
Exchanging Pairwise Secrets Efficiently

Iris Safaka, Christina Fragouli, Katerina Argyraki

EPFL, Switzerland

Suhas Diggavi

UCLA

Abstract—We consider the problem where a group of wireless
nodes, connected to the same broadcast domain, want to create
pairwise secrets, in the presence of an adversary Eve, who
tries to listen in and steal these secrets. Existing solutions
assume that Eve cannot perform certain computations (e.g., large-
integer factorization) in useful time. We ask the question: can
we solve this problem without assuming anything about Eve’s
computational capabilities?

We propose a simple secret-agreement protocol, where the
wireless nodes keep exchanging bits until they have agreed
on pairwise secrets that Eve cannot reconstruct with very
high probability. Our protocol relies on Eve’s limited network
presence (the fact that she cannot be located at an arbitrary
number of points in the network at the same time), but assumes
nothing about her computational capabilities. We formally show
that, under standard theoretical assumptions, our protocol is
information-theoretically secure (it leaks zero information to Eve
about the secrets). Using a small wireless testbed of smartphones,
we provide experimental evidence that it is feasible for 5 nodes
to create thousands of secret bits per second, with their secrecy
being independent from the adversary’s capabilities.

I. INTRODUCTION

We consider the problem where a group of n nodes, con-

nected to the same wireless broadcast domain, want to create

pairwise secrets, such that an adversary Eve, who is eaves-

dropping on their domain, obtains very little information on

the secrets. Today, we can solve this problem only by relying

on Eve’s computational limitations: we can use an asymmetric

key-agreement protocol, like RSA [1], which fundamentally

assume that Eve cannot perform certain computations, such

as large-integer factorization.

Wireless networks offer the opportunity for a different,

complementary kind of security, which relies not on the ad-

versary’s computational limitations, but on her limited network

presence. Suppose Alice, Bob, and Eve are wireless nodes con-

nected to the same broadcast domain. When Alice transmits,

both Bob and Eve will overhear a part of her transmission,

however, as long as there is sufficient noise, it is unlikely that

they will overhear exactly the same information. It has been

long known in the information theory community that, if Bob

and Eve do not overhear exactly the same information from

Alice’s transmission, it is theoretically possible for Alice and

Bob to create a shared secret Eve knows nothing about, even

if Eve has arbitrary computational capabilities [2], [3]. The

question is, can we turn this theoretical feasibility result into

a concrete secret-agreement protocol? how well would such a

protocol work on an actual wireless network?

First, we present a secret-agreement protocol, which enables

n nodes to create pairwise secrets that Eve knows very little

I. Safaka is supported by ERC Starting Grant ERC-2009-StG-240317.
S. Diggavi is partly supported by AFOSR MURI, award FA9550-09-064.

about. Our protocol has polynomial complexity and is imple-

mentable in simple wireless devices. Also, it creates all the

pairwise secrets simultaneously by harnessing the broadcast

nature of wireless networks. The latter property enables secret

agreement to achieve a significant secret-generation rate even

with large numbers of nodes (to the best of our knowledge,

we are the first to make this observation). Under standard

information-theory assumptions (independent erasure channels

between the nodes and known erasure probabilities), we for-

mally show that: (1) Our protocol is information-theoretically

secure, i.e., it leaks no information to Eve about the secrets. (2)

It achieves a secret-generation rate that is optimal for n = 2
nodes and scales well with the number of nodes n.

Second, we provide experimental evidence that it is feasible

to use our protocol in practice to create thousands of secret

bits per second. In particular, we use a small wireless testbed

that consists of 5 nodes and an adversary, located in adjacent

offices. In our testbed, the nodes create pairwise secrets at

rates of thousands of bits per second, independently from the

adversary’s computational capabilities.

Unlike current security systems, our protocol creates secrets

that do not depend on any information permanently stored at

the nodes—only on traffic exchanged among them. Hence, the

nodes could use our protocol to periodically create new secrets,

then use these secrets to constantly refresh their encryption

and authentication keys. The nodes do not need to maintain

any public/private RSA key pair or WPA master key that, if

stolen or accidentally revealed to an adversary, would enable

her to reconstruct the secrets (hence compromise the nodes’

communications).

Most importantly, we shift the adversary’s challenge from

computation to network presence: for current systems, a dan-

gerous adversary is one with high computational power (e.g.,

one with access to quantum computers); for our protocol, a

dangerous adversary is one who is physically present in many

locations in the network at the same time.

We do not advocate to replace the existing crypto-systems

that rely on the adversary’s computational limitations. How-

ever, we believe that exploring alternative approaches (which

rely on different kinds of adversary limitations) will become

of increasing interest in the near future, as governments

and corporations acquire massive computational capabilities.

Interest in alternatives is already present in the industry

community, where several companies are developing quantum

key distribution (QKD) systems [4]. A typical application

envisioned for these systems is the periodic generation of

one-time pads at a high enough rate to enable information-

theoretically secure transmission of real-time video, e.g., for

military operations [5]. Unfortunately, QKD systems are ex-

pensive (due to the need for sophisticated equipment such

as photon detectors) and therefore accessible only to the

wealthiest governments and corporations. This motivated us

to explore the feasibility of a secret-agreement protocol that

neither relies on computational limitations nor requires expen-

sive equipment. We focus on wireless devices, as they form the

majority of network-connected devices. We consider groups

of such devices (as opposed to isolated pairs), as wireless

group cooperation schemes are becoming increasingly popular

to support social applications [6]. As we will show, it turns out

that by simultaneously creating multiple secrets we achieve a

multi-fold increase in efficiency.

After stating our problem (§II), we first describe our basic

secret-agreement protocol, which enables n nodes to create

pairwise secrets under standard theoretical assumptions (§III),

and we state its properties (§IV). Next, we adapt our protocol

to the scenario where the theoretical assumptions do not hold

(§V), and provide experimental evidence of its capabilities

(§VI). Finally, we summarize related work (§VII), and we con-

clude with a discussion of the remaining challenges (§VIII).

II. SETUP

A. Problem Statement

We consider n nodes, T1, . . . , Tn, connected to the same

wireless broadcast domain. We will refer to these nodes as

terminals. Sometimes we will refer to terminals T1, T2, T3,

and T4 respectively as Alice, Bob, Calvin, and David.

We consider an adversary, Eve, connected to the same

broadcast domain as the terminals. Our design assumes that

Eve may possess up to some number of receiving antennas

m. But we should state upfront that the experimental results

presented in Section V assume that Eve is an HTC smartphone

with one omnidirectional antenna.

The terminals communicate with each other in two ways:

- When we say that terminal Ti transmits a packet, we

mean that it broadcasts the packet once.

- When we say that terminal Ti reliably broadcasts a

packet, we mean that it ensures that all other terminals

Tj 6=i receive it, e.g., through ACKs and retransmissions.

To be conservative, we assume that Eve receives all reliably

broadcast packets.

Our goal is to design a protocol that enables each terminal

pair, Ti and Tj , to create a secret Sij , such that any other

terminal Tl 6=i,j or Eve obtain very little information on Sij .

We assume that each terminal Ti is “honest but curious”

toward the other terminals. I.e., Ti runs the protocol honestly

but may try to eavesdrop on other terminals’ communications.

We assume that Eve may be a passive adversary (never

makes any transmissions) or an active one (may try to im-

personate a terminal). If Eve is passive, the terminals do not

need to share any information before they run our protocol.

If Eve is active, the terminals need to initially share some

bootstrap information, in order to authenticate each other when

they first communicate with each other (until they create their

first pairwise secrets using our protocol). The need for this

Symbol Meaning

n Number of terminals
Ti Terminal i
Sij Secret between terminals Ti and Tj

δij Erasure probability of Ti – Tj channel
δiE Erasure probability of Ti – Eve channel
N Number of x-packets transmitted by each terminal

(initial phase, step 1)
Mij Number of shared y-packets constructed by Ti and Tj

(privacy amplification phase, steps 1 – 3)

TABLE I
COMMONLY USED SYMBOLS

bootstrap information is fundamentally unavoidable: without

it, there is no way for Alice to know that she is talking to

Bob until they have established their first secret. However,

any pairwise secrets created through the protocol should not

depend on the bootstrap information.

This setup corresponds to the scenario where a group of n
political dissidents rendezvous in a public place (potentially

under visual surveillance) and use their cell phones in ad-

hoc mode to secretly communicate; or the scenario where a

group of n friends connect to the same social network and use

their cell phones in ad-hoc mode to exchange private content.

It should be infeasible for an eavesdropper who listens in

on the same broadcast domain to record what she overhears,

process the recording, and reconstruct their communications.

Moreover, it should be infeasible for an eavesdropper to record

what she overhears, extract from the dissidents/friends a set

of passwords or keys, combine them with the recording, and

reconstruct their communications. The dissidents/friends can

periodically use our protocol to create pairwise secrets and use

these secrets to continuously refresh the keys with which they

encrypt/authenticate their communications.

B. Theoretical Network Conditions

We define them as follows:

1) When terminal Ti transmits a packet,

terminal Tj (Eve):

- misses the entire packet, with probability δij (δiE)

- receives the entire packet correctly, otherwise.

δij (δiE) is the erasure probability of the Ti – Tj (Ti –

Eve) channel.

2) The Ti – Tj channel is independent from any Ti – Tl 6=j

channel1 and the Ti – Eve channel, for all i, j, l.
3) The erasure probability δiE of the Ti – Eve channel is

known, for all i.

C. Quality Metrics

Efficiency captures the cost of the protocol, i.e., the amount

of traffic it produces in order to generate pairwise secrets of

a given size. The efficiency achieved by two terminals Ti and

Tj that create a secret Sij is defined as:

Eij =
|Sij |

transmitted bits
.

1Assuming independent channels is not necessary for any of our results,
but simplifies our proofs.

The denominator is the total number of bits transmitted by the

protocol until Sij is created.

The secrecy rate achieved by Ti and Tj is the number of

secret bits per second that they create between them. It depends

on the transmission rates of the terminals and their efficiency.

Reliability captures the quality of the created secrets, i.e.,

the extent to which they are unknown to Eve. The reliability

of a secret S is defined as:

R =
H(S|XE)

H(S)
,

where XE is the information obtained by Eve via eaves-

dropping on the terminals’ communications, H(S) is Eve’s

entropy (her uncertainty about S before she eavesdrops), and

H(S|XE) is Eve’s conditional entropy (her uncertainty about

S after she eavesdrops). R = 1 means that Eve learns

nothing about S by eavesdropping (which would mean that

the protocol is information-theoretically secure).

III. BASIC PROTOCOL

In this section, we describe the core of our secret-agreement

protocol, which enables terminals Ti and Tj to create a

secret Sij . Assuming the theoretical network conditions, Sij

is perfectly secret from any terminal Tk 6=i,j and an adversary

Eve (we show this in Section IV).

A. Basic Idea

Suppose Alice and Bob exchange three packets, x1, x2 and

x3. Suppose Eve misses (knows nothing about the contents of)

two of the packets shared by Alice and Bob, x1 and x2. If an

oracle told Alice and Bob that Eve misses two of their shared

packets (but not which two), they could create a perfect shared

secret (one that Eve knows nothing about), by using two linear

combinations of their shared packets, e.g., 〈x1+x2, x2+x3〉
2

(where + denotes addition over a finite field, e.g., bitwise XOR

over the binary field).

Building on this idea, our protocol consists of two phases: In

the initial phase, the terminals exchange traffic to ensure that

each terminal pair shares some number of packets (as Alice

and Bob share x1, x2, and x3 in the above example). This

happens over n rounds, with a different terminal transmitting

in each round. In the privacy amplification phase, each ter-

minal pair creates a secret out of the information they shared

in the initial phase. For this, they “compress” their shared

information enough to ensure that any other terminal or Eve

know nothing about the secret (as Alice and Bob “compress”

x1, x2, and x3 into x1 + x2, x2 + x3 in the above example).

To do this compression correctly, the terminals need to know

how much of their traffic exchange was overheard by Eve (but

not which particular bits).

A naive approach would be to have each terminal pair create

their secret separately, which would not scale well with the

number of terminals. Instead, our protocol creates the pairwise

secrets simultaneously, by harnessing the broadcast nature of

wireless networks.

2This secret is perfect, because Eve’s probability of guessing its value is
equal to the probability of guessing the values of the two packets she misses.

B. Algorithm

Each terminal Ti maintains n− 1 queues Qij , j 6= i. In the

beginning, these are empty.

Initial Phase

In round k = 1 . . . n:

1) Terminal Tk transmits N random packets (we will call

them x-packets).

2) Each terminal Ti6=k reliably broadcasts the identities of

the x-packets it received.

3) Each terminal Ti adds to queue Qij the identities and

contents of the x-packets it shares with terminal Tj 6=i.

At this point, Qij contains all the packets shared by termi-

nals Ti and Tj .

Privacy Amplification Phase

For i = 1 . . . n− 1:

1) Terminal Ti constructs Mij linear combinations of the

packets in the queue Qij , for all j > i (we will call

them y-packets).

It determines the number of y-packets Mij and con-

structs the y-packets as described in Section III-E.

2) Terminal Ti reliably broadcasts the coefficients it used

to construct the y-packets.

3) Each terminal Tj>i uses the broadcasted coefficients and

the contents of its queue Qji to reconstruct the Mij y-

packets.

At this point, terminals Ti and Tj>i share Mij y-packets.

Their secret Sij is the concatenation of these y-packets.

C. An Example Agreement

Suppose we have n = 3 terminals, Alice, Bob, and Calvin,

and a passive adversary, Eve. All the channels between termi-

nals or any terminal and Eve have erasure probability δ = 0.5.

In the initial phase, the terminals create shared information

by exchanging packets. In the first round, Alice transmits

N = 8 x-packets, a1, a2, . . . a8, of which Bob, Calvin, and

Eve receive (not the same) half. Similarly, in the second and

third rounds, Bob transmits b1, b2, . . . b8, and Calvin transmits

c1, c2, . . . c8. Alice, Bob, and Calvin know which x-packets

are received by one another (thanks to Step 2 of the initial

phase), but not which x-packets are received by Eve.

Table II shows the x-packets known to each node at the

end of the initial phase. Table III (top row) shows the x-

packets shared by each terminal pair at the end of the initial

phase (e.g., Alice and Bob share a1, a2, a3, a4 among others).

To help visualize who knows which x-packets, from the x-

packets shared by Alice/Bob, we mark those known to Eve as

“canceled out” (e.g., ��a3), those known to Calvin as “barred”

(e.g., ā2), and those known to both Eve and Calvin as both

canceled out and barred (e.g., ��̄a1). We do the same for the

other terminal pairs.

In the privacy amplification phase, the terminals create

pairwise secrets by compressing their shared information.

Alice Bob Calvin Eve

a1, a2, . . . a8 a1, a2, a3, a4 a1, a2, a5, a6 a1, a3, a5, a7
b1, b2, b3, b4 b1, b2, . . . b8 b1, b2, b5, b6 b1, b3, b5, b7
c1, c2, c3, c4 c1, c2, c5, c6 c1, c2, . . . c8 c1, c3, c5, c7

TABLE II
INFORMATION KNOWN TO EACH NODE

Phase Alice – Bob Alice – Calvin Bob – Calvin

��̄a1, ā2,��a3, a4 ��̄a1, ā2,��a5, a6 ��̄a1, ā2
Initial �b̄1, b̄2,�b3, b4 �b̄1, b̄2 �b̄1, b̄2,�b5, b6

�̄c1, c̄2 �̄c1, c̄2,�c3, c4 �̄c1, c̄2,�c5, c6
a3 + a4 a5 + a6 b5 + b6

Privacy a1 + a2 + a3 a1 + a2 + a5 b1 + b2 + b5
Amp. b3 + b4 c3 + c4 c5 + c6

b1 + b2 + b3 c1 + c2 + c3 c1 + c2 + c5

TABLE III
INFORMATION SHARED BY NODES

Alice and Bob compress their 10 shared x-packets into

M12 = 4 shared y-packets (linear combinations of the shared

x-packets). Similarly, Alice/Calvin and Bob/Calvin compress

their 10 shared x-packets into 4 shared y-packets. Table III

(bottom row) shows the y-packets shared by each terminal

pair. Notice that Eve cannot reconstruct any of the y-packets.

Moreover, Calvin cannot reconstruct the y-packets constructed

by Alice and Bob for their pairwise secret. Similarly, Alice

(Bob) cannot reconstruct the y-packets constructed by Bob

(Alice) and Calvin for their pairwise secret.

This was an example to give a sense of how things work.

Our protocol does not really construct so simple linear com-

binations (e.g., 5 random linear combinations out of 10 x-

packets), as they may leak information to Eve (Section III-E).

D. Key Points

The size of the secret between two terminals depends on

(1) the amount of information shared by the two terminals

and (2) how much of this information Eve and the other

terminals have missed. In the above example, Alice and Bob

share 10 x-packets. Of these, Eve misses 5, and Calvin

misses 4. Hence, Alice and Bob can construct up to 5 y-

packets (linear combinations of their shared x-packets) that

are perfectly secret from Eve, and up to 4 y-packets that are

perfectly secret from Calvin. Since we want the Alice/Bob

secret to be unknown to both Eve and Calvin, Alice/Bob

should create only 4 y-packets. Creating a shorter secret would

be inefficient. Creating a longer secret would necessarily result

in Eve or Calvin knowing something about the secret (though

not necessarily the entire secret).

An important feature of the protocol is that terminals Ti

and Tj create shared information during all the rounds of

the initial phase, not only when one of them transmits. In

the above example, at the end of the initial phase, Alice and

Bob share not only x-packets transmitted by one of them, but

also x-packets transmitted by Calvin (c1, c2). In the particular

example, these packets turn out not to be useful in creating

the Alice/Bob secret, because Calvin knows both of them (and

we want the secret to be unknown to Calvin). However, when

we have more than n = 3 terminals, leveraging x-packets

transmitted by all terminals becomes key to the protocol’s

scalability with the number of terminals. For instance, imagine

that there is a fourth terminal, David, which transmits x-

packets d1, d2, received by Alice/Bob, but not Calvin or Eve.

Although d1, d2 are known to David, now Alice/Bob can create

two combinations of c1, c2, d1, d2 (e.g., c1 + d1, c2 + d2) and

create two extra y-packets unknown to Calvin, David, and Eve.

E. Secret Construction

Terminals Ti and Tj construct the following number of y-

packets in the privacy amplification phase:

Mij = min { VE , V1, V2, . . . Vn } , (1)

where:

- VE is the expected number of x-packets that are shared

by terminals Ti/Tj and missed by Eve.

- Vl is the number of x-packets shared by terminals Ti/Tj

and missed by terminal Tl.

We compute VE as
∑n

k=1 UEk , where UEk = δkE · Uk, and

Uk is the number of x-packets transmitted by terminal Tk and

received by both terminals Ti/Tj in round k of the initial phase.

In short, we count, for each terminal and for Eve, how many

of Ti/Tj’s shared x-packets this terminal/Eve has missed (or

is expected to have missed, in Eve’s case), and we set Mij to

the smallest of these numbers.

It is straightforward to adapt this computation to the sce-

nario where up to some number of terminals collude to learn

Sij , but we do not consider this scenario in this paper.

Terminals Ti and Tj construct the y-packets using simple

constructions based on Maximum Distance Separable (MDS)

codes [7], as described in Lemma 5 in the Appendix. There

is no novelty in these constructions (they rely on standard

properties of MDS codes). One such property is that, if Eve

has t packets, then each y-packet involves at least t+1 packets,

which ensures that Eve cannot reconstruct it.

F. Active Adversaries and Authentication

To protect against active adversaries, the terminals need to

share some bootstrap information to authenticate each other

when they first communicate. Authentication is orthogonal to

our secret agreement and can happen in different ways, e.g., by

requiring the terminals to initially share bootstrap information

and use it to construct authentication codes for the x-packets

they transmit the first time they run our protocol. After the

terminals have established their first pairwise secrets using

our protocol, they can use these new secrets to construct new

authentication codes, which do not depend on the bootstrap

information.

One might argue: if the terminals have to share bootstrap

information anyway to defend against active adversaries, they

might as well share pairwise secrets to begin with and not

run our protocol at all. The advantage of our protocol is

that it enables the terminals to keep generating new secrets,

independent from the previous ones, and continuously refresh

their encryption and authentication keys. Unless the adversary

can break into one of the terminals while they run our protocol,

she has a small window of opportunity to compromise their

communication: she has to steal the bootstrap information and

impersonate a terminal while the terminals are running our

protocol for the first time.

IV. PROTOCOL ANALYSIS

In this section, we state certain properties of the basic

protocol and also present an argument on why this particular

protocol outperforms a more obvious alternative. We summa-

rize the proofs of Lemmas 1 and 4 in the Appendix, Section A.

We omit the proof of Lemma 2, which is straightforward.

Lemma 1. If the theoretical network conditions hold, there

exists a sufficiently large N for which the basic protocol is

information-theoretically secure against a passive adversary.

From the previous lemma, our protocol is secure; next we

examine what efficiency it can achieve. Note that while for

n = 2, we create a single key S with some efficiency E,

for n ≥ 3, the efficiency is different for each secret Sij , and

depends on the erasure probabilities δki, δkj , and δkE . In our

notation, the efficiency simply corresponds to the ratio

Eij =
Mij

Nn
.

To calculate it, we need Mij , to count how many packets

a queue contains that Eve (or eavesdropping terminals) have

not received. Over the theoretical network conditions, we can

estimate Mij using expected values. Lemma 6 in the Appendix

provides concentration results showing that our estimation

error becomes zero exponentially fast in the number of packets

N . Lemma 2 provides such an example calculation.

Lemma 2. If the theoretical network conditions hold, and

we assume non-colluding eavesdroppers, then there exists a

sufficiently large N for which the basic protocol achieves:

• n = 2 terminals, E = δE(1− δ),
• n ≥ 3, if δ1 ≤ δij ≤ δ2 ∀ i, j and δE = mini δiE ,

Eij ≥min

{

δE(1− δ2)

[

(1− δ2) +
2δ2
n

]

,

δ1(1− δ2)

[

(1− δ2)−
1− 3δ2

n

]}

.

This lemma verifies an intuitive fact: as the number of

terminals (and transmission rounds in the initial phase) n
increases, what dominates the size of each queue is the number

of packets (1− δ2)
2N jointly overhead by two terminals; the

fraction of these (δ1 or δE) that is unknown to our strongest

eavesdropper equals the amount of secrecy we can create. In

other words, the fact that we keep adding x-packets in each

queue during all rounds is the key in the protocol’s scalability.

Lemma 3. Under the conditions of Lemma 2, for n = 2
terminals, the basic protocol achieves maximum efficiency.

Indeed, the efficiency we achieve for n = 2 reaches

Maurer’s upper bound [3].

The basic protocol scales well with the number of terminals

because we try to leverage broadcasting as much as possible.

If we were, instead, attempting pairwise secret establishment,

the efficiency would quickly go to 0 with the number of

terminals. To see this, consider the following, conceptually

simpler alternative to the basic protocol: Consider a time-

division protocol, where we operate in time-slots, and at each

time-slot we create the key Sij between a specific terminal

pair, using the best possible protocol that achieves efficiency

δE(1−δ) [3]. Since we have
(

n
2

)

keys to create, and each key

is created during only one time-slot, the overall efficiency is

E(alt) = δE(1−δ)

(n2)
per key. Unlike the efficiency of our protocol

that converges to a constant value as n increases, E(alt) goes

to zero.

Finally, the most demanding operations a terminal needs to

perform is linear combining to create the y-packets. Thus:

Lemma 4. Each terminal that participates in the basic pro-

tocol executes an algorithm that is polynomial in N and n.

V. ADAPTING TO REAL NETWORKS

In this section, we adapt our basic secret-agreement protocol

(Section III) to the scenario where the theoretical network

conditions do not hold.

A. Basic Idea

The challenge with real networks is that we do not know the

size of the pairwise secrets (the Mij from Section III) that we

should create. In Section III-E, we were able to analytically

compute Mij because we assumed that we knew enough about

Eve’s channels to compute the expected amount of information

missed by Eve.

We conservatively estimate the amount of information

missed by Eve based on the amount of information missed by

the terminals. More specifically, Alice and Bob assume that,

during each round of the initial phase, Eve learns as much

information as any of the other terminals about the x-packets

shared by Alice/Bob. Hence, at the end of the initial phase,

Eve is assumed to know at least as many of the Alice/Bob

shared x-packets as the most knowledgeable terminal.

We chose this based on the following observations: Channel

behavior varies significantly over time, to the point where we

cannot estimate or even upper-bound how much information

Eve collects during one experiment based on how much

information she collected during past experiments. Channel

behavior also varies over space, but less so: if, during an

experiment, terminal Ti receives many packets in common

with neighbor Tj , then Ti most likely receives many packets

in common with its other neighbors as well. It turns out that,

by measuring how many packets each pair of neighboring

terminals receive in common during one experiment, we can

estimate quite accurately how many packets any terminal and

Eve receive in common in the same experiment. This, of

course, is an empirical estimation, thus we cannot guarantee

its accuracy theoretically.

B. Secret Construction

Terminals Ti and Tj estimate that, at the end of the initial

phase, from their shared x-packets, Eve misses the following

number:

VE =

n
∑

k 6=i,j, k=1

min{ V k
1 , V k

2 , . . . V k
n }, (2)

where:

- V k
l is the number of new x-packets shared by terminals

Ti/Tj and missed by terminal Tl during round k of the

initial phase.

In short, we assume that, in each round of the initial phase,

Eve missed as few (of the x-packets newly shared by Ti/Tj

in this round) as any other terminal.

C. Key Points

If we do not assume theoretical network conditions, we

cannot offer formal guarantees about the reliability of our pro-

tocol, because we do not know exactly how much information

Eve collects during the initial phase: it is theoretically possible

that Eve receives more x-packets in common with the termi-

nals than we estimate, which means that she learns something

about the pairwise secrets. The amount of information that

leaks to Eve depends both on the particular wireless network

and the number of terminals: the more terminals we have, the

more we learn about the quality of channels throughout the

network, and the better we can estimate the quality of Eve’s

channels. Hence, the amount of information that leaks to Eve

needs to be experimentally assessed in each wireless network

as a function of the number of terminals n.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate our adapted

secret-agreement protocol (Section V) on a small wireless

testbed. Our goal is to answer two questions: is it feasible to

achieve non-negligible secrecy rate in a real wireless network

by leveraging packet erasures? and how well can we do so

using our protocol?

A. Testbed

We show our testbed in Figure 1. It consists of 6 nodes

distributed over an indoor office area. Unless otherwise spec-

ified, the nodes are HTC Wildfire Android smartphones. We

set the phones to 802.11 ad-hoc mode, and we fixed their

transmission rate to 36 Mbps. In some experiments, we also

use WARP software radios [8].

In order for our approach to work, the wireless network must

provide a certain level of channel variability. The simplest

scenario where such variability exists is when the nodes are

not in direct line of sight, e.g., they are separated by office

walls. This is the scenario we implement in our testbed. Our

protocol can work even when the nodes are in direct line of

sight, but for that we need to use artificial noise (the terminals

create interference and force Eve to miss some of the traffic

they exchange). We are currently experimenting with that idea

(we have some early results here [9]), but we do not consider

this approach in this paper.

When we refer to an “experiment,” we mean that we place

one node in each room, and we run one round of our protocol.

T1T2

T3T4

T5 T6

Fig. 1. Our testbed. Each office is about 2× 3 meters.

In each experiment, one node plays the role of Eve, while the

rest play the role of 5 terminals that exchange pairwise secrets.

There are 6 possible arrangements of 5 terminals and Eve in 6
rooms, and we experiment with 4 different levels of transmit

power. Hence, each presented graph summarizes the results

of 4× 6 experiments (all the combinations of transmit-power

levels and node arrangements).

We present two kinds of graphs: minimum reliability as a

function of transmit power and minimum efficiency/secrecy

rate as a function of transmit power. Each reliability value

is the minimum reliability achieved by any terminal pair in

any of the 6 node arrangements. Each efficiency/secrecy rate

value is the minimum efficiency/secrecy rate achieved by any

terminal pair in any node arrangement.

B. Ideal Secrecy Rate

We start by looking at the ideal efficiency and secrecy rate

achievable in this testbed by leveraging packet erasures. In

particular, we measure the efficiency and secrecy rate of an

oracle-assisted protocol; this works like ours, with the only

difference that it does not estimate how much information

Eve obtains in the initial phase—that knowledge is directly

provided by the oracle. More specifically, instead of estimating

VE using Equation 2, we set it to the exact number of x-

packets shared by terminals Ti/Tj and missed by Eve. This

oracle-assisted protocol by construction achieves reliability 1,

because it knows exactly how much information Eve obtains

in the initial phase and computes the longest secret that is

completely unknown to Eve. Figure 2 (“Ideal” label) shows

the minimum efficiency/secrecy rate achieved by any terminal

pair using the oracle-assisted protocol, as a function of the

transmit power of the terminals.

First, we see that, if we perfectly knew Eve’s channel con-

ditions, each terminal pair could exchange tens of thousands

of secret bits per second (up to 55 secret Kbps, achieved

for a transmit power of 10 dbm), of which Eve would

have zero information independently from her computational

capabilities. We consider this an encouraging first result: It

shows that a real wireless network may offer enough channel

variability to enable the exchange of tens of thousands of

secret bits per second—enough to create a brand new 256-bit

encryption key every few milliseconds. Of course, we expect

this secrecy rate to become smaller as we consider adversaries

with increasingly more sophisticated hardware (e.g., multiple

15

20

25

30

35

40

45

50

55

M
in

im
u
m

 s
e
cr

e
cy

 g
e
n
e
ra

tio
n
 r

a
te

 (
K

b
p
s)

0 5 10 15 20 25

4

6

8

10

12

14

16
M

in
im

u
m

 e
ff
ic

ie
n
cy

 (
×
 1

0
−

4
)

TxPower (dBm)

Ideal

Effective

Fig. 2. Minimum efficiency and secrecy rate as a function of TX power.
“Ideal” corresponds to the oracle-assisted protocol. “Effective” corresponds
to our protocol. Both protocols create up to 55 secret Kbps.

receiving antennas). However, this first result is good enough

to give us hope that we can achieve non-negligible secrecy

rate even against sophisticated adversaries.

Second, we see that secrecy rate first increases, then drops

as the transmit power of the terminals increases. This is due

to the following reason: As the transmit power of a terminal

increases, so does the quality of its channels to both the

other terminals and Eve. Hence, higher transmit power means

that (1) the terminals exchange traffic faster, but also that

(2) Eve overhears more of their exchanges. At low transmit

power, effect 1 dominates, and increasing the transmit power

improves secrecy rate; beyond 10 dbm, effect 2 dominates,

and increasing the transmit power benefits Eve more than the

terminals, decreasing the secrecy rate.

C. Reliability and Secrecy Rate of our Protocol

Next, we look at the performance of our protocol. Unlike

the oracle-assisted protocol, ours needs to estimate how much

information Eve obtains in the initial phase. If it overestimates

Eve’s knowledge, it creates a shorter secret than it could,

achieving lower efficiency/secrecy rate than the oracle-assisted

protocol. If it underestimates Eve’s knowledge, it creates a

longer secret than it should, achieving higher secrecy rate than

the oracle-assisted protocol, but reliability below 1. Hence,

there is a trade-off between secrecy rate (how fast we create

new secrets) and reliability (how secure these secrets are).

Ideally, we would want our protocol to behave like the

oracle-assisted one (achieve the same secrecy rate and reli-

ability 1). In practice, this is infeasible, as it would require

us to always estimate Eve’s knowledge with perfect accuracy.

Thankfully, it is also unnecessary: Suppose a secret has relia-

bility 0.8, which means that Eve can correctly guess the value

of one bit of the secret with probability 2−0.8 = 0.57. The

smallest secret that our protocol ever creates is one y-packet

(1 KB); reliability 0.8 means that Eve can correctly guess

the value of one y-packet with probability 2−0.8·8000 ≈ 0.

Hence, as long as the terminals use their pairwise secrets at

the granularity of a y-packet (e.g., they use at least one entire

y-packet as an encryption key), they are secure from Eve.

Figure 2 (“Effective” label) and Figure 3 show the minimum

efficiency/secrecy rate and minimum reliability of our protocol

per constructed Sij (where the minimum is over all i, j) as a

0.66

0.64

0.62

0.59

0.57

0.55

0.54

0.52

0.50

P
r{

g
u

e
ss

in
g

 a
 s

e
cr

e
t

b
it}

0 5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
in

im
u

m
 r

e
lia

b
ili

ty

TxPower (dBm)

Fig. 3. Minimum reliability of our protocol as a function of TX power. All
the pairwise secrets that we create have reliability above 0.8.

function of the transmit power of the terminals.

Our protocol creates tens of thousands of secret bits per

second between each terminal pair (up to 55 secret Kbps,

achieved for a transmit power of 10 dbm). All of the pairwise

secrets that we create have reliability above 0.8 (and most

of them have reliability 1). We consider this an encouraging

result, too: It shows that, in a real wireless network, it may

be feasible to accurately estimate an adversary’s knowledge,

if we have a sufficiently dense deployment of collaborating

honest nodes. Of course, this estimation will become harder as

we consider adversaries with increasingly more sophisticated

hardware. However, this first result is good enough to give

us hope that we can achieve reasonable accuracy even against

sophisticated adversaries.

Our next step. In the above experiments, Eve gains knowl-

edge only from the information that is successfully delivered

to her application layer. There exist packets that reach Eve’s

receiver, yet are not delivered to her application because they

are corrupted beyond what the lower layers can repair. One

could argue that, if Eve rooted her phone and gained access

to every packet that reaches her physical layer, she would

improve her knowledge. The question is by how much.

To start answering this question, we used three WARP

software-defined radios3, configured with an 802.11-compliant

physical layer (16 QAM over OFDM), and we placed them

in our testbed. We make one of them (Alice) send out traffic,

while the other two (Bob and Eve) receive. The difference

from our earlier experiments is that now Eve tries to use

all the packets that reach her physical layer (with corrupted

payload or not) to increase her knowledge. First, we consider

the packets that are correctly received by Bob, and we measure

Eve’s knowledge (conditional entropy) about these packets4.

Then we repeat the experiment, assuming that an oracle

magically repairs the corrupted payload of every packet that

reaches Eve’s receiver. In the former case, Eve’s uncertainty on

Bob’s information originates from both corrupted and erased

symbols, whereas in the latter only from erased ones (that do

not reach Eve’s receiver at all).

3The smartphones used for our earlier experiments do not provide access
to received data that is discarded below the application layer.

4We do so by calculating the joint empirical distribution of the 16-QAM
symbols in the payload of Bob’s packets and the symbols that Eve receives—
correctly or not.

The results show that—at least in our testbed—Eve’s uncer-

tainty mostly depends on the erased in-the-air symbols, i.e.,

symbols that were not demodulated at all. For instance, if Alice

uses a transmit power of 15 dbm, in the second experiment

(where all payload corruption is corrected by the oracle), Eve

learns only an extra 0.1 bit-per-channel-use relative to the

first experiment. This indicates that the number of partially

corrupted packets that reach Eve’s receiver is relatively small,

hence they do not significantly increase Eve’s knowledge (or

reduce the secrecy rate achieved by our protocol).

We are currently examining more sophisticated receivers

that work directly with the analog physical signal (rather than

at symbol level), to examine ultimate information leakage.

VII. RELATED WORK

There exists a rich literature on creating shared secrets

between two nodes by leveraging channel variations, which

can be broadly divided into two categories: On the one hand,

there exists theoretical work on creating unconditionally secure

secrets under idealized conditions. The seminal contributions

were by Wyner [2] and Maurer [3] (see also [10] and refer-

ences therein). On the other hand, there exists practical work

that presents concrete, implementable protocols for wireless

environments (for lack of space, we only mention those that

were evaluated through implemented prototypes). Some of

them leverage the time-varying nature and reciprocity of wire-

less channels [11], [12], [13]. These achieve secret-generation

rates up to a few tens of bps (in modified 802.11 or 802.15

environments). In another proposal, Alice and Bob create

shared secrets by combining and heuristically condensing the

frames that are transmitted between them only once (based

on the assumption that these frames are less likely to have

been overheard by Eve) [14]. This has been implemented in

an 802.11 environment, but has not been evaluated in terms

of efficiency or reliability yet. In iJam, when Alice transmits,

Bob jams a part of her transmission in a special way (specific

to OFDM) that prevents Eve from guessing which part was

jammed; hence, Alice and Bob share common knowledge that

is secret from Eve, and they use it to create shared secrets [15].

This achieves a secret-generation rate up to 18 Kbps (in a

modified 802.11 environment).

We differ in the following ways: To the best of our knowl-

edge, our work is the first to consider multi-terminal pairwise

secret agreement, where broadcast is leveraged to efficiently

create multiple shared secrets at the same time. The existing

protocols focus on a single pair of nodes, hence they are not

designed to leverage broadcast, and they would not scale well

with the number of terminals (if applied to the multi-terminal

scenario). Moreover, our protocol achieves a secret-generation

rate of tens of Kbps, without requiring any custom physical-

layer operations that are specific to OFDM (or any other

transmission scheme). Finally, we should mention our earlier

workshop paper, which also presents a protocol for creating

shared wireless secrets, although that focuses on group (not

pairwise) secrets and relies on artificial interference [16].

VIII. DISCUSSION AND CONCLUSIONS

We have presented a protocol that enables a group of ter-

minals, connected to the same broadcast domain, to exchange

pairwise secrets in the presence of an adversary. We assume

nothing about the adversary’s computational capabilities, but

we assume that she cannot overhear all the information

received by any terminal. The key properties that differentiate

our protocol from related theoretical work are that it has

polynomial complexity, is readily implementable in simple

wireless devices, and scales well to an arbitrary number of

terminals. On the practical side, we deployed our protocol

on a small wireless testbed, where the terminals and the

adversary are smartphones located in adjacent offices. We

presented experimental evidence that 5 terminals can create

pairwise secrets at a rate of 55 Kbps, with their secrecy being

independent from the adversary’s computational capabilities.

We developed our protocol under the assumption that the

terminals are “honest but curious.” With a bit extra care, we

can relax it: The worst a dishonest terminal Ti can do is lie

about which packets it misses in the initial phase to cause the

other terminals to overestimate the number of packets missed

by Eve and create unreliable secrets. This works, only if Ti

is the terminal that missed the fewest packets in every round

of the initial phase. We can further increase our robustness

by estimating the secret size even more conservatively, e.g.,

by assuming that, in each round, Eve missed a fraction of the

second smallest value reported by any terminal.

Our biggest challenge will be to make our protocol ro-

bust against an adversary that possesses multiple receiving

antennas. Clearly, the more antennas an adversary has, the

more information she can receive. We need to tune our

conservativeness about the created secret size as a function

of the strength of the adversary that we want to thwart. For

instance, if we assume that Eve can be present at two separate

network locations, then Alice and Bob should estimate how

much of their shared information is missed by Eve based on

how much information is missed by pairs of terminals (as

opposed to single terminals). Our ultimate goal is to determine

the practical limits of our approach—how does secrecy rate

decrease as the network presence of the adversary increases.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120-126, 1978.

[2] A. D. Wyner, “The Wire-tap Channel,” Bell System Tech. J.,
vol. 54, pp. 1355-1387, 1975.

[3] U. M. Maurer, “Secret Key Agreement by Public Discussion
from Common Information,” IEEE Transactions on Information
Theory, vol. 39, pp. 733-742, 1993.

[4] Companies Developing QKD Systems: Id Quantique, MagiQ
Technologies, SmartQuantum, Quintessence Labs.

[5] A. Mink, X. Tang, L. Ma, T. Nakassis, B. Hershman, J.C.
Bienfang, D. Su, R. Boisvert, C. W. Clark, and C. J. Williams,
“High Speed Quantum Key Distribution System Supports One-
time Pad Encryption of Real-time Video,” in Proceedings of SPIE,
vol. 6244, 2006.

[6] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and
A. Markopoulou, “Microcast: Cooperative Video Streaming on
Smartphones,” in Proceedings of the International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2012.

[7] F. J. Macwilliams and N. J. A. Sloane, “The Theory of Error
Correcting Codes,” North-Holland, 2006.

[8] “Rice University Wireless Open-Access Research Platform
(WARP),” http://warp.rice.edu.

[9] M. Jafari, U. Pulleti, E. Atsan, I. Safaka, C. Fragouli, K.
Argyraki, and S. Diggavi, “Exchanging Secrets Without Using
Cryptography”, http://arxiv.org/abs/1105.4991.

[10] B. Kanukurthi and L. Reyzin, “Key Agreement from Close
Secrets over Unsecured Channels,” in Proceedings of the
ACM/USENIX EUROCRYPT Conference, 2009.

[11] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener,
“Robust Key Generation from Signal Envelopes in Wireless
Networks,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2007.

[12] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. Man-
dayam, “Information-theoretically Secret Key Generation for
Fading Wireless Channels,” IEEE Transactions on Information
Forensics and Security, vol. 5, no. 2, pp. 240-254, 2010.

[13] J. Croft, N. Patwari, and S. Kasera, “Robust Uncorrelated Bit
Extraction Methodologies for Wireless Sensors,” in Proceedings
of the ACM/IEEE Conference on Information Processing in
Sensor Networks (IPSN), 2010.

[14] S. Xiao, W. Gong, and D. Towsley, “Secure Wireless Com-
munication with Dynamic Secrets,” in Proceedings of the IEEE
INFOCOM Conference, 2010.

[15] S. Gollakota and D. Katabi, “Physical Layer Wireless Security
Made Fast and Channel Independent,” in Proceedings of the IEEE
INFOCOM Conference, 2011.

[16] I. Safaka, C. Fragouli, K. Argyraki, and S. Diggavi, “Creating
Shared Secrets Out of Thin Air,” in Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2012.

[17] M. Mitzenmacher and E. Upfal, “Probability and Computing,
Randomized Algorithm and Probabilistic Analysis,” Cambridge
University Press, 2006.

APPENDIX

A. Proof of Lemma 1

We consider our eavesdropper to be either Eve or one of the

participating terminals. Our eavesdropper has two occasions

to obtain information about the secret Sij : by overhearing a

fraction of the transmitted x-packets in the initial phase; or

because a terminal knows the source packets it transmitted.

Both these effects are captured in the calculation of the number

Mij . Under the theoretical network model conditions, we can

approximate these numbers with their average value; Lemma 6

shows that this approximation can become arbitrarily good

exponentially fast in N . Given that we use any value Mij

smaller or equal to the exact, the following Lemma 5 gives

a construction that does not allow the eavesdropper to obtain

any information about Sij . �

Lemma 5. Consider a set of N x-packets, say x1, . . . , xN ,

and assume an eavesdropper, Eve, has a subset of size NE

of the x-packets. Construct M = N − NE y-packets, say

y1, . . . , yM , as

Y = AX,

where matrix X has as rows the N x-packets, matrix Y
has as rows the N − NE y-packets, and A is the generator

matrix of a Maximum Distance Separable (MDS) linear code

with parameters [N,N −NE , NE +1] (e.g., a Reed-Solomon

code [7]). Then the M y-packets are information-theoretically

secure from Eve, irrespective of which subset (of size NE) of

the x-packets Eve has.

Proof: ⊲Let W be a matrix that has as rows the packets Eve

has. To prove that the y-packets are information-theoretically

secure from Eve, we must show that:

H(Y |W) = H(Y).

⊲ We can write
[

Y
W

]

=

[

A
AE

]

X
def
= BX,

where AE is a NE ×N matrix of rank(AE) = NE , which

specifies the NE distinct x-packets that are known to Eve. AE

is not known to us, however we know is that in each row of

AE there is only one 1 and the remaining elements are zero;

so all of the vectors in the row span of AE have Hamming

weight (the number of nonzero elements of a vector [7]) less

than or equal to NE . On the other hand, from construction,

rank(A) = N − NE , and each vector in the row span of A
has Hamming weight larger than or equal to NE +1 [7]; thus

the row span of A and AE are disjoint (except for the zero

vector) and the matrix B is full-rank, i.e. rank (B) = N .

⊲ If the packets xi have length Λ, we have that:

H(Y |W) = H(Y,W)−H(W) =

= rank (B) Λ− rank(AE)Λ = (N −NE)Λ

= rank(A)Λ = H(Y). �

B. Concentration to expected values

Lemma 6. The values of the random variables Mij , UkE , Vl,

as defined in Section III-E and used in Lemma 1, converge

exponentially fast in N to their expected values.

Proof: Consider the random variable UkE denoting the

number of x-packets transmitted by Tk and received by both

Ti/Tj but not Eve. We use a standard argument to show

it concentrates exponentially fast to its average. Define the

random variable η
(l)
q as

η(l)q =







1 if the qth x-packet is received

by terminals Ti/Tj and missed by Eve,
0 otherwise.

Then we can write UkE =
∑N

q=1 η
(l)
q and we have

µ , E(UkE) = (1− δki)(1− δkj)δkEN.

For 0 < ǫ ≤ 1 we can write P [UkE − µ ≥ ǫµ] ≤

exp
(

− ǫ2µ
3

)

, where in the last inequality we use Chernoff

bound [17, Chapter 4]. We can also write, for 0 < ǫ ≤ 1,

P [UkE − µ ≤ ǫµ] ≤ exp
(

− ǫ2µ
2

)

. Similar arguments hold for

the remaining variables in Section III-E.

