
A Difference Resolution Approach to

Compressing Access Control Lists

James Daly Alex X. Liu Eric Torng

Department of Computer Science and Engineering

Michigan State University

East Lansing, Michigan 48824-1226

{dalyjame, alexliu, torng}@cse.msu.edu

Abstract—Access Control Lists (ACLs) are the core of many
networking and security devices. As new threats and vulnerabil-
ities emerge, ACLs on routers and firewalls are getting larger.
Thereore, compressing ACLs is an important problem. In this
paper, we propose a new approach, called Diplomat, to ACL
compression. The key idea is to transform higher dimensional
target patterns into lower dimensional patterns by dividing the
original pattern into a series of hyperplanes and then resolving
differences between two adjacent hyperplanes by adding rules
that specify the differences. This approach is fundamentally
different from prior ACL compression algorithms and is shown
to be very effective. We implemented Diplomat and conducted
side-by-side comparison with the prior Firewall Compressor
algorithm on real life classifiers. The experimental results show
that Diplomat outperforms Firewall Compressor most of the time,
often by a considerable margin. In particular, on our largest
ACLs, Diplomat has an average improvement ratio over Firewall
Compressor of 30.6%.

I. INTRODUCTION

A. Background and Motivation

Access Control Lists (ACLs) are the core of many net-

working and security devices, such as routers and firewalls,

which perform services such as packet filtering, virtual private

networks (VPNs), network address translation (NAT), qual-

ity of service (QoS), load balancing, traffic accounting and

monitoring, differentiated services (Diffserv), etc. A packet

can be viewed as a d-tuple over d fields with finite, discrete

domains. For IP packets, d is typically 5 and the relevant

fields are source IP address, destination IP address, source port

number, destination port number, and protocol type, where

the domains of these fields are [0, 232 − 1], [0, 232 − 1],
[0, 216−1], [0, 216−1], and [0, 28−1], respectively. An ACL is

specified as a sequence (i.e., ordered list) of predefined rules.

Each rule is specified in the form 〈predicate〉 → 〈decision〉.
The 〈predicate〉 over packet fields F1, F2, · · · , Fd is typically

specified as (F1 ∈ S1)∧(F2 ∈ S2)∧· · · ,∧(Fd ∈ Sd). If each

Si is specified as a range, we call the ACL a range-ACL. If

each Si is specified as a prefix, we call the ACL a prefix-

ACL. The 〈decision〉 of a rule can be accept, or discard, or

a combination of these decisions with other options such as

a logging option. An ACL is essentially a function from the

space of legal packets to a set of possible decisions. When

a packet arrives at a router, the router extracts the relevant

field values to form a search key and searches the ACL to

find the first rule that the search key matches. The decision

of this rule determines the appropriate action to take upon the

packet. The rules in an ACL often conflict, which means that

a packet may match multiple rules and these rules may have

different decisions. The way that ACLs resolve conflicts is to

follow the first match principle: for any packet, the decision

for the packet is the decision of the first packet that the packet

matches.

In this paper, we focus on the ACL Compression Problem

for range-ACLs: given a range-ACL L, find another equivalent

range-ACL L′ so that the number of rules in L′, denoted |L′|,
is as small as possible. This problem has many motivations.

First, as new threats and vulnerabilities emerge, ACLs on

routers and firewalls are getting larger. For example, because

the ACLs used for Quality of Services on routers are often

automatically generated, they tend to be huge. Second, in the

Open Flow architecture, which is gaining more popularity and

real deployment, networking devices typically need to handle

a large number of ACL-like rules; thus, compressing such

ACL-like rules is very helpful for managing and optimizing

such devices. A number of network system management tools,

such as Yu et al.’s DIFANE work [15] and Sung et al.’s work

[13], have used the prior ACL compression algorithm called

Firewall Compressor to reduce system complexity. Third,

some networking and security devices have strict limits on the

number of rules that can be stored. For example, NetScreen-

100 only allows ACLs with 733 rules. Fourth, fewer ACL

rules often leads to higher system performance. As ACLs are

used to examine every incoming and outgoing packet, such

performance is critical for network throughput.

B. Summary and Limitations of Prior Art

Optimal polynomial time algorithms have been developed

for 1-dimensional range-ACL compression (Top Coder Chal-

lenge in 2003, [2], [10]) and prefix-ACL compression [4],

[14]. Applegate et al. proved that the 2-dimensional range-

ACL compression problem is NP-hard [2]. The complexity

of 2-dimensional prefix-ACL compression is still unknown.

The only approximation algorithm with a non-trivial approx-

imation bound is one given by Applegate et al. which has

an approximation ratio of O(min(n1/3, OPT 1/2)) for range-

ACL compression, where n is the number of rules in the input

rule list and OPT is the number of rules in the optimal rule

list [2].

Very few prior algorithms work for more than two di-

mensions. Liu et al.’s Firewall Compressor algorithm [10]

handles this by converting the rule list into a canonical firewall

decision diagram and applying an optimal weighted algorithm

to each of the one-dimensional patterns formed between two

layers of the diagram. In their algorithm, the “decision” used

is actually the rule list that is produced by lower levels,

which is replicated for each of the corresponding rules in

the higher dimension. However, Firewall Compressor only

considers whether or not the two lower rule lists are the same.

If two lists are very similar, but not the same, both lists are

replicated in their entirety.

C. Proposed Approach

We present a new approach, called Diplomat, to ACL

compression. The key idea is to transform higher dimensional

target patterns into lower dimensional patterns by dividing the

original pattern into a series of hyperplanes. It then selects two

adjacent planes and resolves their differences by adding rules

to specify where the two planes differ. After resolution, the

two planes are compatible and can be merged into a single

plane. For example, in Figure 2, a single white rule in the

middle row would allow it to be merged with the top row.

Diplomat repeats this process until all of the planes have been

merged together into a single plane. Diplomat then repeats the

process on the reduced pattern. After recursive applications,

the pattern is reduced to a 1-dimensional pattern for which

optimal algorithms already exist. In terms of construction,

the rules generated by each resolution step and the final

compression step are joined together into one rule list with

the rules from earlier steps appearing before the rules from

later steps. Thus, any section specified by an earlier resolution

cannot be undone by a later resolution. This is what allows

Diplomat to consider the result of each resolution to be one

homogeneous region. We illustrate this process for a two-

dimensional range-ACL in Figure 1. We call this algorithm

Diplomat because it compresses a rule list by repeatedly

“resolving differences” between adjacent planes.

Fig. 1. Overview of Diplomat in two dimensions

Figure 2 shows that for an example input ACL, Firewall

Compressor produces more rules than Diplomat.

Note that Diplomat is designed to be run offline so that

network managers do not need to interact with the compressed

ACL. Rather, the manager can interact with the rule list in

a comfortable and understandable form. This can then be

input into Diplomat, which will create the compressed rule

list actually used by the network device.

Firewall Compressor Diplomat

0

1

2

0 1 2 3 4 5

x [1, 1] !y [4, 4] !"#$%&

x [1, 1] !"! [0, 5] !"#$%&

x [0, 2] !"! [1, 1] !"#$%&

x [0, 2] !"! [4, 4] !"#$%&

x [0, 2] !"! [0, 5] !"#$%&

x [1, 1] !"! [0, 3] !"#$%&

x [0, 2] !"! [1, 1] !"#$%&

x [0, 2] !"! [4, 4] !"#$%&

x [0, 2] !"! [0, 5] !"#$%&

Fig. 2. A two-dimensional pattern divided into three rows

D. Key Contributions

The key contribution of this paper is our new ACL com-

pression approach that is totally different from all prior ACL

compression algorithms. This novel approach is also very

effective. We implemented Diplomat and conducted side-by-

side comparison with the prior Firewall Compressor algorithm

on real life classifiers. The experimental results show that

Diplomat outperforms Firewall Compressor most of the time,

often by a considerable margin. In particular, on our largest

ACLs, Diplomat has an average improvement ratio over Fire-

wall Compressor of 30.6%.

The rest of this paper is organized as follows. First, we

review related work in Section II. Second, we present key

definitions and some fundamental results in Section III. We

then describe how Diplomat is applied to range-ACLs in

Section IV. We cover the theoretical approximation bounds

in Section V and the practical experimental results in Section

VI. We conclude the paper by summarizing our results and

discussing some open problems in Section VII.

II. RELATED WORK

The 2-dimensional range-ACL compression problem was

proven to be NP-hard in [2]. Whether the prefix-ACL problem

is NP-hard is currently open. The 1-dimensional case of both

problems is in P.

Applegate et al. [2] presented an algorithm for compressing

2-dimensional range-ACLs. For the special case of strip rules

where each rectangle spans the entire canvas in one of the two

dimensions and only 2 colors, their algorithm is optimal. They

then describe a way to divide the ACL into regions which can

each be solved with their strip rule solver. When applying their

solution to the general 2-dimensional range-ACL problem,

they gave a O(min(n1/3, OPT 1/2))-approximation algorithm.

They also adapt their methods to prefix-ACL compression

which adds a factor of w2 to their approximation bounds where

w is the number of bits in the prefix word size. This is the

only approximation result we are aware of for either range

or prefix-ACL compression for 2 or more dimensions. We

adapt their methods in Section V to demonstrate that some

versions of Diplomat can achieve the same bounds. Finally,

they observe that the 1-dimensional range-ACL version was

given as StripePainter in the 2003 Google TopCoder challenge

and that a O(Kn3) running time can be achieved, where K
is the number of colors [1].

For the 1-dimensional prefix-ACL compression problem,

Draves et al. gave an optimal algorithm based on tries [4],

and Suri et al. gave an optimal algorithm based on dynamic

programming [14]. Suri et al. also gave an optimal dynamic

programming solution for the special case where two prefix

rectangles in the ACL can intersect only if one is fully

contained within the other.

Liu et al. presented their own optimal 1-dimensional range-

ACL compression solution based on dynamic programming

methods [10]. They then applied this algorithm to each of the

layers of a firewall decision diagram [6] to create a solution

for any number of dimensions. In their later paper [9], they

apply a similar idea using the optimal 1-dimensional prefix-

ACL solver from [14] to expand their solution to operate

on both range and prefix-ACLs. In [11], Liu et al. define

ACL compressor which considers ACLs where some fields

are ranges and some fields are prefixes. In this paper, we use

Firewall Compressor to optimally compress the 1-dimensional

range-ACLs which Diplomat generates as subproblems.

Finally, the Rectilinear Polygon Cover (RPC) Problem,

which has been well explored in prior work [3], [5], [12], can

be thought of as a special case of the range-ACL compression

problem where the color of the last rule must be white and the

color of all prior rules must be black. However, RPC is very

different than range-ACL because the ability to use rectangles

with different colors leads to much shorter rule lists. Thus,

we cannot leverage any existing RPC algorithms to help with

range-ACL compression.

III. DEFINITIONS AND NOTATIONS

Let K be a finite set of decisions, such as {yes, no}, {accept,

deny}, or {0, 1, 2, 3, 4}. A color c ∈ K is any one of those

decisions.

We define a canvas C as the Cartesian product of d finite

discrete dimensions, [0, n1 − 1] × · · · × [0, nd − 1]. A box

B ⊆ C is any region represented by a Cartesian product of

intervals. A pattern or coloring P : C → K assigns each point

in C a color in K. An incomplete pattern is a pattern that does

not define a color for some points in the canvas. Given two

incomplete patterns P1 and P2 that do not both assign colors

to any point in the canvas, P1 ∪ P2 is the pattern formed by

joining the two patterns P1 and P2.

A rule r : B → K assigns exactly one color c ∈ K to each

point in box B. A rule list L = {r1, . . . , rn} is an ordered

list of rules and |L| = n is the number of rules in L. A rule

list L assigns colors to points as follows: for any point p ∈ C,

L(p) is the value of ri(p) for the minimum i such that ri(p)
is defined. A rule list is complete if L(p) is defined for all

points p in the canvas and is incomplete otherwise. We use ℓ
to denote an incomplete rule list. We use the terms rule list

and classifier interchangeably to refer to both a rule list L
and the pattern defined by L. For a complete rule list L, we

call the color of rn the background color of L, and we can

Fig. 3. An Effective Grid Denoted by the Dashed Lines

assume without loss of generality that domain(rn) = C since

rn applies to all of C not covered by prior rules. For two

rule lists L1 and L2, L1 · L2 denotes the rule list formed by

appending L2 to the end of L1. We will also write ℓ ·P where

P is a pattern; in this case, the pattern implied by incomplete

rule list ℓ overrides P for points where both are defined.

Two rule lists are equivalent, L1 ≡ L2, if L1(p) =
L2(p) ∀p ∈ C. We denote the set of all rule lists equivalent to

P as 〈P 〉. L is an optimal rule list for a pattern P if L ∈ 〈P 〉
and |L| ≤ |L′| ∀L′ ∈ 〈P 〉. Our objective is to find an optimal

rule list for an input pattern P . This was shown in [2] to be

NP-hard for patterns of two or more dimensions, so we try to

find one as close to optimal as possible.

Given a pattern P , box B is P -monochromatic if P (p1) =
P (p2) ∀p1, p2 ∈ B. We can break C into monochromatic

boxes using Applegate et al.’s effective grid concept. Quoting

[2], “For any rectilinear pattern P , call a horizontal or vertical

line segment that separates and bounds two differently-colored

regions a boundary line. Extend each boundary line in both

directions so that it crosses the full canvas. We call the

resulting grid the “effective grid” for the pattern, and note

that all its grid cells will be monochromatic.” Without loss

of generality, we assume the input rule list L is converted

to the effective grid space, so C is the effective grid and ni

(1 ≤ i ≤ d) is one more than the number of boundary planes in

dimension i. We also order the dimensions so n1 ≤ · · · ≤ nd.

Applegate et al. also showed that ni ≤ 2n [2]. An example

of an effective grid can be seen in Figure 3.

IV. METHODOLOGY

We now formally describe the Diplomat classifier com-

pression algorithm. We first describe how we reduce our d-

dimensional pattern into a collection of (d − 1)-dimensional

patterns. Given a d-dimensional pattern P with a d-

dimensional canvas C = [0, n1−1]×· · ·×[0, nd−1], define the

(d−1)-dimensional canvas C′ = [0, n2−1]×· · ·× [0, nd−1].
We divide C into n1 copies of canvas C′ with C′

i being the

(d−1)-dimensional plane with f1 = i for 0 ≤ i ≤ n1−1. We

then create n1 patterns Pi for 0 ≤ i ≤ n1 − 1 where Pi is the

intersection of plane C′
i with the original pattern P . We define

pattern Pi on the (d − 1)-dimensional canvas C′ as follows:

for any point p ∈ C′, Pi(p) = P (i × p).
We create the resulting rule list L for C from our sequence

of n1 patterns Pi (0 ≤ i ≤ n1 − 1) by “merging” together

adjacent patterns until we are left with a single pattern and then

recursively solving that single pattern. More formally, let P[i,j]

denote some merging of patterns Pi to Pj inclusive. For any

point p ∈ C
′, P[i,j](p) = Pk(p) for some i ≤ k ≤ j. For any

p ∈ C′, we define pattern PC

[i,j] on C by setting PC

[i,j](k×p) =

P[i,j](p) if i ≤ k ≤ j; otherwise, PC

[i,j](k × p) is undefined.

Initially, P[i,i] = Pi ∀i ∈ [0, n1 − 1]. Initialize L to be the

empty rule list. While we have at least two patterns remaining

in our sequence of patterns, we select two adjacent patterns

P[i,j] and P[j+1,k] to be merged. We merge these two patterns

into a single pattern by providing extra information in a partial

rule list ℓ defined on C which is appended to L. Intuitively, ℓ
colors points where P[i,j] and P[j+1,k] differ; this allows the

two patterns to then be merged. Let ℓq be the partial rule list

used in the qth merger of patterns where 1 ≤ q ≤ n1−1. When

we have a single pattern P[0,n1−1] remaining, the rule list L is

the concatenation of partial rule lists ℓq for 1 ≤ q ≤ n1−1. We

then recursively solve the (d−1)-dimensional pattern P[0,n1−1]

which is then appended to L for our final solution. If d = 2
which means d − 1 = 1, we have reached our base case and

use the optimal one-dimensional solver in [10] to generate a

solution to P[0,n1−1].

To merge two adjacent patterns P[i,j] and P[j+1,k], we need

a resolver which we formally define as follows.

Definition 1. A resolver of P[i,j] and P[j+1,k] returns a partial

rule list ℓ defined on C and pattern P[i,k] defined on C′ subject

to the following constraints: ∀p ∈ C′, P[i,k](p) equals either

P[i,j](p) or P[j+1,k](p) and ℓ · PC

[i,k] ≡ PC

[i,j] ∪ PC

[j+1,k] .

We observe that if P[i,j] ≡ P[j+1,k] then P[i,k] will match

both lists and ℓ is the empty list. While a resolver is formally

the function that computes the partial rule list ℓ and the merged

pattern P[i,k], we also often refer to partial rule list ℓ as a

resolver and say that ℓ resolves P[i,j] and P[j+1,k].

Next, we review Firewall Compressor which is used as

a sub-program by our resolvers. We then formally present

several different resolvers to merge adjacent patterns and

schedulers to determine the merging order for patterns.

A. Firewall Compressor

We review here the 1-dimensional version of Firewall

Compressor from [10]. Given some input classifier L, compute

the effective grid of L and label the cells from 0 to n − 1.

Now consider the rule, ri that covers cell 0. Since this is the

leftmost border of the the pattern, no rule can extend past its

left border. Thus, ri can always be considered to be the last

rule since any rule that passes under ri can be trimmed to the

right terminous of ri. However, many rules might be placed

on top of ri. They do not have to be contiguous; it may be

better to have two sections be separated by a region where ri
is exposed. To this end, we try the various places, x where

ri can be exposed to create two smaller problems: one for

the region [1, x− 1] that rests upon ri and one for [x, n− 1].
We solve both sets separately and then go back and extend ri
so that it covers cell 0 from under the first block. We observe

that the only possible locations for x are cells within [0, n−1]

where color(0) = color(x). We try each of those cells and

select whichever one minimizes the total cost.

B. Resolvers

We first define two different types of resolvers that constrain

the type of scheduler Diplomat can use.

Definition 2. An in-plane resolver is a resolver where all of

the rules in ℓ correspond to one of the two patterns being

merged. Stated another way, all the rules in ℓ come from the

canvas C′ corresponding to only one of the two patterns being

merged. A general resolver has no constraints placed upon the

rule source.

With an in-plane resolver, the resulting merged pattern will

be identical to the pattern that is not the source of the rules in

ℓ. With a general resolver, the merged pattern may be a new

pattern that is different from either of the two input patterns.

The general resolver has the advantage that ℓ can be smaller

since we have more flexibility in resolving differences between

the two patterns. The in-plane resolver has the advantage that

because the resulting pattern will be one of the input patterns,

the scheduler can use dynamic programming. We now describe

our efforts to develop fast and effective resolvers. We begin by

giving optimal general and in-plane resolvers for rows (one-

dimensional planes) and then give heuristic higher dimensional

resolvers.

1) Optimal one-dimensional resolvers: In this section, C′

is a row. We use Rt and Rb to correspond to the two patterns

P[i,j] and P[j+1,k] that are being merged. We use Rt[i, j]
and Rb[i, j] to refer to the sub-pattern in row Rt and Rb,

respectively, between columns i and j. Both resolvers we

present use the optimal one-dimensional version of Firewall

Compressor (FC) in [10] as a subroutine. For completeness,

we review Firewall Compressor in the the appendix. Proofs of

optimality for the resolvers can be found in Section V.

a) Optimal General Resolver: Here, we present an opti-

mal way to merge Rt and Rb between columns 0 and k. Let

ℓk denote the partial rule list returned by this optimal solution,

let Ck = |ℓk|, and let Pk denote the resulting pattern that is

returned. If Rt[k] = Rb[k], then ℓk = ℓk−1, Ck = Ck−1, and

Pk = Pk−1 ∪ Rt[k] as there are no differences in column

k. Otherwise, there is a difference between Rt and Rb in

position k. This means ℓk must include at least one rule

that covers either Rt[k] or Rb[k]. We prove in Section V-A

that we can restrict our attention to resolvers that cover only

Rt or Rb from column k back to some column s where

0 ≤ s ≤ k. This is then combined with an optimal solution

up to column s− 1. We consider all possible choices of this

split point s in the following description and set C−1 = 0,

ℓ−1 = ∅, and P−1 = ∅ for the case where s = 0. Then

Ck = mins(Cs−1 + min(|FC(Rt[s, k])| , |FC(Rb[s, k])|))
and Sk = the corresponding value of s. Now, using ~S, we

build the solution ℓk, Pk. If Rt[k] = Rb[k] then ℓk = ℓk−1

and Pk = Pk−1 ∪ Rt[k]. Otherwise, we add the rules from

the appropriate solution FC(Rt[Sk, k]) or FC(Rb[Sk, k]) to

ℓSk−1 to form ℓk, and we add the other pattern for columns

Sk to k to PSk−1 to form Pk.

b) Optimal In-Plane Resolver: This version assumes that

all of the rules for ℓ have to come from Rt or Rb. Without

loss of generality, assume the rules come from Rt. Then

P[t,b] = Rb. We use a dynamic programming technique similar

to the general resolver to create our rule list ℓ. Since we have

already determined that P = Rb we do not need to worry

about computing P . Furthermore, since we know no rules for

ℓ can come from Rb, we only need to compute the partial

solutions in Rt.

2) Higher Order Resolvers: If d ≥ 3, then we need to

merge two patterns P1 and P2 that are (d − 1)-dimensional

hyperplanes. This is more complicated than merging two rows.

In particular, we have an optimal algorithm for compressing

1-dimensional patterns, but coloring 2-dimensional patterns is

NP-hard as shown in [2]. This difference in complexity carries

over to merging patterns.

We use two general methods for performing higher dimen-

sional merges. First, we use the FDD comparison algorithm

in [8] to find the differences between the two patterns.

We can then create ℓdif by enumerating the differences in

P1 or P2, whichever is smaller. Second, we find box, the

minimum bounding box surrounding all of these differences.

We then solve P1(box) and P2(box) using Diplomat. We

call the smaller of these two solutions ℓmbb. We then let

ℓ = min(ℓdif , ℓmbb). Both sets contain all of the differences

and so ℓ is a valid solution.

In both cases, we focus on in-plane resolvers as this allows

the use of a dynamic programming scheduler. However, we

can easily define general resolvers for both methods.

C. Schedulers

To complete the Diplomat algorithm, we need a scheduler

to determine an order for merging patterns. We present two

such schedulers. The first uses a greedy scheme and works

with any resolver while the second uses dynamic programming

to get better overall results but requires in-plane resolvers.

We can prove theoretical bounds for the greedy scheduler, but

the dynamic programming scheduler outperforms the greedy

scheduler in our experiments.

1) Greedy Scheduler: For the greedy scheduler, after every

merge, if we have j remaining patterns, we relabel them from

0 to j−1 so the remaining patterns are P0 through Pj−1. The

first method is very simple. Pick minj−2
i=0 Resolve(Pi, Pi+1)

and do that merge. Repeat until only one pattern remains.

The basic version would require O(n1) calls to Resolve for

each of the n1 − 1 merges. However, since only two compu-

tations change after each merge, we store the results and only

perform the required new merges after each merge. Overall, we

perform less than 2n1 calls to Resolve. For a d-dimensional

classifier, we can consider all possible permutations of the d
fields when performing the greedy scheduling.

Thinking more generally, there is no reason to perform

merges in only one dimension at a time. Instead, we can

greedily choose the best merge in any of the d dimensions

at any point in time. In particular, for d = 2, we find the

cheapest pair of rows or columns to merge. In section V,

we show how to use this rotational greedy schedule to create

an O(min(n1/3, OPT 1/2))-approximation for 2-dimensional

patterns.

2) Dynamic Programming Scheduler: We also present a

dynamic programming method that requires more upfront

work and, as a result, outperforms the greedy scheduler in

our experiments. For this scheduler, we retain the original

numbering for each pattern even as merges are performed.

Using an in-plane resolver such as the one in Section

IV-B1b, let MergeCost[i, j] = |Resolve(Pi, Pj)| ∀i 6= j ∈
[0, n1 − 1] where the returned pattern is Pi. This requires

O(n2
1) calls to Resolve. However, because the merged pattern

is always one of the original patterns, we do not need to do

any more merges.

We then define the following subproblem. Given interval

[l, u] for 0 ≤ l ≤ u ≤ n1 − 1, we find the minimum

cost for merging patterns Pl, . . . Pu together while having

Pr be the remaining pattern where l ≤ r ≤ u. We use

standard dynamic programming techniques to compute the

minimum cost solution to these O(n3
1) subproblems and the

corresponding optimal schedule of merges.

V. ALGORITHMIC ANALYSIS

We now prove some results about our algorithms. We first

prove that our one-dimensional resolvers are optimal. We then

prove some approximation results for some two-dimensional

implementations of Diplomat. Finally, we prove that dynamic

schedule Diplomat should outperform the current state of the

art algorithm, Firewall Compressor.

A. Optimal One-Dimensional Resolvers

In this section, we prove that our one-dimensional resolvers

are optimal.

We first prove that there are optimal one-dimensional re-

solvers in which no rule spans both rows.

Theorem 1. Let ℓ be a rule list that resolves Rt and Rb,

Then there exists a rule list ℓ′ that also resolves Rt and Rb

such that ℓ′ ≤ ℓ and that no rule r ∈ ℓ′ spans both rows. In

particular, there is an optimal resolver with this property.

Proof: We prove this result by contradiction. Let ℓ be an

optimal resolver with the minimum possible number of rules

k that span both rows. If k = 0 then ℓ = ℓ′ and we are done.

Otherwise, let ri be the last rule in ℓ spanning both rows.

We first consider the case where there is no rule rj with

j > i and ri ∩ rj 6= ∅. In this case, we create a new rule list

ℓ∗ from ℓ by replacing ri with rt = ri ∩Rt. Any point in Rt

covered by ri is also covered by ri ∩Rt, so ℓ∗ still resolves

all of the columns. For any point p ∈ Rb, either some rule rk
with k < i defines p for both ℓ and ℓ∗ or no rule in ℓ∗ does.

Thus, there can be no color clash and ℓ∗ is still a resolver.

This means ℓ∗ is an optimal resolver with only k − 1 rules

that span both rows contradicting the definition of ℓ. Thus,

this case is not possible.

The case where all rj with ri ∩ rj 6= ∅ for j > i are in row

Rt can be shown to be impossible using the same analysis. The

reverse case where are all intersections occur in row Rb can

be handled similarly; the only modification is that we replace

ri with ri ∩Rb to form ℓ∗.

We now consider the last case where some later rules that

intersect ri are in row Rt and others are in row Rb. We first

trim all rules rj with j > i so that both its left and right end

points are not covered by any prior rules. Since we merely

removed the parts of rj covered by other rules, the resulting

rule list ℓ∗ is equivalent to ℓ. This may reduce the problem to

one of the above cases in which case we are done. If not, let

S be the set of rules rj in ℓ∗ with j > i that intersect ri and

let St ⊂ S be the subset in row Rt and Sb ⊂ S be the subset

in row Rb. Assume without loss of generality that r∗ ∈ St is

the first rule in S to appear scanning from left to right. Since

r∗ intersects ri, its right end point must be to the right of ri’s
end point given the trimming operation we performed earlier.

We then apply a second trimming operation and update ℓ∗ by

replacing all rules rj ∈ Sb with the portion of rj that is strictly

to the right of ri. This classifier still resolves Rt and Rb since

rt still covers any column that was formerly covered by rb.
We have thus reduced this case to the prior case where all

rules after ri that intersect ri are from one row, and the proof

is complete.

We next prove that there are optimal one-dimensional re-

solvers in which no column is covered by rules in both rows.

Theorem 2. Let ℓ be a rule list that resolves Rt and Rb. Then

there exists a rule list ℓ′ that resolves Rt and Rb such that

|ℓ′| ≤ |ℓ| and that for any i ∈ [0, nd − 1], either ℓ′(t, i) or

ℓ′(b, i) is undefined.

Proof: First, by Theorem 1, we can assume that ℓ has

no rule that occupies both rows. Let ℓ be an optimal resolver

with the minimum number of rules k in one row that overlaps

the horizontal range of any rule in the other row. If k = 0,

we are done. Otherwise, assume without loss of generality

that r∗ ∈ Rt is the first such rule when scanned left to right.

We create a modified rule list ℓ∗ by trimming all rules in Rb

that overlap the horizontal range of r∗, removing any that are

entirely contained within the range of r∗ (which cannot happen

or else ℓ is not optimal). The rule list ℓ∗ still resolves Rt and

Rb since ℓ∗ specifies values for all columns affected in row

Rt. However, because the modified rule r∗ does not overlap

any rules in Rb, ℓ∗ has a smaller k value contradicting the

definition of ℓ, and the result follows.

We now prove the optimality of our general one-

dimensional resolver.

Theorem 3. The Optimal Resolver algorithm described in

Section IV-B1a is an optimal one-dimensional resolver.

Proof: By induction on k, the length of the rows. The

base case k = 0 is trivial. Now assume this method produces

an optimal resolver ℓj for 0 ≤ j ≤ k. We now consider k+1.

If Rt[k] = Rb[k], then ℓk+1 = ℓk is clearly an optimal resolver

as it resolves all differences between the two rows in the first

k + 1 columns, and |ℓk+1| ≤ |ℓk|. Thus, by our induction

hypothesis, our one-dimensional resolver is an optimal one-

dimensional resolver for this case.

If Rt[k] 6= Rb[k], by Theorem 2 we restrict our attention

to optimal resolvers ℓk+1 in which no column is covered by

rules in both rows. Column k must be covered by some rule

since Rt[k] 6= Rb[k]. This means column k will be covered

by a rule ri in only Rb or Rt. Without loss of generality, let

us assume ri is only in Rt. By Theorem 2, it follows that

for some 0 ≤ q ≤ k that ℓk+1 must color Rt[q, k] and ℓk+1

does not color Rb[q, k]. Thus ℓ∗ will be an optimal resolver

ℓq−1 combined with an optimal coloring of Rt[q, k]. By our

induction hypothesis, the fact that Firewall Compressor will

compute an optimal coloring of Rt[q, k], and the fact we try

all possible values of q, our general resolver algorithm is an

optimal resolver that finds such a solution.

We also show that our one-dimensional in-plane resolver is

an optimal one-dimensional in-plane resolver.

Theorem 4. The Optimal In-Plane Resolver algorithm de-

scrubed in Section IV-B1b is an optimal one-dimensional in-

plane resolver.

Proof: We again induct on k, the length of the rows. The

base case k = 0 is trivial. Now assume this method produces

an optimal in-plane resolver ℓj for 0 ≤ j ≤ k. We now

consider k+1. If Rt[k] = Rb[k], then ℓk+1 = ℓk is clearly an

optimal in-plane resolver as it resolves all differences between

the two rows in the first k + 1 columns, and |ℓk+1| ≤ |ℓk|.
Thus, by our induction hypothesis, our in-plane resolver is an

optimal in-plane resolver for this case.

If Rt[k] 6= Rb[k], then ℓk+1 must color Rt[k]. It follows

that ℓk+1 must color Rt[q, k] for some 0 ≤ q ≤ k. Thus

ℓk+1 will be an optimal in-plane resolver ℓq−1 combined with

an optimal coloring of Rt[q, k]. By our induction hypothesis,

the fact that Firewall Compressor will compute an optimal

coloring of Rt[q, k], and the fact we try all possible values

of q, our in-plane resolver algorithm is an optimal in-plane

resolver that finds such a solution.

B. Two-Dimensional Approximation Results

In [2], the authors present their iterated strip-rule algorithm

and prove that it is a O(min(n1/3, OPT 1/2))-approximation

algorithm where n is the number of rules in the input list and

OPT is the size of the optimal solution. Here, we simplify

their algorithm slightly and generalize it to create a class of

approximation algorithms with the same approximation ratio.

We then show that some Diplomat variations belong to this

class.

We first define strip-rule patterns identified by Applegate et

al. [2].

Definition 3. A strip-rule pattern is a two-dimensional pattern

which can be created by a rule list where each rule spans an

entire row or column.

Applegate et al. prove several properties about strip-rule

patterns, the most important of which is that any 2 × 2 or

Fig. 4. A forbidden rectangle

3× 3 sub-array must have a monochromatic row or column.

Definition 4. A forbidden rectangle is a minimal subpattern

containing either a 2×2 or 3×3 subarray with no monochro-

matic rows or columns.

Any pattern that includes a forbidden rectangle is not a

strip-rule pattern.

We now define the class of strip solver compression algo-

rithms.

Definition 5. A strip solver is a compressor that on an m ×
n strip-rule pattern always returns a rule list with at most

k(m+ n) rules for some constant k.

On other m × n patterns, a strip solver may either return

such a rule list or it may fail. Any compressor that completes

on all values and satisfies the bounds on strip rule patterns can

be turned into a strip solver by checking to see if the limit was

met and failing if it does not.

Theorem 5. Diplomat with the rotational greedy scheduler is

a strip solver compressor with k = 1.

Proof: Let P be an arbitrary strip-rule pattern. We prove

this by induction on m+n, the sum of the number of rows and

columns in P . If m+ n ≤ 1, then we have the empty pattern

which Diplomat solves optimally with 0 rules. If m+ n = 2,

then we have a pattern with 1 row and 1 column which means

it is a single cell which Diplomat again solves optimally with

1 rule. If m + n = 3, then we have a pattern with either 1

row and 2 columns or 2 rows and 1 column which Diplomat

solves optimally using 2 rules.

Now consider m + n ≥ 4 and assume the inductive

hypothesis holds for all patterns where the sum of the rows

and columns is strictly smaller than m + n. Since P is a

strip-rule pattern, there must exist a monochromatic row or

column in P . Without loss of generality, assume there exists a

monochromatic row R∗. This row can be merged with either of

its neighbors at cost 1 by coloring R∗ with a single rule. Thus,

whichever pair of rows, Rt and Rb, that Diplomat selects, the

cost to merge them must be exactly one.

We now argue that P ′, the resulting pattern of merging

Rt and Rb, is still a strip-rule pattern. Assume otherwise

for contradiction. This implies that the row created by the

merge is part of a forbidden rectangle. However, since only

a single rule is placed in one of the rows, the merged row

must be identical to the other row. This implies that the

forbidden rectangle already exists in the original pattern P ,

a contradiction. Thus, P ′ is a strip rule pattern where the sum

of the rows and columns is at most m + n − 1. Thus, by

the inductive hypothesis, Diplomat with the rotational greedy

scheduler solves P ′ with at most m+n− 1 rules. Combining

this with the one rule used to merge Rt and Rb, we see that

Diplomat colors P with at most m+n rules and the inductive

case is complete.

We now define the class of iterated strip solver algorithms

using ideas from Applegate et al.. Iterated strip solver al-

gorithms can be applied to arbitrary 2-dimensional patterns

P . The first step is to partition P as follows. Let P be a

2h × 2w pattern for integers h and w and assume without

loss of generality that w ≥ h; we pad P with empty rows

and columns as needed if they are not powers of 2. For each

integer q ∈ [1, w], do the following. Partition P into vertical

sections of width 2q . Partition each section into a sequence of

disjoint blocks B1, B2, . . . , where each block Bi is a maximal

height subpattern using the full width of the section in which

the strip solver returns a value. Apply a strip solver to each

block. For each value of q, form a solution by taking the

union of solutions for each block defined by q. Because the

blocks are disjoint, the solutions for each block are completely

independent. The final solution is the best of the w different

solutions for each width 2q.

Applegate et al. prove the following result.

Lemma 1. Suppose there are r disjoint forbidden rectangles

in a 2-dimensional pattern P . Then OPT (P) ≥ r/4.

Proof: Applegate et al. give a proof for this in [2].

The intuition is that the first rule to include any corner of

a forbidden rectangle must itself have a corner within that

forbidden rectangle.

We now prove an approximation bound for any iterated strip

solver algorithm.

Theorem 6. For any pattern P , any iterated strip solver is a

O(kmin(n1/3, OPT 1/2))-approximation algorithm.

Proof: Let there be a total of b+2q blocks, 2q blocks for

the vertical sections plus b additional blocks added because of

sections that cannot be done by the strip solver. For any pair of

vertically adjacent blocks, there must be at least one forbidden

rectangle. Otherwise, the two blocks would together be a strip

rule pattern and the strip solver would have returned a value.

While some of the forbidden rectangles could overlap, if two

pairs are disjoint then their forbidden rectangles must also be

disjoint. Thus, there are at least b/2 forbidden rectangles.

TotalCost = k
∑

Bi
(Width(Bi) +Height(Bi))

= k
∑

Bi
Width(Bi) + k

∑
Bi

Height(Bi)

= k(b + 2q)2
w

2q + k(2q2h)
= k(b2w−q + 2w + 2q+h)
≤ k(OPT 2/2q + OPT + 2qOPT)

Since we try many values of q, we can pick the one that

minimizes the above expression. If we let 2q =
√
OPT we

get Cost ≤ k(OPT +2OPT 3/2) = O(kOPT 3/2) and so the

whole thing is a O(k
√
OPT)-approximation.

We can choose to use L if it is better than our output

classifier. Now assume OPT ≥ |L|2/3 = n2/3. In this

case, |L|/OPT ≤ n1/3. Further, the two bounds are equal

if OPT = n2/3 and the result follows.

Corollary 1. Diplomat with the rotational greedy scheduler

is a O(min(n1/3, OPT 1/2))-approximation algorithm.

Proof: The result follows immediately from Theorem 5

and Theorem 6.

C. Comparison with Firewall Compressor

We now show that on two-dimensional patterns, Diplomat

with a dynamic programming scheduler produces a smaller

rule list than Firewall Compressor.

Theorem 7. Given some two-dimensional pattern P , let

D be the rule list produced by Diplomat with a dynamic

programming scheduler and F be the rule list produced by

Firewall Compressor. Then for all P , we have |D| ≤ |F |.
Proof: We prove this by induction on the number of rows

m in P . As a base case where m = 1, a 1 × n pattern takes

the same number of rules for both Diplomat and Firewall

Compressor as both use an optimal one-dimensional solver.

We now consider patterns P with m ≥ 2. Both Diplomat and

Firewall Compressor eliminate one row from P to create an

m − 1 row pattern. Let R∗ be the row removed by Firewall

Compressor with cost k and P ′ be the resulting m − 1
row pattern. The key observation is that Diplomat considers

removing all rows including R∗; more precisely, Diplomat

considers merging R∗ with each of its neighboring rows using

rules that only color R∗. When Diplomat considers removing

row R∗, its cost c for doing so is at most k because one option

that Diplomat considers is coloring all of R∗. Furthermore,

because Diplomat uses an in-plane resolver, the resulting m−1
row pattern is also P ′. By our inductive hypothesis, Diplomat

will color P ′ with smaller total cost than Firewall Compressor

will color P ′. Thus, one choice for Diplomat with dynamic

programming has cost no more than Firewall Compressor’s

cost. Since Diplomat chooses the lowest cost solution, the

result follows.

Theorem 7 does not necessarily hold when we include

redundancy removal and other post-processing steps. That is,

while Theorem 7 guarantees that Diplomat with a dynamic

programming scheduler will produce a rule list with no more

rules than Firewall Compressor before performing redundancy

removal, no such guarantee can be made after performing

redundancy removal. In our experiments, we observe that

Firewall Compressor rarely but occasionally does outperform

Diplomat with a dynamic programming scheduler due to this

phenomenon.

VI. EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of Diplomat on

real-life classifiers. Specifically, we assess how much Diplomat

improves over Firewall Compressor, the current state of the

art compression algorithm [10]. We consider two variants of

TABLE I
SIZE OF LARGEST DIMENSION

Min Median Max

Small 5 14 37
Medium 24 66 139

Large 55 506 1805

Diplomat, Diplomat with a greedy scheduler and a general

resolver (GDip) and Diplomat with a dynamic programming

scheduler and an in-plane resolver (DDip).

A. Methodology

Both Diplomat variants and Firewall Compressor (FC) are

sensitive to the ordering of the five packet fields (source IP

address, destination IP address, source port, destination port,

and protocol). We run these algorithms using each of the

5! = 120 different permutations across all of the fields and

use the best of the 120 results for each classifier. We also use

redundancy removal [7] as a post-processing step.

We now define the metrics for measuring the effectiveness

of our two Diplomat variants. Let f and g denote compressors

and L denote a classifier. Let f(L) denote the resulting rule list

obtained by applying compressor f to L, and |L| is the number

of rules in L. The compression ratio of f on L is
|f(L)|
|L| , and

the improvement ratio of f over g on L is
|g(L)|−|f(L)|

|g(L)| . In

our results, we focus on the mean compression ratio and mean

improvement ratio given a set of classifiers S. It is desirable

to have a low compression ratio and a high improvement ratio.

We assess the performance of our algorithms using a set of

40 real-life classifiers which we first preprocess by removing

redundant rules. We divide this set into three smaller sets based

on the number of rules after running redundancy removal. The

small set contains the 17 smallest classifiers, the middle set

contains the next 12 larger classifiers, and the large set contains

the 11 largest classifiers. The classifiers in the large set all have

at least 600 rules after redundancy removal, with the largest

having more than 7600 rules.

In general, the larger classifiers also have larger effective

grids with the largest classifier having nd = 1805. Not all of

the fields strictly increase as the list size goes up. In particular,

the protocol field only uses a few distinct values across all

classifiers, usually 6 (TCP) and 17 (UDP). As such, n1 ≤ 9
for all classifiers. The range of nd for each set can be seen in

Table I.

B. Compression Results

The mean compression ratio for FC, GDip, and DDip on

each set of classifiers can be found in Table II. For FC, for

each classifier, we use the better of FC and the classifier

after redundancy removal. For GDip and DDip, for each

classifier, we use the best of the given method, FC, and the

classifier after redundancy removal. This allows us to assess

how much improvement is achievable by adding Diplomat to

the available suite of classifier compression algorithms. The

mean improvement ratio of using GDip or DDip over FC can

be found in Table III.

TABLE II
MEAN COMPRESSION RATIO

FC GDip DDip

Small 67.4% 67.4% 67.2%
Medium 50.8% 50.6% 45.7%

Large 44.5% 44.5% 30.2%
All 56.1% 56.1% 50.6%

TABLE III
MEAN IMPROVEMENT RATIO

GDip vs FC DDip vs FC

Small 0.0% 0.6%
Medium 0.3% 12.5%

Large 0.0% 30.6%
All 0.1% 12.4%

As we can see from the tables, GDip offers little improve-

ment over FC. In fact, GDip only has a better solution than

FC on one classifier in the medium set. In many cases they

provide equally good solutions but FC outperforms GDip on

21 of the 40 classifiers. As such, we conclude there is little

reason to use Diplomat with a greedy scheduler instead of or

in addition to Firewall Compressor.

On the other hand, our results show that DDip offers

significant improvement over FC. Specifically, on the medium

and large sets, DDip has mean improvement ratios of 12.5%

and 30.6%, respectively. On the small set, DDip offers only

modest improvement over FC and redundancy removal. Over-

all, DDip outperforms FC on 19 classifiers. Interestingly, FC

outperforms DDip on two classifiers. As we mentioned in

Theorem 7, redundancy removal may affect one method or the

other more depending on various factors. From these results,

we conclude that Diplomat with a dynamic programming

scheduler significantly outperforms Firewall Compressor, par-

ticularly as classifiers increase in size and complexity.

C. Efficiency

We implemented our algorithms using a combination of C#

and VB. We found that Diplomat runs in under a second on

the smaller sets, between a second to a minute on the medium

sets, and up to a few hours for some permuatations on the

largest sets. Our implementation has not been designed with

an emphasis on speed. In particular, multiple calls to Firewall

Compressor are made for each row when compared to any

other row. Remembering this result and other changes should

result in significant speed ups.

VII. CONCLUSIONS

In this paper, we presented Diplomat, an algorithm for com-

pressing range-ACLs. We first presented the general frame-

work and then presented concrete algorithms for implementing

this framework. In particular, we presented a greedy scheduler

that has guaranteed approximation bounds and a dynamic

programming scheduler that performs well in practice. We

implemented Diplomat and conducted side-by-side compar-

ison with the prior Firewall Compressor algorithm on real

life classifiers. The experimental results show that Diplomat

outperforms Firewall Compressor most of the time, often by a

considerable margin. In particular, on our largest ACLs, Diplo-

mat has an average improvement ratio over Firewall Com-

pressor of 30.6%. Furthermore, we generalized the Iterated

Strip Rule algorithm in [2] and used it to create a larger class

of algorithms that achieve the same approximation bounds.

We showed that the greedy scheduler Diplomat is a member

of this class. While we showed that some Diplomat versions

belong to this class, the dynamic programming scheduler that

we normally use does not.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

under Grant No. CNS-0916044 and the National Natural

Science Foundation of China (Grant No. 61272546).

REFERENCES

[1] Topcoder statistics. http://community.topcoder.com/tc?module=
Static&d1=match editorials&d2=srm150. Accessed 27/7/2012.

[2] David A. Applegate, Gruia Calinescu, David S. Johnson, Howard
Karloff, Katrina Ligett, and Jia Wang. Compressing rectilinear pictures
and minimizing access control lists. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms (SODA), January 2007.
[3] P. Berman and B. DasGupta. Complexities of efficient solutions of

rectilinear polygon cover problems. Algorithmica, 17:331–356, 1997.
[4] Richard Draves, Christopher King, Srinivasan Venkatachary, and Brian

Zill. Constructing optimal IP routing tables. In Proceedings of the IEEE

INFOCOM, pages 88–97, 1999.
[5] V. S. Anil Kumar and H. Ramesh. Covering rectilinear polygons with

axis-parallel rectangles. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), pages 445–454, 1999.

[6] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. In
Proceedings of the International Conference on Dependable Systems
and Networks (DSN-04), pages 595–604, June 2004.

[7] Alex X. Liu and Mohamed G. Gouda. Complete redundancy detection
in firewalls. In Proceedings of the 19th Annual IFIP Conference on

Data and Applications Security, LNCS 3654, pages 196–209, August
2005.

[8] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. IEEE

Transactions on Parallel and Distributed Systems, 19:1237–1251, 2008.
[9] Alex X. Liu, Chad R. Meiners, and Eric Torng. TCAM Razor: A

systematic approach towards minimizing packet classifiers in TCAMs.
IEEE/ACM Transactions on Networking, 18(2):490–500, 2010.

[10] Alex X. Liu, Eric Torng, and Chad Meiners. Firewall compressor:
An algorithm for minimizing firewall policies. In Proceedings of the

27th Annual IEEE Conference on Computer Communications (Infocom),
Phoenix, Arizona, April 2008.

[11] Alex X. Liu, Eric Torng, and Chad R. Meiners. Compressing network
access control lists. IEEE Transactions on Parallel and Distributed

Systems, 22:1969–1977, 2011.
[12] W. J. Masek. Some NP-complete set covering problems. 1978.
[13] Yu-Wei Eric Sung, Xin Sun, Sanjay G. Rao, Geoffrey G. Xie, and

David A. Maltz. Towards systematic design of enterprise networks.
IEEE/ACM Trans. Netw., 19(3):695–708, June 2011.

[14] Subhash Suri, Tuomas Sandholm, and Priyank Warkhede. Compressing
two-dimensional routing tables. Algorithmica, 35:287–300, 2003.

[15] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang.
Scalable flow-based networking with difane. SIGCOMM Comput.
Commun. Rev., 40(4):351–362, August 2010.

