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Abstract—In this paper, we propose a time-sensitive utility
model for delay tolerant networks (DTNs), in which each message
has an attached time-sensitive benefit that decays over time. The
utility of a message is the benefit minus the transmission cost
incurred by delivering the message. This model is analogous to
the postal service in the real world, which inherently provides
a good balance between delay and cost. Under this model, we
propose a Time-sensitive Opportunistic Utility-based Routing
(TOUR) algorithm. TOUR is a single-copy opportunistic routing
algorithm, in which a time-sensitive forwarding set is maintained
for each node by considering the probabilistic contacts in DTNs.
By forwarding messages via nodes in these sets, TOUR can
achieve the optimal expected utilities. We show the outstanding
performance of TOUR through extensive simulations with several
real DTN traces. To the best of our knowledge, TOUR is the first
utility-based routing algorithm in DTNs.

Index Terms—Delay tolerant networks, opportunistic routing,
utility.

I. INTRODUCTION

Utility-based routing is a special routing approach that is
based on a so-called utility composite metric [1], [2]. Each
message being delivered is assigned a fixed benefit as the
delivery reward. The utility is in terms of the benefit minus
the total transmission cost incurred by the message delivery.
The objective of utility-based routing is to maximize the utility
of each message delivery in a highly dynamic network. As a
result, this type of routing allows more important messages
to be delivered through more reliable routes at the expense of
higher delivery costs. Such a routing scheme is analogous to
the postal service in the real world (e.g., a high-value package
usually uses registered mail for reliability at a higher cost),
which provides a good balance between benefit and cost.

In this paper, we focus on utility-based routing in delay
tolerant networks (DTNs). Compared to traditional wireless ad
hoc networks, DTNs often experience intermittent connectivity
and even long-lasting disconnections due to the mobility of the
nodes. Probabilistic contact, time-varying benefit, and oppor-
tunistic forwarding are important factors in the DTN routing
design. However, these factors have not been considered in
current utility-based routing schemes.

To this end, we propose a time-sensitive utility model for
DTN routing problems. Each message has a time-varying ben-
efit, which linearly decays with time. The decay rate is called
the benefit decay coefficient. The utility is the time-varying
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Fig. 1. A simple DTN composed of four nodes. Each path from node s to
node d has an average delay and cost, labeled by ⟨average delay, cost⟩.
There are two messages with a linearly decreased benefit over time t. Utility-
based routing tries to achieve the maximum utility, i.e., benefit minus cost.
As a result, it will let the messages be forwarded along different paths.

benefit minus the transmission cost of the message. With each
message delivery, the utility will gradually decrease due to
continuous increases in delay and cost, and the message will
be discarded when its utility becomes zero, which corresponds
to the traditional deadline. The concept of time-sensitive utility
can thus be seen as a composite metric, which takes the benefit,
delay, and cost into account.

Like the previous utility model [1], [2], our time-sensitive
utility model can also let messages with different benefits and
benefit decay coefficients be delivered along different paths
by maximizing their utilities. For example, in a simple DTN
composed of four nodes, as shown in Fig.1, the message with
a time-varying benefit of 100−4t will be forwarded along path
s→ 1→ d. The corresponding utility, 100−4 · 5−20=60, is
larger than that of the other paths. Likewise, the messages with
the benefit 100−t will be forwarded along path s→2→d.

Under the time-sensitive utility model, routing to maximize
the utilities of message deliveries is very difficult, since
several intractable factors (including the time-varying benefit,
probabilistic contact, and cost) need to be considered. To
address this unique problem, we propose a concept of time-
varying optimal forwarding set. Each node only forwards
messages to the encountered nodes in these time-varying
sets, while ignoring the meetings with other nodes. Then,
we design a novel Time-sensitive Opportunistic Utility-based
Routing (TOUR) algorithm based on this concept, which can
achieve the optimal performance. The main contributions are
summarized as follows:

1) We introduce a time-sensitive utility model into DTN
routing, which can inherently balance the routing pro-
cess by letting important messages (with a higher ben-



s i d

t

ui

ud

us=b

{cs

-ud

 

=E[ ]uDi(u)

u

Fig. 2. Basic notions: arrival utilities us, ui, and ud; benefit decay coefficient
δ; cost cs for the message forwarding from s to i; utility difference Di(u).

efit) be delivered via short-delay, yet costly, paths.
2) We propose a distributed Time-sensitive Opportunistic

Utility-based Routing (TOUR) algorithm, in which a
continuous utility function needs to be maintained. A
discrete sampling method is adopted to describe these
functions in the implementation of TOUR in DTNs. We
also analyze the approximation error incurred by the
discrete process, and derive a bound.

3) We define a concept of time-sensitive optimal forward-
ing set, whereby TOUR achieves its optimal perfor-
mance. We also design a greedy algorithm to determine
the optimal forwarding set for each node.

4) We have conducted extensive simulations on multiple
real DTN traces to evaluate the discrete-version of
TOUR. The results show that this proposed algorithm
can achieve a nearly optimal performance at a low cost.
It also provides a good balance between delivery delay
and transmission cost.

The remainder of the paper is organized as follows. We
introduce the utility model and problem in Section II. The
basic idea and implementation of TOUR are proposed in
Sections III and IV. In Section V, we evaluate the performance
of our solution through extensive simulations. After reviewing
the related work in Section VI, we conclude the paper in
Section VII. All proofs are presented in the Appendix.

II. MODEL & PROBLEM

We consider a DTN composed of probabilistically contacted
mobile nodes V ={1, 2, · · ·, i, · · · }. The inter-contact time of
nodes i and j is assumed to follow the exponential distribution
with the parameter λi,j . If λi,j > 0, we say that nodes i
and j are neighbors. Let Ni denote the neighbor set of
node i, then j ∈ Ni. Our assumption about the exponential
distribution is reasonable, since previous research has proven
that the exponential distribution can be seen as the approximate
distribution of real DTNs for simplicity [3]–[5]. Moreover,
we assume that there is a cost for each node i to forward a
message, denoted by ci. Based on the basic network model,
we present the time-sensitive utility model in the following.

Each message contains a benefit, denoted by b(t), to indicate
the reward for delivering the message to its destination.
The benefit decreases linearly as time t elapses. The initial
maximum benefit is b. An important message has a large
initial benefit. The decreased benefit value within each unit
time interval is defined as the benefit decay coefficient, denoted
by δ. Formally, the benefit satisfies the following formula.

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
λi,j the exponential distribution parameter of the

inter-meeting time between nodes i and j.
Ni the neighboring node set of node i: {j|λi,j>0}.
b the initial benefit.
δ the benefit decay coefficient.
ui the arrival utility of node i (Definition 1).
u, µ a utility variable and a utility constant.
Di(u) the utility difference of node i for the utility u

(Definition 2).
Ri(u),
R∗

i (u)
the forwarding set and the optimal forwarding
set of node i (Definitions 3 and 4).

Di(u)|R(u) the utility difference Di(u) for node i using the
forwarding set R(u) (Definition 4).

ρi,j(u) the probability density function for node i for-
warding the message to node j ∈R(u) (Eq. 4).

pf (µ) the probability for node i to fail to forward the
message before its utility becomes zero (Eq. 4).

b(t) =

{
b− t · δ, t≤b/δ
0 , t>b/δ

(1)

The utility is defined as the benefit minus the transmission
cost, denoted by u(t). Let c denote the total cost incurred by
message forwarding until time t, then the utility satisfies:

u(t) = b(t)− c. (2)

In general, the utility can be seen as the remaining reward
for delivering a message. When the utility of a message
becomes zero, the message will be discarded.

Under the above time-sensitive utility model, we consider a
message delivery from a source s to a destination d via node
i. As shown in Fig. 2, we define two auxiliary notions for the
simplicity of the following discussion.

Definition 1: The arrival utility of node i, denoted by ui,
is a virtual utility concept, which indicates the utility value as
soon as the message reaches node i (even though node i has
not yet charged the cost ci).

Definition 2: The utility difference of node i for a utility u
(∈ [0, b]), denoted by Di(u), is the average utility reduction for
a message of node i with the utility u to be delivered to (or be
discarded before arriving at) node d. That is, Di(u)=E[u−ud],
where E[·] indicates the expected value, and ud is the arrival
utility of node d.

Here, the subscript i in Di(u) indicates that node i is
the current message forwarder. In this case, ud has not been
determined yet due to the uncertain forwarding from node
i to node d. Thus, Di(u) is an expected value. If there are
multiple delivery paths, let Di(u) be the minimum one that is
related to the best forwarding strategy, unless otherwise stated.
Moreover, Di(u) is a function of u. A different u will lead to
a different Di(u).

In this paper, we only consider single-copy message for-
warding. Our objective is to maximize the expected utility of
destination E[ud] when given an initial benefit b, a benefit
decay coefficient δ, and pairwise source and destination nodes
s and d. Since Ds(b)=b−E[ud], the objective becomes mini-
mizing the utility difference Ds(b). Without loss of generality,



we aim at minimizing Di(u) for each node i in the following
sections. Moreover, we only discuss the solution for the case
with a single (b, δ, d), which can easily be extended to the
case of multiple (b, δ, d)′s.

III. THE BASIC SOLUTION

In this section, we first give the overview of our solution,
which includes the definition of a forwarding set and the
corresponding opportunistic forwarding scheme. Then, as a
part of the solution, we give a greedy search strategy, followed
by an iterative computation process to determine the optimal
forwarding sets of all nodes. Once the optimal forwarding sets
are determined, the solution can achieve the optimal utility-
based routing result.

A. Overview: Time-Sensitive Opportunistic Forwarding

We adopt the opportunistic forwarding strategy. Each node
dynamically selects relays to forward messages according to
their utilities. More specifically, each node i maintains a time-
varying forwarding set, which is defined as follows.

Definition 3: The forwarding set of node i, denoted by
Ri(u), is a subset of Ni, which varies with a utility variable
u (∈ [0, b]); when node i meets a node in Ri(u), node i will
forward the message with the utility u to this node; otherwise,
it ignores this contact.

This definition also implies the opportunistic forwarding
scheme. That is, each node only forwards its messages to
the encountered node in its forwarding set, while ignoring the
other nodes outside of the forwarding set. Moreover, by using
a different forwarding set, a node can get a different utility
difference. The optimal forwarding set is defined as follows.

Definition 4: The optimal forwarding set of node i, denoted
by R∗

i (u), is a forwarding set whereby node i can get its
minimum utility difference. Let Di(u)|R(u) denote the utility
difference for node i using the forwarding set R(u). Then,
R∗

i (u) satisfies:

R∗
i (u)=argmin

R(u)⊆Ni

Di(u)|R(u). (3)

Here, u is a utility variable that varies with time. The
forwarding set is thus time-sensitive. We use u as a utility
variable and µ as a utility constant in the following description.
Moreover, R(µ) is used to indicate the function set R(u) when
u=µ. Di(u)|R(µ) is used to denote the utility difference value
for node i using a forwarding set R(u), where R(u)= R(µ)
when u=µ; when u ̸=µ, R(u) is assumed to be an unspecified
forwarding set (i.e., a set we don’t care about).

The optimal forwarding set R∗
i (u) satisfies the rule that

if node i meets any node in R∗
i (u), then forwarding the

message will be more beneficial than ignoring this forwarding
opportunity to minimize Di(u). If node i meets a node outside
of R∗

i (u), then ignoring this forwarding opportunity will be
better than forwarding the message. This characteristic ensures
that, when all nodes forward messages according their optimal
forwarding sets, the optimal utility difference will be achieved.

Based on the concept of a forwarding set, the time-sensitive
opportunistic forwarding strategy is presented as follows. Each
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Fig. 3. An example of a time-sensitive forwarding set (b=20, δ=2).

node first determines its optimal forwarding set (the method is
given in Sections III-B and III-C). Then, each node forwards
its messages to any encountered node in its optimal forwarding
set.

Fig. 3 shows an example of the forwarding set. The contact
graph of a simple DTN is depicted in Fig. 3(a). The optimal
forwarding set R∗

3(u) (which is determined in Fig. 4) satisfies:
R∗

3(u≤4)=∅, R∗
3(4<u≤8) = {d}, R∗

3(8<u≤12)={d, 2},
and R∗

3(12 < u ≤ 20) = {d, 1, 2}, as shown in Fig. 3(b).
Suppose that a message (b=20, δ=2) needs to be forwarded
to the destination d. Along with the elapsed time, the utility
will gradually decrease from 20 to 0. Accordingly, the optimal
forwarding strategy for node 3 involves forwarding the mes-
sage to any encountered node in {d, 1, 2} when u> 12, then
to any node in {d, 2} when 8<u≤ 12, and so on, until the
utility cannot afford the transmission cost when u≤4.

B. Determining the Optimal Forwarding Set: A Single Node

Here we determine the optimal forwarding set R∗
i (µ) and

the corresponding utility difference Di(µ) of a single node i
for a given utility µ, by assuming that the utility differences
of its neighboring nodes are known.

First, we present a basic formula to compute the utility
difference of node i for an arbitrary forwarding set R(u)
(0≤ u≤ µ), i.e., Di(µ)|R(u). Consider that node i forwards
a message with utility µ. Both a successful forwarding and a
failed forwarding are considered. If node i encounters a node
j ∈ R(u) when the utility becomes u (ci ≤ u ≤ µ), node i
will forward the message to node j. The corresponding utility
difference is the sum of the utility reduction for this message to
be forwarded from node i to node j, and the utility difference
of node j about its arrival utility uj , i.e., µ−uj +Dj(uj).
If node i fails to meet any node in R(u), the message will
be discarded. The corresponding utility difference is thus µ.
Then, we have:

Di(µ)|R(u)=

∫ µ

0

∑
j∈R(u)

ρi,j(u)(µ−uj+Dj(uj))du+pf (µ)µ, (4)

where pf (µ) is the failed forwarding probability, and ρi,j(u)
is the probability density function of node i forwarding the
message to node j ∈ R(u). Here, R(u) = ∅ when u ≤ ci,
since the utility cannot afford the cost, and the message will
be directly discarded. In Eq. 4, the ρi,j(u) and pf (µ) can be
calculated by the method in Section IV-B. The arrival utility
of node j is uj=u−ci. Then, Di(µ)|R(u) can be calculated.

Now, based on Eqs. 3 and 4, we can determine R∗
i (µ)

by searching all possible sets R(µ) ⊆ Ni, computing the
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Fig. 4. Determine R∗
3(µ) for the DTN in Fig.3(a) (b=20, δ=2).

corresponding Di(µ)|R(µ), and finding the optimal R(µ), so
as to minimize Di(µ). Note that we only need to search R(µ).
This is because the R(u) with different u are independent of
each other. Despite this, exhaustively searching all possible
sets R(µ)⊆Ni will still lead to an exponential computational
overhead. To this end, we propose a simple greedy method to
efficiently determine the optimal forwarding set as follows.

For each given utility µ, node i compares the utility dif-
ferences Dj(µ−ci) for each neighboring node j, sorts these
neighboring nodes in ascending order of their utility difference
values, extends the forwarding set R(µ) by adding the ordered
neighboring nodes one-by-one, and computes the value of
Di(µ) in the meantime. In the extension process of R(µ),
Di(µ) will increase after decreasing. The first inflection point
is exactly the minimum value. Then, by stopping the extension
process, we can deduce that the current forwarding set R(µ)
is optimal. The correctness is ensured by a theorem, presented
in Section IV-A. The detailed algorithm (Algorithm 1) is
implemented in Section IV-C.

To illustrate, Fig. 4 shows an example of greedily deter-
mining the forwarding sets R∗

3(µ= 14) and R∗
3(µ= 10) for

node 3 in the DTN, depicted in Fig. 3(a). For µ=14, node i
constructs R∗

3(µ=14) by adding nodes d, 2, 1 in turn, since
Dd(µ− c3)<D2(µ− c3)<D1(µ− c3), where µ− c3 = 10.
Meanwhile, node i uses Eq. 4 to compute its own utility
difference value for each step of the set extension. In this way,
node i finds that Di(µ)|R∗

3(14)={d,2} > Di(µ)|R∗
3(14)={d,2,1}.

Then, it can get that R∗
3(14)={d, 2, 1}, as shown in Fig. 4(a).

In the same way, node i can get R∗
3(10) = {d, 2}, as shown

in Fig. 4(b). Here, Dd(µ−c3), D2(µ−c3), and D1(µ−c3) are
assumed to be known, which is derived in our next example.

C. Determining Optimal Forwarding Set: ALL Nodes

Now, we determine the optimal forwarding sets of all
nodes by recursively executing the computation process in
Section III-B. For generality, we compute the utility difference
Di(u) of each node i∈V for all possible u∈ [0, b]. The solu-
tion is just like a distributed Floyd-Warshall algorithm, which
is only based on local information. Each node i records a local
estimation about the utility difference of every neighboring
node. These locally estimated utility differences are initialized
to be the largest utility difference, i.e., Di(u)=u. Then, node
i initially sets its own current optimal forwarding sets to be
{d} if the destination d ∈ Ni; otherwise, it is set to be ∅.
Meanwhile, node i computes the corresponding initial utility
difference values by executing the local computation process
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Fig. 5. Optimal forwarding sets for the DTN in Fig.3(a) (b=20, δ=2).

in Section III-B. Moreover, upon encountering a neighboring
node j, node i will update the local records about the utility
difference Dj(u). Then, node i re-computes its own utility dif-
ference Di(u) and updates its current optimal forwarding sets
by executing the local computation process in Section III-B.
By repeating this iterative process, each node will finally get
its optimal forwarding set. The detailed algorithm is presented
in Section IV-B.

It should be pointed out that the iterative computation pro-
cess in this solution will not result in a loop. Moreover, it will
converge within at most |V |−1 rounds of iterative computation
(a round means that each pairwise neighboring node has
encountered the other at least once). The convergence of the
solution is ensured by a theorem, presented in Section IV-A.

Here, we show an example to iteratively determine the
optimal forwarding sets for the DTN in Fig. 3(a), where b=20
and δ = 2. In the first round, node 1 first lets its forwarding
set be {d}, or ∅ if the utility cannot afford the transmission
cost. Then, it derives the corresponding utility difference by
Eq. 4 to get D1(u) (D1(8 < u ≤ 20) = 10.5−2.5e0.4(8−u);
D1(u≤8)=8). Likewise, nodes 2 and 3 also get their utility
differences. After meeting all of their neighbors, nodes 1 and
2 will find out that their utility differences are the minimum
among all encountered nodes (besides d), respectively. Then,
they could ensure that their forwarding sets and utility differ-
ences are optimal. After the first round, node 3 knows D1(u)
and D2(u) (e.g., D1(10)=9.4, which is related to Fig. 4(a)).
In the second round, it will update its own forwarding set
and utility difference. Accordingly, it will get its optimal
forwarding set. Fig. 5 lists the forwarding sets of all the nodes,
excluding the destination.

IV. SOLUTION DETAILS

In this section, we first prove that our solution is optimal,
and then we provide an implementation, i.e., the TOUR
algorithm, in which a discrete process is adopted to approxi-
mately calculate the expected utility difference values. We also
analyze the estimation error of this algorithm.

A. Proof of the Optimality

Our solution is based on the opportunistic forwarding strat-
egy. Each node greedily determines a time-sensitive optimal
forwarding set. Note that, according to the definition of a
forwarding set, once the forwarding sets of all nodes are
optimal, the optimal performance will be achieved. Thus, we
only need to prove that our solution to greedily determining
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the optimal forwarding set in Section III-B is correct, and
that the iterative computation process in Section III-C will
converge. Once we have the two results, we can conclude that
our solution is optimal.

First, to greedily determine the optimal forwarding set of
each node in Section III-B, we have the following theorem.

Theorem 1: Assume that Ni = {1, 2, · · ·,m} and D1(µ−
ci)< · · ·<Dm(µ−ci) (µ∈(ci, b]). Then, we have:

1) ∃k (1≤k≤m), R∗
i(µ)={1, 2, · · · , k};

2)Di(µ)|Ri(µ)={1,···,h}>Di(µ)|Ri(µ)={1,···,h+1}for ∀h∈ [1, k).
Theorem 1 shows that if we add the neighboring nodes one-

by-one from Ni to the forwarding set in an ascending order of
their utility difference values, the utility difference of node i
will continuously decrease until it reaches its minimum value.
Then, the corresponding forwarding set is the optimal. Our
solution, which is based exactly on this characteristic, is thus
correct.

Second, we also have the following theorem about the
convergence of the iterative computation in the whole network.

Theorem 2: The iterative computation will not lead to a
loop and will converge within at most |V | − 1 rounds of
computation.

According to Theorem 2, although all nodes determine their
optimal forwarding sets based on their local information, they
can still obtain the optimal results after at most |V |−1 rounds
of computation.

B. Discrete Processing

Note that the utility differences and forwarding sets in our
solution actually are the continuous functions for utility. Thus,
we adopt a discrete sampling method to describe them in the
detailed implementation of TOUR. We set n+1 discrete sam-
pling points about utility {µ0 = 0, · · · , µk = k∆µ, · · · , µn =
n∆µ}, where ∆µ is the sampling utility interval, i.e., ∆µ= b

n .
Then, an arbitrary utility difference Di(u) is approximated by
the following utility difference, as shown in Fig. 6(a):

D̃i(u | µk−1<u≤µk)=Di(µk), 1≤k≤n. (5)

In the same way, an arbitrary forwarding set R(u) is
approximated by the following forwarding set, as shown in
Fig. 6(b):

R̃(u | µk−1<u≤µk)=R(µk), 1≤k≤n. (6)

Based on the approximate utility difference D̃i(u) and for-
warding set R̃(u), we can derive the discrete-version formula
of Eq. 4. Let the discrete-version formulas of the forwarding
probability density function ρi,j(u) and the failed forwarding

Algorithm 1 Determining the optimal forwarding set
Require: b, δ, n, ci, Ni, {λi,j |j∈Ni={1, · · · ,m}},

D̃1(µk)< · · ·<D̃m(µk) (0≤k≤n)
Ensure: R̃i(µk), D̃i(µk) (0≤k≤n)

1: for k=0, · · · , n do
2: Initialize R̃i(µk), and compute D̃i(µk) by Eq.7;
3: for j=1, · · · ,m do
4: R̃i(µk)=R̃i(µk)+{j};
5: Incrementally compute D̃i(µk) by Eq. 7;
6: if D̃i(µk) increases then
7: Break;
8: return R̃i(µk), D̃i(µk);

probability pf (µ) in Eq. 4 be denoted by ρ̃i,j(u) and p̃f (µ).
Then, we have:

D̃i(µ)|R̃(u)=

∫ µ

0

∑
j∈R̃(u)

ρ̃i,j(u)(µ−uj+D̃j(uj))du+p̃f (µ)µ. (7)

Now, we derive the formulas to compute ρ̃i,j(u) and p̃f (µ)
in Eq. 7. Here, we only focus on the case where µ = µm

(0≤m≤n), since the other µ will not be used in the discrete-
version computation. Note that p̃f (µ) is the failed forwarding
probability. This means that node i did not meet any node
in the forwarding set R̃(u) before the utility of the message
decreases from µ to zero. For each utility reduction interval
(µh−1, µh] (1≤ h≤m), the failed forwarding probability is
e
−

∑
j∈R̃(uh) λi,j∆t, where ∆t is the time at which the utility

decreases from µh to µh−1, i.e., ∆t = ∆µ
δ . Thus, p̃f (µ)

satisfies:

p̃f (µ)=e
−
∑m

h=1

∑
j∈R̃(µh) λi,j∆µ/δ

. (8)

In the same way, we derive the formula of ρ̃i,j(u), which
is the probability density function of node i forwarding the
message to node j ∈ R̃(u). Without loss of generality, we let
u∈(µk−1, µk], where 1≤k≤m. Then, ρ̃i,j(u) satisfies:

ρ̃i,j(u)=λi,j/δ ·e−
∑m

h=k+1

∑
j∈R̃(µh)

λi,j∆µ/δ−
∑

j∈R̃(µk)
λi,j(µk−µ)/δ. (9)

C. Algorithm Implementation

Based on our optimal solution and the discrete process, we
now present the TOUR algorithm, i.e., Algorithm 2 and its
sub-process, Algorithm 1.

Given the utility difference values of node i’s neighbors,
D̃j(µk) (0≤k≤n, j ∈Ni), Algorithm 1 outputs the optimal
forwarding set R̃i(µk) and utility difference D̃i(µk) (0≤k≤
n). R̃i(µk) is determined by using the greedy search strategy
that is based on Theorem 1. In Step 2, R̃i(µk) and D̃i(µk) are
initialized. From Steps 3 to 7, R̃i(µk) is extended by greedily
adding a neighboring node. With the expansion of R̃i(µk), the
corresponding D̃i(µk) decreases step-by-step until the optimal
value is found in Step 7. Theorem 1 ensures the correctness
of this algorithm.

In Algorithm 2, each node i initializes R̃i(µk) and D̃i(µk)
(0 ≤ k ≤ n) in Step 1. Then, in the routing phase, the
node receives the new version of the utility difference from



Algorithm 2 TOUR
Require: b, δ, n, ci, Ni, {λi,j |j∈Ni}
Ensure: R̃i(µk), D̃i(µk) (0≤k≤n)

For each node i (̸=d) do
1: Initialize:R̃i(µk)=∅, D̃i(µk)=µk (0≤k≤n)

Routing:
2: while node i encounters a neighbor j do
3: Send D̃i(µk) to and receive D̃j(µk) (0≤k≤n) from j;
4: if D̃j(µk) is different from the local version then
5: Update local D̃j(µk);
6: R̃i(µk), D̃i(µk) ← Algorithm 1;
7: for each message msg in node i do
8: Get the current utility u of msg;
9: Derive out k to make u∈( (k−1)b

n , kb
n ];

10: if j∈R̃i(µk) then
11: Send msg to j;

its encountered neighbor in Step 3, and updates its own
forwarding sets and utility differences, if needed, by executing
Algorithm 1 in Steps 4-6. The message forwarding is executed
in Steps 7-11. The forwarding set is first found in Step 9. Then,
the message will be forwarded if the encountered node belongs
to this forwarding set. The correctness of this algorithm is
ensured by Theorem 1. Theorem 2 ensures the convergence
of this algorithm. The computational overhead of TOUR is
dominated by Step 6, which is O(n|V |2). Moreover, TOUR
will converge within at most |V |−1 rounds of computation.
If there is a neighboring node whose inter-meeting probability
to node i is very small, a round of computation might take
a long time to converge. Despite this, the results of TOUR
are still good enough when we ignore this node’s contribution
to the results. This is because, the smaller the inter-meeting
probability is, the smaller the weight of the node’s contribution
(to the results) will be.

D. Estimation Error

With regards to the discrete process, we make a detailed
estimation error analysis and get the following results.

Theorem 3: Let Λ = max{
∑

j∈Ni
λi,j |i ∈ V }; then, the

estimation error of TOUR will be less than |V |b(eΛb
nδ − 1).

Now, for a given arbitrary error ε, we can get a bound:

n0=
Λb

δ ln(1+ε/(|V |b))
. (10)

When n > n0, the estimation error of the TOUR algorithm
will be less than ε, according to Theorem 3.

V. EVALUATION

In this section, we conduct extensive real trace-driven simu-
lations to evaluate the performance of the proposed algorithm.
First, we present the compared algorithms, followed by a
discussion of the real traces that we used. Second, we discuss
our evaluation methods and settings. Finally, our evaluation
results are shown in different perspectives to provide better
insight.

TABLE II
STATISTICS IN THREE CAMBRIDGE HAGGLE TRACES.

Trace Contacts Length(D) Routing External
(d.h:m.s) nodes nodes

Intel 2,766 4.3:48.32 9 128
Cambridge 6,732 6.1:34.2 12 223
Infocom 28,216 2.22:52.56 41 264

A. Algorithms in Comparison

We first implement TOUR with 10 discrete sampling points
and its optimal version, denoted by TOUR-OPT. Here, we
use a TOUR with 100 discrete sampling points to imitate the
optimal TOUR. In fact, the simulation results show that 100
discrete sampling points are sufficient. Without considering
the delivery delay, the existing utility-based routing algorithms
in traditional ad hoc networks cannot work in DTNs. Thus,
we also carefully design three other utility-based routing
algorithms to examine the compared performance of our
algorithms: SimpleUtility, MiniCost, and MinDelay.

In SimpleUtility, the utility difference of each node is set to
be the sum of the forwarding cost and the decreased benefit
in terms of delay. Each node will forward the message to an
encountered node if the utility difference of this node is greater
than that of the encountered node. In MiniCost, each node
forwards the message to an encountered node if the forwarding
cost of this node is greater than that of the encountered
node. A node in MinDelay will forward the message if the
expected delivery delay of this node is greater than that of the
encountered node.

B. Real-traces Used

The Cambridge Haggle Trace [6] includes a total of five
traces of Bluetooth device connections by people carrying
mobile devices (iMotes) over a certain number of days.
These traces are collected by different groups of people
in office environments, conference environments, and city
environments, respectively. Bluetooth contacts were classified
into two groups: iMote sightings of other iMotes are called
internal contacts, while sightings of other Bluetooth devices
are called external contacts. Since there is no record of contact
between non-iMotes, we only use the iMotes as forwarding
nodes. Other nodes, or external nodes, can only be assigned
as destinations. Table II shows some statistics from the traces.

The UMassDieselNet Trace [7] contains the bus-to-bus
contacts (the durations of which are relatively short) of 40
buses. Our simulations are performed on traces collected over
55 days during the Spring 2006 semester, with weekends,
Spring break, and holidays removed due to reduced schedules.
The bus system serves approximately ten routes. There are
multiple shifts serving each of these routes. Shifts are further
divided into morning (AM), midday (MID), afternoon (PM),
and evening (EVE) sub-shifts. Drivers choose buses at random
to run the AM sub-shifts. At the end of the AM sub-shift, the
bus is often handed over to another driver to operate the next
sub-shift on the same route, or on another route.
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Fig. 7. Remaining utilities, standard derivations of node forwardings, and forwarding costs in the Cambridge Haggle Imote Infocom trace.

TABLE III
EVALUATION SETTINGS.

parameter name default range
initial benefit 100 20-200

maximum forwarding cost 5 0-45
benefit decay coefficient (per min) 0.02 0.01-0.1

number of messages 30,000

C. Simulation Method and Settings

In our evaluations, each node is initialized with a virtual
forwarding cost. We first define a maximum forwarding cost,
which is the forwarding cost of the node with the highest
contact probability with other nodes. Then, the forwarding
cost of each node is defined to be proportional to its contact
opportunity with other nodes. As a result, a node with a high
contact probability to others has a large forwarding cost. In
addition to the maximum forwarding cost, the other variables
include the benefit decay coefficient and the initial benefit.

In each evaluation, some of the variables change in their
range, while other variables are fixed at their default values.
The default values and the changing ranges of the evaluation
variables are shown in Table III.

Each simulation result is averaged from 30,000 randomly
generated messages, whose sources are assigned evenly among
internal nodes, and whose destinations are assigned evenly
among all nodes.

D. Results on Utility, Derivation, and Cost

Unlike traditional DTN routing algorithms, utility-based
routing algorithms mainly focus on the gain of a message
delivery. Maximizing the remaining utility (i.e., the arrival util-
ity of the destination) is thus the basic goal of our algorithms.
Besides the metric, two additional metrics (standard derivation
of node forwarding and forwarding cost) are adopted for our
evaluation. The former metric measures the standard deriva-
tions of the number of messages forwarded by each node. This
metric measures how well the algorithms can schedule dif-
ferent message deliveries (which are assigned different initial
benefits, benefit decay coefficients, and maximum forwarding
costs) to different forwarding paths. The latter metric measures
how well the algorithms route the message to nodes with low
transmission cost. Due to space limitations, we only provide
the most representative evaluation results here.

It is shown in Figures 7(a)-7(i) that (1) TOUR and TOUR-
OPT have the largest remaining utility, followed by Sim-
pleUtility; all of these are much larger than MinDelay and
MinCost, which do not maximize utility; (2) TOUR and
TOUR-OPT have the smallest standard derivations in the
number of forwardings at each node, which are less than
half of SimpleUtility and MinCost, and are far smaller than
MinDelay; (3) the forwarding cost of TOUR and TOUR-OPT
is around one-third the cost of SimpleUtility, and is much
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Fig. 8. Remaining utilities, standard derivations of node forwardings, and forwarding costs of TOUR in the Cambridge Haggle Imote Infocom trace.

smaller than MinCost and MinDelay; (4) TOUR is able to
approximate TOUR-OPT with unobservable errors in terms
of all evaluation metrics.

Figures 8(a)-8(c) show the following facts about TOUR. (1)
The remaining utility increases as the initial benefit increases
and as the benefit decay coefficient decreases, which shows
that important messages and less urgent messages are more
likely to be delivered. (2) The standard derivation of node
forwardings increases as the initial benefit increases, and
TOUR is able to keep the derivations low after the initial
benefit reaches a certain value, which is about 50 in this
evaluation. When the initial benefit is high, the standard
derivation increases as the benefit decay increases, while when
the benefit is low, the trend reverses. This is because, as the
initial benefit decreases, most nodes avoid other nodes with
high forwarding costs. (3) The forwarding cost increases as
the benefit decay increases, since a shorter lifetime encourages
a message to take a node with a higher forwarding cost. These
results suggest that, in TOUR, the messages with a high initial
benefit and a large decay coefficient will be delivered with
high probabilities of success via the nodes that have high
forwarding costs and high contact probabilities to others.

VI. RELATED WORK

Many DTN routing algorithms have been proposed, includ-
ing flooding-based algorithms (e.g., [8], [9]), probability-based
algorithms (e.g., [4], [10], [11]), and social-aware algorithms
(e.g., [12]–[15]). Compared to the proposed TOUR algorithm,
all of these algorithms do not consider the utilities of mes-
sage forwarding, which will result in most messages being
delivered via the nodes with high probabilities of contact with
others. The resources of those nodes might be occupied by
unimportant message deliveries, making them unable to serve
more important delivery requests.

The concept of utility-based routing is first proposed in ad
hoc networks [1]. The motivation lies in finding the trade-off
between the reliability and the cost of the message delivery, so
let the more important messages be delivered through the more
reliable paths at the expense of higher transmission costs. This
utility model is also extended to opportunistic transmission
in [2]. Unlike the previous utility-based model and algorithms,
the most important factors in DTN routing design, including
delay, and opportunistic forwarding, are considered in our
scheme.

VII. CONCLUSION

In this paper, we first introduce the concept of utility-based
routing in DTNs, and we propose a time-sensitive utility model
for DTNs, which takes benefit, delay, and cost into account.
Under this model, we propose a time-sensitive opportunistic
utility-based routing algorithm, i.e., TOUR, which can achieve
the maximum expected utility for each message delivery.
This algorithm creates a good balance between benefit, delay,
and cost, which inherently allows important messages to be
delivered along paths with a high probability of success,
but at a large cost, much like the postal service in the real
world. Simulations with real DTN traces prove the significant
performance of the TOUR algorithm.
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Appendix

A. Proof of Theorem 1
Before the proof, we first prove a lemma:
Lemma 4: For ∀k∈Ni, R(µ)⊆Ni, and R+(µ)=R(µ)+{k},

we have:

Di(µ)|R+(u)<Di(µ)|R(u)⇔Dk(µ−ci)+ ci<Di|R(µ)=∅.

Proof: According to Eq. 4, we have:

Di(µ)|R(u)=

∫ µ

0

∑
j∈R(u)

ρi,j(u)(µ−uj+Dj(uj))du+pf (µ)µ,

Di(µ)|R+(u)=

∫ µ

0

∑
j∈R+(u)

ρ+i,j(u)(µ−uj+Dj(uj))du+p+f (µ)µ.

Here, ρi,j(u) and ρ+i,j(u) (resp. pf (µ) and p+f (µ)) represent
the (resp. failed) forwarding probabilities under the forwarding
sets R(u) and R+(u), respectively. Note that µ−uj = ci,
ρ+i,j(u) = ρi,j(u)(1− ρi,k(µ)du) for each u (0 ≤ u < µ),
and p+f (µ) = pf (µ)(1−ρi,k(µ)du), where ρi,k(µ)du is the
probability that node i encounters node j during the time
interval when u∈ [µ−du, µ]. Then, by comparing Di(µ)|R(u)

and Di(µ)|R+(u), we can get:

Di(µ)|R+(u)−Di(µ)|R(u)=

(Dk(µ−ci)+ ci−Di(µ)|R(µ)=∅)ρi,k(µ)du (11)

This means that the lemma is correct. Note that
Di(µ)|R(µ)=∅ in Eq. 11 is the utility difference for node i
that does not forward the message when u = µ. Its value is
independent of R(µ). This shows that adding a node k into an
arbitrary forwarding set can achieve a better utility difference
than before adding the node to the set, if and only if node k
can achieve a better utility difference than node i when u<µ.

Now, we can prove this theorem as follows based on the
above result.

1) Without loss of generality, assume node k to be the node
in R∗

i (µ) that has the maximum utility difference with regards
to µ−ci. Then, according to Lemma 4, we have Dk(µ−ci)+ci<
Di(µ)|Ri(µ)=∅. On the other hand, Dh(µ−ci)<Dk(µ−ci) for
an arbitrary h∈ [1, k). Then, Dh(µ−ci)+ci<Di(µ)|Ri(µ)=∅.
Using Lemma 4 again, we can get a smaller Di(µ) when we
add node h into R∗

i (µ) if h ̸∈R∗
i (µ). This is a contradiction to

the optimality of R∗
i (µ). Thus, we can get h∈R∗

i (µ). Since h
is a arbitrary node in [1, k), we have R∗

i (µ)={1, 2, · · · , k}.

2) Since h+ 1 ∈ R∗
i (µ), we have Dh+1(µ− ci) + ci <

Di(µ)|Ri(µ)=∅ according to part one. Using Lemma 4 again,
we have Di(µ)|Ri(µ)={1,··· ,h+1} < Di(µ)|Ri(µ)={1,··· ,h}. Thus,
the theorem is correct.

B. Proof of Theorem 2
First, according to Lemma 4, we have that a node j belongs

to the optimal forwarding set of another node i, if and only
if Dj(µ−ci)+ci<Di(µ)|Ri(µ)=∅. Thus, there will be no loop
in the iterative computation. Moreover, for a given utility µ,
there must be at least one node that can successfully get its
optimal forwarding set at each round of iterative computation.

In the first round, each pairwise neighboring node compares
their current utility difference values. There must exist a
minimum. Without loss of generality, let this node be node
1. Then, R1(µ)={d}.

After the first round, each neighbor will update their local
records about node 1. Then, in the second round, the node with
the second minimum value of utility difference will determine
its optimal forwarding set. Let this node be node 2. Just like
node 1, no other nodes except 1 and/or d can be taken as the
forwarding node of node 2. Then, node 2 can determine its
forwarding set R2(µ).

Similarly, the third node will determine its optimal for-
warding set in the third round, and so on. Therefore, after at
most |V |−1 rounds, the whole iterative computation process
completes, and all nodes obtain their optimal forwarding sets.

C. Proof of Theorem 3
For a utility u ∈ (µk−1, µk], we first compare R(u) and

R̃(u) in Eq. 7. Fig. 6(b) shows the function distributions of
R(u) and R̃(u), in which the shadow illustrates an estimation
error between them. According to Eq. 6, we have:

(R(u)−R̃(u))⊆(R(µk)−R(µk−1)). (12)

Moreover, according to Eqs. 9 and 8, we can further derive
the estimation errors of ρ̃i,j(u) and p̃f (u) from Eq. 12:

ρ̃i,j(u)

ρi,j(u)
,
p̃f (u)

pf (u)
≤ e

∑k
h=1

∑
j∈(R(µh)−R(µh−1)) λi,j∆µ/δ

= e
∑

j∈(R(µk)−R(µ0)) λi,j∆µ/δ (13)

Now, according to Eqs. 4 and 7, we can get the approximate
ratio of Di(u) when we only consider the one-hop estimation
error by ignoring the estimation error of Dj(u):

D̃i(u)

Di(u)
≤e

∑
j∈(R(µk)−R(µ0)) λi,j∆µ/δ

=e
∑

j∈R(µk) λi,j∆µ/δ
. (14)

Since ∆µ = b
n , b ≥ max{Di(u)|i ∈ V }, Λ =

max{
∑

j∈Ni
λi,j |i ∈ V }. Then, we can get the one-hop

estimation error:

|D̃i(u)−Di(u)|one−hop≤b(e
Λb
nδ − 1). (15)

According to Eqs. 4 and 7, the total estimation error is no
more than the sum of the estimation error in each hop. Thus,
we have the total estimation error:

|D̃i(u)−Di(u)|≤|V |b(e
Λb
nδ − 1). (16)


