. We carry out mea-
surement experiments from six sender locations. The sen@&f>o \while DR achieves 0.24 RMS with only two reference
broadcast packets every 10msec with transmission power|igks for each estimate.
16dBm, 802.11g in 2.471GHz frequency, and 6Mbps dataTaple | shows the RMS of estimation errors for various
rate. To eliminate the multi-path effect (the temporal fadi ,;mper of links used in the DR. In all cases, the RMS values
component of the signal) and orientation effect [33], [34& achieved by DR are smaller than that of SOS method. If
averaged the S|gn_al power in a small area of 1.8m rotating the_ 5, i.e., 5 neighbors of a target receiver are involved in
receiver antenna in all directions. the estimation, it will include some far nodes that actually

To extract the offsefX'(¢;,r;) from the measured(t;,7:), are uncorrelated with the target. Thus, the reference links
do, P(do), B ando need to be determined. Firgt,is roughly for a target are chosen based on distance in practice. The

obtained byS —95 [35]. F, is obtained from the measuremenymper of reference links does not affect the estimatioarerr
by settingd, to bel. o is determined depending gh So,53  sjgnificantly.

is chosen to make the zero mean and the smatlesh our

testbed, the valueg, = —33dB, 3 = 2.8, = 8 result from

this approach. _ B. DR without Measurement: Correlated Gaussian Process
Figure 1 depicts the signal strength map (heat map) when

the sender is located at poifit,5) on the figure. Thgz, y)

coordinate represents the location of a receiver and thar col

represents the RSSI value. We compared the simulated

loss with the measurement of the corresponding physic . ; . :

location as well as path loss values generated by the S en t.h.e slze .Of network_mcreases, and physical mapping to

a specific site is not required.

model (we set the SOS parameters as recommended [21]) First, a distance threshold,) can be set to a decorrelation

For the DR experiment, we use DR to interpolate ea({:g : e
link from a preset number of neighboring measuremen istance [21] because points at this distance away from each

Figure 2and 3 show the corresponding heat maps obtai otger experience weak correlation in path loss. In this case

from SOS and DR respectively. DR clearly generates t e R-tree is originally empty. We can generate some initial

more similar heat map to the measurement obtained one. ference links (e.g., on a grif),, meters apart) to seed the
-ﬁree, or see it on demand whenever a new link is needed and

reason is that our model estimates signal strength at e ; . : ;
location from a few reference links that are obtained thh)ugao nearby reference links exist. When no nearby links exist

measurement, while the SOS method estimates them with o g{/uaslen de\{g CJ;Z?nrﬂ'hz G:tﬁsﬂgg ;?Tﬁ:tm gﬁ?a-?lheefﬁ (\]/?/’egs)timate
overall statistics and is not able to incorporate measuném hg P h that f point. h |
values. is added to the R-tree such that future nearby channels can

For a more quantitative evaluation, we calculated the - It in generating their estimate.
q o : Figure 4 depicts a realization of the virtual space by faator
root mean square (RMS) of the estimation error defined ?esgression, where the sender is fixed at the middle of the

n

Trvs = \/ = 2oy (@i —m;)?, wheren is the number of topology and thérz, ry) coordinate represents the location of
measured linksg; and m; are the simulated value and thea receiver. The number of reference neighbors is set to 3, and
measured value for th&" link, respectively. If the RMS for the distance thresholR,, is set to 6 meters that is typical in an
all 174 measured links are investigated, SOS RMS value ugban area [21]. We first generated channels at grid pdnts

DR can also generate a geographically-independent space
n no measurement data is available to seed the model.
e geographically-independent space is particularlyfulise




2 Double Factorial Regression (ddcor=6) Autocorrelation (dr=1)
1.2
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0 10 20 30 40 50 60
dt

Fig. 9: Impact of the number of Initial Measured Links

sparse measurements, many points will have no measured
neighbors and would have to be generated using the Gaussian
distribution, increasing randomness.

Figure 7 and 8 show autocorrelation when the receiver dis-
tance (dr) and transmitter distance (dt) between the netere
: and estimated link increases. When the distance betwees link
o is small (e.g., 1), the autocorrelation should be high @lds
1). A lower autocorrelation indicates that the estimateth pa
loss is not correlated in space. The topology size is 400x400
and 2000 reference observations are generated K¥omo?).

] . When D,,=30 is used, explicit exponential autocorrelation is
apart; those points are generated independently becadlse ofshown, which means if there are sufficient neighbor links,
lack of nearby reference links. The spatial correlation a0 pR generates spatially correlated path loss. However, due t
the receivers, i.e., the similarity among the neighboriwete, the random variables involved in the regression processiwhe
is plotted. We obtained similar results when a receiver igstance from reference links is large or insufficient ngarb
fixed and the(z,y) coordinate represents the location of @eference links exist, the autocorrelation does not lookatim
sender. As a result, a small location change for either sendggch point represents an average of 720 simulation runs.

or receivers does not cause abrupt change of path loss, anglie vary the number of reference links in the same size of
the new link has plausible path loss consistent with emalirictopology. If fewer reference is used, more links are geeerat
results that show spatial correlation of path loss. While thgdependently because they do not have sufficient neighbors
spatial variation changes smoothly in most areas, it cr&nggr interpolation. Figure 9 shows that the autocorrelation
abruptly at the grid points which are generated randomgy, (i. not seriously affected when the number of initial channsls i
with no correlation). reduced to 300.

Figure 5 compares the CDF of overall space to that at therigure 10 shows the autocorrelation when between points
grid points. The distribution of grid points shows 3 timegkr that are 1 and 5 meters apart as the number of links in
variance than the distribution of overall space since theyew the simulation increases. At first, there is no referenck lin
generated independently. Averagingrandom variables for (x=0). As a new link appears and an estimation for the link
the target receiver and sender results in a reduced variapg&tored in the R-tree, there will be more data that can be
by v/n x y/n by the central limit theorem. Since we used afeferred by a new link. When the number of links is small,
average of 3 reference links, the reduction in variancdivela the autocorrelation is low. Figure 10 shows that when the
to the grid points follows the expected distribution. number of links reaches 2000 (x=2000), the autocorrelation

Finally, Figure 6 shows the joint autocorrelation with resp converges to match the empirical values. Each point reptese
to di and dr. The DR generated path loss shows a goafle average of 30 simulation runs.

agreement with theory [21]

Fig. 5: CDF of double factorial regression

D. Using DR to Interpolate Measurement Data
C. Spatial Coherence Analysis

Site Surveys require a large number of measurements. Sim-

In this section, we analyze DR with respect to the spatiddrly Ray Tracing requires many computationally inteesiv
correlation among the generated path loss estimates. gimacomputations. In this section we evaluate the success of DR
when no nearby links are available for regression, DR usgsinterpolate when only a few number of measurements is
an uncorrelated Gaussian estimate for path loss. The gensitailable. If it is successful, DR can significantly loweeth
of the observations is varied by changing the correlatiaost of site surveys and Ray Tracing.
distance thresholdy{,,), which defines the distance beyond We use a measurement data set from the CRAWDAD
which links are no longer considered neighbors. WHen repository measuring path loss in part of the Colorado Uni-
is large, simulating dense measurements, more neighbdrs wersity campus [36]. The data contains RSS measurements
be included in the DR estimate. When it is small, simulatingollected using the CU Wide Area Radio Testbed (CU-WART).
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Impact of Estimation Reuse this section, we evaluate the impact of path loss models on
‘ ‘ ‘ the behavior of two representative simulation studies.

One of the most notable impacts of the spatial correlation is
on network stability. A representative reactive routingtpcol
for a mobile ad-hoc network, Dynamic Source Routing (DSR),
detects a route failure after consequent link failuresn tree
issues DSR route discovery packets. As mobile nodes move,
0 drel —— 1 the path loss and the link qualities between nodes keep
0.2 ‘ ‘ i M— changing, which causes route failure and rediscovery ggoce

0 500 1000 1500 2000 . . . .
number of inks We mvesuga_tgd how many times thg re-discovery process
occurs in the i.i.d. log-normal shadowing path loss model,
Fig. 10: Path loss stability as the number of generated lingich is commonly used in simulators such as NS-2, and
increases the DR path loss model in a general mobile ad-hoc network
scenario. The scenario includes 20 nodes in a 30mx30m
topology in which each node moves at maximum speed of
Figure 11a shows a heatmap of the measured RSS. The tdffsec. To make sure that the network includes connection
number of used links is about 900. The unmeasured areas &ié disconnection through multi-hops, the path loss expone
shown as white. To show our proposed method can regeneiigtget to 5. Since the nodes move, a Rayleigh fading channel
a RSS map with small number of measurement data, eused in addition to the path loss model to account for multi
reproduce a heatmap of RSSI with 1/4 sample measuremgath fading.
that are randomly selected. Figure 11b that the proposed-ig. 12 shows the number of route discovery DSR packets
method can regenerate realistic path loss. normalized by the number of data packets. When the DR path
loss model is used, the link quality of a pair of mobile nodes
will change slowly, because the path loss is highly coreslat
with the distance. Thus, a small change of location probably
The path loss models the long time average of the signat causes a route failure. However, i.i.d shadowing paihk lo
power; it has substantial impact on the simulation resultsiodel does not guarantee the consistent link quality assnode
affecting the signal and interference components of SINiR amove even slowly, because the path loss for different looati
how they change as the nodes move. This impact percolaesletermined independently. As a result, the i.i.d shadgwi
up the protocol stack to the routing and application layerpath loss model overestimates route failures and re-desgov
the use of inaccurate path loss models can lead to substari@cesses as the standard deviation increases, while the DR
inaccuracy in the simulation. To demonstrate this effect, model shows very stable behavior. A less stable routingrlaye

autocorrelation

E. Impact on Network Stability
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will re_duce the. throughput, be_:cause the time a_md .chanr}gghm,mld = V/10(=90dBm=30)/10  Since the signal strength
capacity are waisted by the routing overhead. Our invettiga ynder the Rayleigh fading channel fluctuates over time, the
of the impact on the throughput showed that using i.igacket delivery ratio increases gradually around the Hulels
shadowing channel model will underestimate the throughpsd the attenuated signal strength due to path loss increases
by up to 42%. This result highlights the significance of usingote that small difference in path-loss results in big défece
correct channel model in a simulation-based research. in PDR. For example, if the packet size is 1024, if the PDRs
when the attenuated signal = -50dBm and -40dBm are 0.4 and
0.8 respectively.

This section shows the impact of the realistic path-l0ss The impact of realistic path loss on throughput can be shown
model on throughput when we feed it to a temporally fadingy the impact of different PDR on throughput. We consider
model (Rayleigh fading). The symbol loss rate in the Rayieiga two-hop connection A-B-C. We keep the PDR of A-B at
fading channel is1 — e~ *", wherep = w Figure 14 a relatively high (0.83) and investigate the throughputhes t
depicts the delivery ratio of packet size of 30, 512, andDR of B-C varies. Figure 15 depicts the impact of the various
1024 bytes. X-axis represents attenuated signal strength DR on the throughput when various fading rapiditf, )
to path loss,Rrars = V10(A@=30)/10 and the threshold of the Rayleigh fading channel is used for each hop. If the

F. Impact on Throughput



PDR of the second hop are 0.4 and 0.8, the throughput @& D. I. Laurenson, “Indoor radio channel propagation nitinig by ray

25kbps and 150kbps when second hopis = 12Hz, i.e.,

the throughput difference is up to 600%. This result SUEPOIH 41

the significance of estimating accurate path-loss in a rholp

ad-hoc connection.

VI. CONCLUSION

(18]

[16]

Accurate and efficient channel models are a critical need for

improving the fidelity of wireless network simulation. Inigh

17]

paper, we considered the problem of path loss channel models
this is the component of the channel model that estimatidg]

the long term average signal power between a sender and a

receiver. Path loss is affected by the RF shadows in the en-
vironment. Existing stochastic models are inaccurate Usea [19]

they do not consider spatial correlation. In addition, tlaeg

difficult to configure to parameters representative of stiali
environments such as corridors or building shadows. On €]
other hand, accurate models can be built using either ddtail
site-surveys (requiring a prohibitive number of measumme
experiments) or ray tracing (which is computationally veri?1l
difficult and requiring precise GIS). Thus, there is a need fo

accurate and efficient path loss models.

(22]

In response to this need, we proposed a novel solution

for a geographically accurate, efficient, and flexible pats|

model. The key idea of the proposed model is to estimate a
plausible value for new channels using regression fromhyear 3
known channels. The algorithm uses a highly efficient doub&!

regression procedure: in the first step, we use regression to

estimate a channel by moving one of the communication enéf]
while the second step moves the other. The known channels

can be those obtained from measurement experiments, r@agt

tracing, or previous models generated by the simulation. By
using regression, we preserve spatial correlation as meshsu

in previous studies, leading to plausible channel models.

REFERENCES

[1] D. Kotz, C. Newport, and C. Elliott, “The mistaken axiomswifeless-

network research,” Dept. of Computer Science, Dartmouth egell

Tech. Rep. TR2003-467, July 2003.

[26]

[27]
(28]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
[9]
[10]

[11]
[12]

L. Perrone and Y. Yuan, “Modeling and simulation best fices for
wireless ad hoc networks,” iBimulation Conference, 2003. Proceedings
of the 2003 Wintervol. 1, Dec. 2003, pp. 685-693.

J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. K and
L. F. Perrone, “Simulation validation using direct execnotf wireless
ad-hoc routing protocols,” ifProc. PADS 2004.

D. Couto, “A high-throughput path metric for multi-hop wless rout-
ing,” in MobiCom 2004.

J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architece and
evaluation of an unplanned 802.11b mesh network,MiobiCom '05:
Proceedings of the 11th annual international conference Mobile
computing and networkind2005.

A.Adya, P.Bahl, J.Padhye, A.Wolman, and L.Zhou, “A mublidio unifi-
cation protocol for ieee 802.11 wireless networks,” Miafbfkesearch,
Tech. Rep., Jul. 2003.

R.Draves, “Comparison of routing metrics for static miitip wireless
networks,” inSIGCOMM 2004.

R. Punnoose, P. Nikitin, and D. Dtancil, “Efficient simtitan of ricean

— Fall, Sep. 2000.
I1SI, “ns: Change history,” http://www.isi.edu/nsnars/@HANGES.html.

T. S. RappaportWireless Communications : Principles and Practice[36]

Prentice Hall, 2002.

W. Jakes Jr.Microwave Mobile communications Wiley, 1974.

S. ZVANOVEC, P. PECHAC, and M. KLEPAL, “Wireless lan metrks
design:site survey or propagation modeling?” \HRELESS LAN NET-
WORKS DESIGN2003.

[29]
(30]

(31]

(32
(33]
(34]

fading within a packet simulator,” iMehicular Technology Conference [35]

tracing techniques,” Ph.D. dissertation, The UniversityEdinburgh,
1994.

M. Nidd, S. Mann, and J. Black, “Using ray tracing forestpecific in-
door radio signal strengthanalysis,”Vehicular Technology Conference,
1997 IEEE 47thvol. 2, May 1997, pp. 795 — 799.

G. E. Athanasiadou and A. R. Nix, “A novel 3-d indoor rageing
propagation model:the path generator and evaluation ofowaband
and wide-band predictions,” lEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY vol. 49, july 2000.

M. Gudmundson, “Correlation model for shadow fading in ff@badio
systems,” inElectron. Lett, vol. 27, Nov. 1991, pp. 2145-2146.

N. Patwari, Y. Wang, and R. O'Dea, “The importance of the
multipointto -multipoint indoor radio channel in ad hoc neth®”
2002. [Online]. Available: citeseer.ist.psu.edu/pat@2importance.html
N. Jalden, P. Zetterberg, B. Ottersten, A. Hong, and IRorifa, “Corre-
lation properties of large scale fading based on indoor nreasents,”
in Wireless Communications and Networking Conference, 20CR&/
2007 IEEE March 2007, pp. 1894-1899.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seetjgne r*-
tree: an efficient and robust access method for points andnglets,”
in INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
ACM, 1990, pp. 322-331.

J.-M. Dricot and P. D. Doncker, “Integrated ad-hoc aredliudar net-
working in indoor or faded environments,” IlVCMC ’'09: Proceedings
of the 2009 International Conference on Wireless Commitioics and
Mobile Computing New York, NY, USA: ACM, 2009, pp. 333-337.
A. N. Zhenyu Wang, Eustace K. Tameh, “Simulating coresat
shadowing in mobile multihop relay/ad-hoc networks,” 20@Bnline].
Available: http://ieee802.org/16

J. Robinson, R. Swaminathan, and E. W. Knightly, “Assesst of
urban-scale wireless networks with a small number of measutsthen
in Proceedings of the 14th ACM international conference on
Mobile computing and networking ser. MobiCom '08. New
York, NY, USA: ACM, 2008, pp. 187-198. [Online]. Available:
http://doi.acm.org/10.1145/1409944.1409967

A. Konak, “Estimating path loss in wireless local aredawwmrks using
ordinary kriging,” inWinter Simulation Conference (WSC), Proceedings
of the 2010 Dec. 2010, pp. 2888 — 2896.

|. Stepanov, D. Herrscher, and K. Rothermel, “On the impHcradio
propagation models on manet simulation resultsjiversity Stuttgart,
Fakultat 5, Germany, Computer Science Archi2e05.

M. Catedra, J. Perez, F. Saez de Adana, and O. GutietEicient
ray-tracing techniques for three-dimensional analysesopfgation in
mobile communications: application to picocell andmicrocedirsarios,”
in IEEE Antennas and Propagation Magazjmgpr 1998, pp. 15-28.

J. Dricot and P. Doncker, “High-accuracy physical layeodel for
wireless network simulations in ns,” itnternational Workshop on
Wireless Ad-hoc Network2004. [Online]. Available: citeseer.ist.psu.
edu/dricotO4highaccuracy.html

V. Sridhara and S. Bohacek, “Realistic propagation $ation of urban
mesh networks,Computer Networksvol. 51, no. 12, 2007.

Y. Xu and W.-C. Lee, “Exploring spatial correlation fdink quality
estimation in wireless sensor networks,”"RERCOM ’'06: Proceedings
of the Fourth Annual IEEE International Conference on Paiva Com-
puting and Communications Washington, DC, USA: IEEE Computer
Society, 2006, pp. 200-211.

S.O.Rice, “Mathematical analysis of random noidg€ll System Tech-
nology Journal vol. 23,24, pp. 282-332,46-156, 1944,1945.

M. Patzold, U. Killat, F. Laue, and Y. Li, “On the staiisal properties of
deterministic simulation modelsfor mobile fading channel&hicular
Technology, IEEE Transactions owol. 47, pp. 254 — 269, Feb. 1998.
X. Cai and G. B. Giannakis, “A two-dimensional channahsiation
model for shadowing processe#fEE Trans. on Vehicular Technology
November 2003.

|. StatSoft, “General regression models (grm),” Wehsit@84, http://
www.statsoft.com/textbook/stgrm.html.

A. Gehring, M. Steinbauer, |. Gaspard, and M. Grigatmitrical
channel stationarity in urban environments,”"B®MCGC 2001.

G. Gaertner and V. Cahill, “Understanding link quality802.11 mobile
ad hoc networks,|IEEE Internet Computingvol. 8, no. 1, 2004.
Wildpackets, “Converting signal strength percentage dbm
values,” 2002. [Online]. Available: http://www.wildpaets.com/
elements/whitepapers/Convertir®gnal Strength.pdf

C. Phillips and E. W. Anderson, “CRAW-
DAD trace cu/cuwart/2010/path;oss(v.2011 —
10 — 24), Downloaded from hittp :
//crawdad.cs.dartmouth.edu/cu/cuq,art/2010/pathjoss,

Oct. 2011.



