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Abstract—A mobile social network (MSN) is a special delay
tolerant network (DTN) composed of mobile nodes with social
characteristics. Mobile nodes in MSNs generally visit community
homes frequently, while other locations are visited less frequently.
We propose a novel zero-knowledge MSN routing algorithm,
homing spread (HS). The community homes have a higher
priority to spread messages into the network. Theoretical analysis
shows that the proposed algorithm can spread a given number of
message copies in an optimal way when the inter-meeting times
between any two nodes and between a node and a community
home follow exponential distributions. We also calculate the ex-
pected delivery delay of HS. In addition, extensive simulations are
conducted. Results show that community homes are important
factors in efficient message spreading. By using homes to spread
messages faster, HS achieves a better performance than existing
zero-knowledge MSN routing algorithms, including Epidemic,
with a given number of copies, and Spray&Wait.

Index Terms—Community home, mobile social networks (M-
SNs), routing.

I. INTRODUCTION

As more users use portable devices to contact each oth-
er, mobile social networks (MSNs) attract more attention.
As a special type of delay tolerant network (DTN), MSNs
experience intermittent connectivity, and even long-lasting
disconnections, due to the mobility of the nodes. There are
generally no stable end-to-end delivery paths in an MSN.
Therefore, delivering messages becomes a challenging issue.
Many routing algorithms that are based on store-carry-and-
forward schemes have been proposed to address this issue. The
existing algorithms can be simply divided into two categories.

One category is knowledge-based routing algorithms, which
mainly includes probability-based algorithms (e.g., [1], [2]–
[4]) and social-aware algorithms (e.g., [5]–[7]). These al-
gorithms record the historical contact information or social
characteristics of nodes, and then this knowledge is used to
guide message deliveries. However, these algorithms take time
and storage space to collect knowledge on historical contacts.

Another category consists of zero-knowledge routing algo-
rithms, which do not require any prior knowledge regarding
the contact information among nodes. The typical algorithms
include Epidemic [8] and Spray&Wait [9]. Epidemic is based
on the flooding strategy, which incurs a significant number of
message copies. In this paper, we consider a type of Epidemic
in which the number of copies is limited. Spray&Wait also
limits the number of copies. Moreover, it adopts a binary

splitting method to spread copies into the network until one
message holder encounters the destination. This algorithm
assumes that all nodes just randomly walk in a given area and
nodes visit all locations in a uniformly random way. However,
the mobility of nodes in MSNs generally follows some social
characteristics, making Spray&Wait less efficient, as we will
show later in this paper.

We consider an MSN in which nodes visit some locations,
called community homes or simply homes, frequently, while
the other locations are visited less frequently. Many mobility
models [10]–[14] capture this characteristic of skewed location
visiting preferences from several real MSN traces. Besides, we
assume that each home supports a virtual throwbox [15], a
mechanism that can store a message at a local storage device,
or at another node currently at the same home. A message
holder is either a mobile node or a home that has message
copies. The objective is to send a message from a mobile
source to a destination quickly, using a given number of copies.

We propose a zero-knowledge multi-copy routing algorithm,
homing spread (HS). HS consists of three phases. In the
first phase, the source spreads copies quickly to homes. In
the second phase, homes that have received copies spread
the message to other homes and mobile nodes (or simply
nodes). Then, in the third phase, the destination fetches the
message from any encountered message holder. HS makes
use of the unbalanced location visiting characteristic, and uses
homes as special message holders. Thus, it can achieve a better
performance than existing zero-knowledge routing algorithms.
The main contributions are summarized as follows:

1) We show that HS is optimal when the inter-meeting
times between any two nodes and between a node and
a community home follow exponential distributions.

2) We construct a continuous Markov chain to calculate
the expected delivery delay of HS and derive an upper
bound. Moreover, we calculate the required number of
copies needed to bound the expected delivery delay to
a given threshold.

3) We conduct extensive simulations on a synthetic MSN
trace to evaluate HS. The results show that HS sig-
nificantly outperforms several existing zero-knowledge
multi-copy routing algorithms, including Epidemic with
a given number of copies, and Spray&Wait.
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Fig. 1. The network model.

The remainder of the paper is organized as follows. We
introduce the network model and problem in Section II. HS
and its performance analysis are presented in Sections III and
IV, respectively. In Section V, we evaluate the performance of
HS through extensive simulations. After reviewing the related
work in Section VI, we conclude the paper in Section VII. The
proofs of the major theorems are presented in the Appendix.

II. NETWORK MODEL & PROBLEM

We consider a typical MSN that is composed of a number
of mobile nodes and some locations. Each node visits a few
frequent locations, called community homes or homes, while
the other locations are visited less frequently. Each node has
multiple homes. Consider students (i.e., mobile nodes in an
MSN) in a university environment; the community homes are
the dormitories, cafeteria, classrooms, and laboratories. At a
more refined level (or a heterogeneous setting), we can perhaps
add Chinatown for Chinese students, and so on. We focus first
on a homogeneous setting and later discuss our results in a
heterogeneous setting.

More specifically, n mobile nodes V ={1, 2, · · · , n} inde-
pendently and randomly walk on a 2D grid, among which
there are h homes, denoted by H , and the rest is other
locations, denoted by L, as shown in Fig. 1. Moreover, each
node visits either a home with a relatively high probability or
another location with the remaining probability. The visited
home and other location are randomly selected from H and
L, respectively. A visit to a home is known as homing, but
when a message holder meets with another node at a different
location, it is known as roaming.

Given a fixed number of message copies C, we plan to
address the following challenges:

• What is the optimal way for a message holder to spread
copies during homing and roaming?

• Once a home receives some message copies, how should
it further spread these copies?

• What is a general way for a mobile destination to obtain
a copy?

III. HOMING SPREAD (HS)

In this section, we provide the details of HS with a given
number of message copies. Since each node has a relatively
high probability of visiting homes, we treat these homes in a
special way. Once a home receives a copy, HS maintains the
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Fig. 2. The binary homing scheme.

corresponding home as a static message holder. We focus on
one message only, but the results can be applied to multiple
messages as long as each node, including home, has sufficient
cache space and the link has enough bandwidth. HS includes
three phases: homing, spreading, and fetching.

1) In the homing phase, the source sends copies quickly
to homes. Upon reaching the first home, the message
holder (which includes the source) dumps all copies
to the home. When roaming occurs (i.e., a message
holder meets another node at another location), copies
are equally split between the two nodes and both become
message holders.

2) In the spreading phase, homes with multiple copies
spread them to other homes and mobile nodes. The
home gives one copy to each node located at the same
home, subject to the availability of the copies. However,
the last copy is kept at the home through a virtual
throwbox. Each new message holder with one copy starts
its homing phase.

3) In the fetching phase, the destination fetches the message
when it meets any message holder for the first time,
which can be either a home or a mobile node.

Note that local storage is not essentially for a virtual
throwbox if there is a node at the same home. We will
show that when the inter-meeting times between any two
nodes and between a node and a community home follow
exponential distributions, HS is optimal in terms of minimizing
the expected delivery delay to the destination. Unless otherwise
specified in the rest of the discussion, “other nodes” refers to
mobile nodes outside of the homes.

A. The Homing Phase
In the homing phase, the source tries to send the message

to the homes first. If the source encounters other nodes before
it reaches a home, it will give some of its copies to the
encountered node and will let the node jointly send the copies
to homes. The more nodes that the message copies are sent to
before reaching homes, the smaller the delay of the next two
phases will be. Thus, the source needs to spread the copies to
as many other nodes as possible before they reach the homes.
To this end, we adopt the following homing scheme:

Definition 1: (Binary Homing Scheme): Each message
holder sends all of its copies to the first (visited) home. If
the message holder encounters another node before it visits a
home, it binary splits the copies between them.



Algorithm 1 The Homing Spread (HS) algorithm
1: for each mobile node i do
2: if node i encounters another node j then
3: if node j is the destination then
4: node i sends the message to j;
5: if nodes i and j have ri and rj message copies then
6: node i holds ⌈ri/2⌉+ ⌊rj/2⌋ copies through ex-

change with node j;
7: if node i visits a home h then
8: node i sends all its copies to h;
9: if h ∈ H+ or i is the destination then

10: h sends a copy to node i.

Fig. 2 shows an example of the binary homing scheme.
Message copies are binary split until they reach the homes.

B. The Spreading Phase

In the spreading phase, the homes, which have more than
one copy, spread their extra copies to other homes and nodes.
Let H+, H1 and H0 (H=H+ +H1 +H0) denote the homes
with more than one copy, the homes with only one copy, and
the homes without copies, respectively. Then, we adopt the
following spreading scheme:

Definition 2: (1-Spreading Scheme): Each home hi ∈ H+

spreads a copy to each node in the same home until only one
copy remains, so that hi ∈H1 after the spreading. If such a
node with one copy later visits another home hj ∈ H0, the
node sends the copy to that home, so that hj ∈H1 after the
visit.

Using the 1-spreading scheme, as shown in Fig. 3, each
home has at most one copy. If C >h, there are C−h nodes
outside the homes that have a copy.

C. The Fetching Phase

After the spreading phase, there would be C message
holders, including h homes and C−h other nodes, or C homes
if C≤h. Then, in the fetching phase, the destination fetches
this message once it encounters a message holder.

D. The HS Algorithm

We present the HS algorithm, as shown in Algorithm 1.
Algorithm 1 is a distributed algorithm, in which each node
only needs to exchange the copies with the encountered node
or home. Note that we do not distinguish the three phases
when nodes exchange the copies. This is because the message
exchange in this algorithm is compatible with each phase. In
fact, if the node encounters the destination, which falls into the
third phase, the node will send the message to the destination
in Steps 3-4. If two nodes in the first phase encounter each
other, they will send half of their copies to the other one
in Steps 5-6. If two nodes in the second phase encounter
each other, the message exchange scheme in Steps 5-6 is still
correct. When a node visits a home, no matter which phase it
falls under, it is compatible for the node to send all of its
copies to the home and to receive a copy from the home
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Fig. 3. The 1-spreading scheme.

if it has extra copies, as shown in Steps 7-10. Note that in
Algorithm 1, the part for node j is the same as the one for
node i (by exchanging i and j).

E. Optimality of HS

When we analyze the delay performance of HS, we assume
that the inter-meeting times between any two nodes and
between a node and a community home follow exponential
distributions with parameters λ and Λ (Λ≫ λ), respectively.
Such an assumption is widely adopted (e.g., [9]). Moreover,
we define a concept of network state, which is used to describe
the distribution of message copies in the whole network.

Definition 3: (State of Network s): s is a vector with h+n
components, i.e., s=⟨s1, s2, · · ·, sh, sh+1, · · ·, sh+n⟩, in which
the i-th component si represents the number of message copies
held by the i-th home (if i≤h) or the (i−h)-th node (if i>h).

Based on Definition 3, there is an optimal state, denoted
by so, which can make the destination fetch a message copy
the quickest. According to the assumptions about the network
model, the destination has a higher probability of visiting a
home than that of meeting another node. Thus, the optimal
state is that each home holds a message copy and other C−h
nodes each holds a copy if C>h, or arbitrary C homes each
holds a copy if C<h. For example, so=⟨1, 1, · · ·, 1, 0, 0 · · · ⟩.

Now, we consider the homing phase. Since the binary
homing scheme is the same as the binary spraying scheme
in Spray&Wait [9], we directly have the following lemma:

Lemma 1: The binary homing scheme can spread the C
message copies to the maximum number of nodes before they
reach the homes.

In terms of the spreading phase, which differs from
Spray&Wait, we also can derive its optimality. Note that
each node has a higher probability of visiting a home than
meeting another node. A home can spread the copies to other
nodes more quickly than a node can. Thus, the 1-spreading
scheme can spread the message copies to other nodes the
quickest. Moreover, more nodes might receive these copies,
which ensures that each home in H0 will receive a copy the
quickest. Thus, we have:

Lemma 2: The 1-spreading scheme can spread message
copies from a home in H+ to the maximum number of nodes
with the fastest speed.

Based on Lemmas 1 and 2, we get that HS is optimal.
Theorem 3: (Optimality of HS): HS can achieve the min-

imum expected delay when the inter-meeting times between
any two nodes and between a node and a community home



follow independent and identical exponential distributions,
respectively.

IV. PERFORMANCE ANALYSIS

In this section, we formally analyze the expected delivery
delay of HS. First, we use the continuous Markov chain to
compute the expected delivery delay. Since it is hard to derive
the close formula, we derive a upper bound, whereby we
determine the number of message copies.

A. Computing the Expected Delivery Delay

We adopt a continuous Markov chain to compute the
expected delivery delay of HS. First, we determine all possible
states in the state transition graph. According to Definition 3,
a state s=⟨s1, · · · , sh, · · · , sh+n⟩ satisfies:

h+n∑
i=1

si=C. (1)

Let S denote the state space. Then, S is the solution space
of Eq. 1. The start state is st=⟨0, · · · , 0, C, 0, · · · , 0⟩, where
C is the (h+1)-th component that corresponds to the source.

Second, we determine the state transition functions. For
two arbitrary states s, s′ ∈ S, we use ρs,s′(t) to denote the
probability density function about the time t that it takes for
the state transition from s to s′. The transition probability is
zero if more than two components of s, s′ are different. If
there are exactly two different components between s and s′,
we can check whether there is a state transition that follows the
HS algorithm, and then the corresponding probability density
function can be calculated. Assume that the i-th and j-th
components are different. If i, j > h, this means that nodes
i and j will encounter each other. Then, checking the values
of si, sj , s

′
i, s

′
j , we can determine whether they follow the

binary splitting rule. If their values do not follow the rule,
there is still not a state transition between them. Otherwise, the
corresponding probability density function is the probability
density that nodes i and j will encounter each other, while
other nodes and homes will not encounter to exchange their
message copies. In the same way, we can determine the
probability density for the case where one of i, j is a home.

Finally, we add the end state into the graph, denoted by
se, which is related to the third phase. In fact, each state in
the first phase and the second phase can be directly transited
to be the end state when a message holder encounters the
destination. Thus, each state has a direct edge to the end
state se. The corresponding probability density function is the
probability density that one of the message holders encounters
the destination while other nodes and homes will not encounter
to exchange their copies.

Based on the above method, we construct the state transition
graph G⟨S, {ρs,s′(t)|s, s′ ∈ S}⟩. Moreover, according to the
binary homing scheme in the first phase and the 1-spreading
scheme in the second phase, the state transition is irreversible,
which will not lead to a loop. That is, the state transition graph
G is a directed acyclic graph.

Algorithm 2 Compute the expected delivery delay
1: Construct the state transition graph G:
2: Determine the state set S;
3: Determine ρs,s′(t) for each pairwise s, s′∈S;
4: Set fs,se(t)=0 (∀s∈S);
5: Delete all states (̸=st) whose in-degree is 0;
6: Let array dout(s)=out-degree of s (∀s∈S);
7: while S ̸=∅ do
8: for each s′∈S that dout(s′)=0 do
9: S=S−{s′};

10: for each s∈S that ρs,s′(t) ̸=0 do
11: if s′ is se then
12: fs,se(t)=ρs,s′(t);
13: else
14: fs,se(t)=fs,se(t)+

∫ t

0
ρs,s′(x)fs′,se(t− x)dx;

15: dout(s)=dout(s)−1;
16: Output:

∫∞
0

tfst,se(t)dt;

After constructing the state transition graph, we can calcu-
late the expected delivery delay of the message, which is equal
to the expected delay for the transition from the start state to
the end state. To this end, we derive the cumulative probability
density function for the state transition from the start state to
the end state, denoted by fst,se(t). Regarding the cumulative
probability density function, we have the following theorem:

Theorem 4: Consider an arbitrary state s and its next states
Ns={s′|ρs,s′(t) > 0, s′∈S}. Then, the cumulative probabil-
ity density functions for the state transitions from these states
to se satisfy:

fs,se(t)=
∑
s′∈Ns

∫ t

0

ρs,s′(x)fs′,se(t− x)dx. (2)

This theorem shows that if the cumulative probability den-
sity functions for the state transitions from the next states of
s to se have been calculated, then the cumulative probability
density function of the state s also can be derived. Then, we
can adopt a backward derivation method to get the cumulative
probability density functions of all states, since the state
transition graph G is a directed acyclic graph. Based on this
backward derivation, we can eventually get fst,se(t). Then,
the expected delay for the message delivery from the source
to the destination is

∫∞
0

tfst,se(t)dt.
Based on the above method, we present Algorithm 2 to

calculate the expected delivery delay from the source to the
destination. Steps 1-3 construct the state transition graph. Step
5 deletes the invalid states. In step 6, an array is used to record
the out-degrees of each state in the graph. A state s′ with a
zero out-degree means that the cumulative probability density
function fs′,se(t) has been determined. Then, it would be
deleted from the graph in Step 9. Accordingly, the cumulative
probability density functions for the state transition via this
state are updated in Steps 10-15. By repeating this process, all
of the cumulative probability density functions can be deter-
mined. Then, the algorithm outputs the results in Step 16. The
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Fig. 4. An example of the state transition graph (h = 2, n = 5, C = 2,
Λ=0.4, and λ=0.05).

overhead of Algorithm 2 is dominated by Steps 11-14, which
will be executed within O(|S|2). Note that we directly use
the cumulative probability density functions in Algorithm 2
for simplicity. In fact, these cumulative probability density
functions can be realized in the real implementation, since they
are composed with exponential functions that can be described
by pairwise coefficients and exponents.

B. An Example to Compute the Expected Delivery Delay

Consider a simple example, in which h=2, n=5, C =2,
Λ=0.4, and λ=0.05. We can use Algorithm 2 to calculate the
expected delivery delay. First, the state graph is constructed,
as shown in Fig. 4, in which invalid states are deleted, the
equivalent states are combined into one state, and the 5 − 7
components of each state are ignored due to their zero values.
Besides the end state se, the first two components of each
state are the message copies of homes, and the remaining
components are the copies of nodes. State st is the start state
where the source holds two copies. State s2 is an intermediate
state where a home and a node each hold a copy, respectively.

The probability density function for each state transition is
also determined. For instance, the state transition from st to s2
means that the source visits a home before it encounters any
other nodes. Thus, ρst,s2(t) = 2Λe−2Λt−4λt = 0.8e−t, where
2Λe−2Λt is the probability density for the source visiting a
home at time t, and e−4λt is the probability that the source
has not encountered another node before time t.

After the state graph construction, Algorithm 2 uses the
backward derivation from state se to compute the cumulative
probability density functions. First, the cumulative probabil-
ity density function of s3 is determined, i.e., fs3,se(t) =
ρs3,se(t) = 0.8e−0.8t. Next, fs2,se(t) is determined, i.e.,
fs2,se(t)= ρs2,se(t)+

∫ t

0
ρs2,s3(x)fs3,se(t − x)dx, and so on.

Finally, fst,se(t) is derived. Then, we can deduce that the
expected delivery delay is 2.81.

It is worth noting that we also calculate the expected
delivery delay for the case where h = 0, which corresponds
to Spray&Wait. The corresponding expected delivery delay
is 12.25. That is, compared to Spray&Wait, our algorithm
reduces the expected delivery delay by 77.1% for this example.

C. The Upper Bound of the Expected Delivery Delay

Although we can calculate the expected delivery delay
through Algorithm 2, it is hard to derive a close formula. Here,
we derive an upper bound of the expected delivery delay.

First, we define the average delay of the homing phase as
the average value of delays for each copy reaching the first
home in the homing phase, denoted by D(1). Moreover, we
define the average delay of the spreading phase as the average
value of delays for each home in H0 to receive a copy, denoted
by D(2). The delay for the destination to fetch a copy from a
message holder is defined as the delay of the fetching phase,
and is denoted by D(3). Then, we have:

Theorem 5: The average delays of the first two phases D(1),
D(2), and the delay of the fetching phase D(3) satisfy:

D(1) =
1

hΛ
; D(2)≤ 2

Λ
; (3)

D(3) =

{ 1
CΛ , C≤h;

1
hΛ+(C−h)λ , C>h.

(4)

Note that the message delivery in HS might complete at
each phase; in the worst case, it would complete at the third
phase. Thus, the sum of D(1), D(2), and D(3) is an upper
bound for the expected delivery delay of HS. That is, we have:

Corollary 6: The expected delivery delay of the HS algo-
rithm, denoted by D, satisfies:

D≤
{ 1

hΛ+ 2
Λ+ 1

CΛ , C≤h;
1
hΛ+ 2

Λ+ 1
hΛ+(C−h)λ , C>h.

(5)

Now we can, in turn, determine the number of message
copies C. Given an arbitrary threshold Θ (≥ 1

hΛ + 2
Λ ) of the

expected delivery delay of HS, we let C satisfy the following
equation:

C=

{
1

ΘΛ−2−1/h , Θ≥ 2
hΛ+ 2

Λ ;
Λ
λ ·(

1
ΘΛ−2−1/h−h)+h, Θ< 2

hΛ+ 2
Λ .

(6)

Then, according to Theorem 6, we can ensure that D≤Θ.

D. Discussion

Here, we discuss the performance of HS in the heteroge-
neous setting, where each node only visits a part of the homes
frequently. In this setting, HS still works depending on the
subset overlap of homes.

For simplicity, we assume that each node only has h′

(0<h′<h) homes, which are random but uniformly selected
from the home set H . The homes of each node might be
different, but all of them will form the overlapped home set
H . Obviously, this heterogeneous visit model will lead to a
degradation in the performance of HS. Let D⟨1⟩, D⟨2⟩, and
D⟨3⟩ denote the delay of three phases of HS in this setting.
Then, a similar analysis shows that they satisfy:

D⟨1⟩=
1

h′Λ
; D⟨2⟩≤ 1

Λ
+
1

λ
;

D⟨3⟩≤

{
h

h′CΛ+(h−h′)Cλ , C≤h;
1

h′Λ+(C−h′)λ , C>h.

Despite a performance degradation, HS is still an effective
zero-knowledge method for spreading the copies throughout
the network, even if each node does not record their homes.
In addition, the accurate expected delivery delay of HS in this



TABLE I
EVALUATION SETTINGS.

parameter name default range
deployment area 20×20 -

number of nodes n 200 100-400
number of homes h 5 0-15

homing probability in each second Λ 0.04 0.04-0.16
number of messages 10,000 -

allowed message copies C 10 2-20

setting can still be derived through Algorithm 2. Our future
work will focus on a special heterogenous setting, where nodes
are aware of which homes they belong to. In addition, the
home set of the destination can be piggybacked in the message.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performance of HS under various settings. The compared
algorithms, the evaluation methods, settings, and results are
presented as follows.

A. Algorithms in Comparison

In this paper, we only focus on zero-knowledge multi-copy
routing algorithms for MSNs. To make a fair performance
comparison, we only compare the Homing Spread algorith-
m with several existing zero-knowledge routing algorithms.
More specifically, besides Homing Spread, we implement the
Spray&Wait [9] algorithm and the Epidemic [8] algorithm
with a given number of copies.

Both Spray&Wait and Epidemic deliver messages through
replication. The message holder in Spray&Wait adopts the
binary scheme to split the copies among itself and the encoun-
tered receivers. In contrast, the message holder in Epidemic
just sends one message copy to each encountered node.

In addition, we also implement an Epidemic algorithm
where there is no limit to the number of copies, denoted
by EpidemicU, since it can get the optimal expected delivery
delay among all routing algorithms.

B. Simulation Settings and Metrics

Our simulations are conducted on synthetic traces that are
generated by a Time-Variant Community Model (TVCM) [14].
This is because the commonly used real traces (such as
Cambridge Haggle Trace and UMassDieselNet Trace) do not
provide the needed community information. In contrast, the
TVCM model is a widely adopted model derived from real
MSNs. Moreover, we can modify the model parameters as
needed, so that it can reproduce various empirical mobility
properties, which is beneficial to the performance evaluation
of our algorithm.

In the simulations, we deploy n = 100, 200, 300, and 400
nodes in a grid, a square area composed of 20× 20 small
squares, each of which represents a location. Among the
locations, there are h=0, 5, 15, and 20 homes. Mobile nodes
perform random waypoint trips inside and outside homes. The
unit of time is seconds. In each second, the homing probability
of each node, which is equal to Λ, is selected from 0.04−0.16

while ensuring that the total homing probability does not
exceed 1. Nodes can communicate with each other when they
visit the same small square. Each home is equipped with a
virtual throwbox [15] for virtual storage. In each evaluation,
we randomly generate 10, 000 messages, whose sources and
destinations are assigned uniformly random among the n
nodes. All of the evaluation variables are shown in Table I.

The widely adopted metrics are evaluated in our simulation-
s, including the average delivery delay and average delivery
ratio. The average delivery delay is the average time of all
message deliveries. The average delivery ratio is the ratio of
successful deliveries to all message deliveries.

C. Evaluation Results

We conduct three groups of simulations to evaluate the
performance of the algorithms on the average delivery delay.
In the first group of simulations, we change the number of
nodes, while keeping other variables fixed. Then, we vary the
number of homes in the second group. Finally, we modify
the homing probability of each node in the third group. In
all of the simulations, we record the average delivery delays
of Homing Spread, Spray&Wait, and Epidemic, when given a
different number of copies, as shown in Figs. 5-7. Moreover,
as the minimum average delivery delay that can be achieved by
all possible routing algorithms, we record the average delivery
delay of EpidemicU and plot it as a lower bound.

More specifically, the results in Figs. 5-7 show that the
average delivery delays of the three algorithms reduce when
there is an increase in the number of copies. In contrast,
Epidemic, in which only the source spreads the copies in the
network, has the worst delivery delay. Spray&Wait, in which
multiple nodes and homes help to spread the copies in the
network, has a medium performance. Homing Spread, which
mainly lets homes, assisted by nodes, spread the copies in the
network, has the best performance among the three algorithms.
The results also prove that homes play an important role in
the message spreading process. When the number of homes
increases, or the homing probability increases, the average de-
livery delay of Homing Spread reduces significantly, while the
average delivery delay of Spray&Wait decreases moderately,
and the average delivery delay of Epidemic reduces slightly,
as shown in Figs. 6 and 7, respectively. When the number of
homes is zero, Homing Spread is degraded to Spray&Wait, as
shown in Fig. 6(a), where the curves of the two algorithms
overlap. Moreover, when the number of homes or the homing
probability is sufficiently large (e.g., h=15 or Λ=0.12, 0.16),
Homing Spread can achieve nearly the same performance on
average delivery delay as EpidemicU, i.e., the best result, as
shown in Fig. 6(d), Fig. 7(c), and Fig. 7(d).

Next, we also conduct three groups of simulations to eval-
uate the performance of the above algorithms on the delivery
ratio. We vary the number of homes, the homing probability,
and the number of copies, while fixing other variables, respec-
tively. In each simulation, we calculate the average delivery
ratios of the four algorithms when given different values of
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(a) Number of nodes: n = 100
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(b) Number of nodes: n = 200
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(c) Number of nodes: n = 300
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(d) Number of nodes: n = 400

Fig. 5. Performance comparisons of average delivery delay vs. number of message copies (h=5, Λ=0.04).
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(a) Number of homes: h = 0
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(b) Number of homes: h = 5
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(c) Number of homes: h = 10
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(d) Number of homes: h = 15

Fig. 6. Performance comparisons of average delivery delay vs. number of message copies (n=200, Λ=0.04).
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(a) Homing probability: Λ=0.04
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(b) Homing probability: Λ=0.08
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(c) Homing probability: Λ=0.12
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(d) Homing probability: Λ=0.16

Fig. 7. Performance comparisons of average delivery delay vs. number of message copies (n=200, h=5).

time-to-live for each message, beyond which the message will
be discarded, as shown in Figs. 8-10.

The results in Figs. 8-10 show that Homing Spread can suc-
cessfully deliver the messages more quickly and can achieve
an average delivery ratio that is much higher than those of
Epidemic and Spray&Wait. The results also show that homes
greatly affect the performance of message deliveries. When
the number of homes or the homing probability increases, the
average delivery ratio of Homing Spread reduces significantly,
as shown in Figs. 8 and 9. In contrast, the average delivery
ratio of Spray&Wait reduces moderately. However, the average
delivery ratio of Epidemic reduces by only a little. This is
because Epidemic only depends on the source to spread copies
in the network. The increased number of homes, and the
homing probability, cannot contribute to this message spread-
ing scheme. Moreover, when the homing probability is large
enough (e.g., Λ = 0.12, 0.16), Homing Spread can achieve
nearly the same performance on average delivery ratio as
EpidemicU, as shown in Figs. 9(c) and 9(d). When the number
of homes is zero, Homing Spread is degraded to Spray&Wait,
as shown in Fig. 8(a). In addition, Fig. 10 shows that when
the number of copies increases, the average delivery ratios of
Homing Spread and Spray&Wait will increase significantly.
However, when the number of copies goes beyond a moderate
value (e.g., 3 times of the number of homes in Fig. 10(c)), their

average delivery ratios increase slightly. In contrast, Epidemic
is barely affected by the number of copies. This is still due
to the fact that only the source in this algorithm spreads the
copies. If there is no time to encounter other nodes, the source
just keeps the extra copies to itself, which is not beneficial to
the improvement of the delivery ratio.

VI. RELATED WORK

Many routing algorithms have been proposed for MSNs.
Most of them are probability-based algorithms (e.g., [1]–[4],
[16], [17]) or social-aware algorithms (e.g., [5]–[7]). These
algorithms assume that the contact probability between nodes
changes very slowly along with time. Then, the historical
contact records between nodes are collected and used to
guide the message delivery. Compared to existing works,
HS does not require any historical information. Among the
existing MSN routing algorithms, only two typical algorithms,
Epidemic [8] and Spray&Wait [9], are similar to HS, which is
zero-knowledge-based. However, neither distinguishes homes
from other locations, as all locations are considered to be the
same.

HS assumes that each home has a virtual throwbox. In
contrast, the existing works on throwboxes mainly focus on
the capacity and delivery delay of the Epidemic algorithm
when adding throwboxes into MSNs [15], [18]. Moreover,



4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
ti
o

Time to live (sec)

 EpidemicU

 Homing Spread

 Spray&Wait

 Epidemic

(a) Number of homes: h = 0
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(b) Number of homes: h = 5
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(c) Number of homes: h = 10
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(d) Number of homes: h = 15

Fig. 8. Performance comparisons of average delivery ratio vs. time-to-live (n=200, Λ=0.04, C=10).
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(a) Homing probability: Λ=0.04
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(b) Homing probability: Λ=0.08

4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
ti
o

Time to live (sec)

 EpidemicU

 Homing Spread

 Spray&Wait

 Epidemic

(c) Homing probability: Λ=0.12
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(d) Homing probability: Λ=0.16

Fig. 9. Performance comparisons of average delivery ratio vs. time-to-live (n=200, h=5, C=10).
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(a) Message copies: C=5
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(b) Message copies: C=10
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(c) Message copies: C=15
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(d) Message copies: C=20

Fig. 10. Performance comparisons of average delivery ratio vs. time-to-live (n=200, h=5, Λ=0.04).

these throwboxes are randomly placed, and usually they are
physical storage devices. In addition, some other works also
use the stationary relays to improve the routing performance,
such as [19]. The network model and routing scheme are
different from this paper. To the best of our knowledge, this
is the first zero-knowledge MSN routing algorithm that takes
the social characteristic of MSNs into consideration.

VII. CONCLUSION

In this paper, we study a special type of mobile social
network, where the routing space includes some frequently
visited homes, and we propose a zero-knowledge multi-copy
routing algorithm called Homing Spread (HS). HS utilizes
the home feature and sets a higher priority for homes to
spread messages quickly. Theoretical analysis shows that HS
can spread a given number of message copies in an optimal
way when the inter-meeting times between any two nodes and
between a node and a home follow exponential distributions.
Simulation results also show that homes play an important
role in the message spreading process. By using the notion of
home, HS achieves a better performance than existing zero-
knowledge MSN routing algorithms. Our future work will
focus on an in-depth study of a heterogenous setting, where
nodes have different, but overlapping subsets of homes.
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Appendix
A. Proof of Theorem 3

Consider the message spreading scheme for the homing
phase. A spreading scheme can minimize the expected delay
of HS if it has the following three characteristics at the same
time: 1) it can let the source send the message copies to the
homes with the minimum average delay by this scheme; 2)
it can let the source spread the copies to most homes; and
3) it also can let the source spread the copies to most other
nodes during the spreading process. Here, the second and
third characteristics will ensure that, when two nodes meet to
exchange their copies, this scheme can always transit the state
to a state that can achieve the smaller expected delay than
others. According to Lemma 1, the binary homing scheme
satisfies the second and third characteristics. In the proof of
Theorem 5, we show that any spreading scheme will lead
to the same average delay for the homing phase. Thus, the
binary homing scheme can minimize the expected delay of HS.
Moreover, the 1-spreading scheme can spread copies to the
maximum number of nodes with the fastest speed to minimize
the expected delay of HS according to Lemma 2. Therefore,
HS can achieve the minimum expected delay.

B. Proof of Theorem 4
For each next state s′ (∈ Ns) of state s, the cumulative

probability density function for the state transition from s to
se via s′ is a convolution

∫ t

0
ρs,s′(x)fs′,se(t − x)dx, where

ρs,s′(x) is the probability density for the state transition from
s to s′ at time x, and fs′,se(t−x) is the probability for the state
transition from s′ to se at time t−x. Then, we can get the total
cumulative probability density function for the state transition
from s to se, i.e., fs,se(t)=

∑
s′∈Ns

∫ t

0
ρs,s′(x)fs′,se(t−x)dx.

C. Proof of Theorem 5
First, we compute D(1). Consider the case where h = 1.

If the source node reaches the home at time t, and it does
not meet any other nodes before time t, then the correspond-
ing probability density function is Λe−(Λ+λ)t. If the source
reaches the home at time t, it encounters another node at time
t1 (0 ≤ t1 ≤ t). The source gives α (0 ≤ α ≤ C) copies to
this node, and this node takes the α copies to the home after
time increment t2 (t2≥0). Then, the corresponding probability
density function is Λ2λe−Λt−λt1−Λt2 and the average delay is
αt+(1−α)(t1+t2). Then, the average delay of the homing
phase for this case is given by:

d=

∫ ∞

0

Λte−(Λ+λ)tdt

+

∫ ∞

0

∫ ∞

0

∫ t

0

Λ2λ(αt+(1−α)(t1+t2))e
−Λt−λt1−Λt2dt1dt2dt

=
1

Λ
.

Moreover, if the source node encounters multiple other n-
odes, the average delay is still equal to 1

Λ when we recursively
apply the above formula. Therefore, the message spread would
not change the average delay of the homing phase. Now, we
consider the case where h > 1. Since nodes’ visit to homes
are independent and identical, the average delay of the homing
phase is equal to d divided by h. That is, D(1)= d

h =
1
hΛ .

Second, we derive the upper bound of D(2). The average
delay of the 1-spreading scheme includes two parts. The first
part is the average delay for each home in H+ to spread its
extra copies to the network, denoted by D

(2)
1 . Consider a home

that has k extra copies. Then, the corresponding average delay
is the average time for the home to encounter the first k mobile
nodes, which is no more than the average time for the home
to encounter each node. Thus, we have D

(2)
1 ≤ 1

Λ . The second
part is the average delay for the homes, without copies, to
receive copies, i.e., the average delay for C−|H+| nodes to
send their copies to the homes in H0 that have no copies. In
fact, the delay for the first home in H0 to receive a copy is
the expected delay for a node visiting the home divided by
C−|H+|, i.e., 1

(C−|H+|)Λ . The delay for the second home in
H0 to receive a message copy is 1

(C−|H+|−1)Λ , and so on. Let
k=min{|H0|−1, C−|H+|}, we have:

D
(2)
2 =

1

k

k−1∑
i=0

1

(C−|H+|−i)Λ
≤ 1

Λ

By combining the average delay of the two parts, we have
D(2)≤ 2

Λ .
Finally, we compute D(3). In the fetching phase, the des-

tination will fetch the message from C homes if C≤h. The
corresponding expected delay is 1

CΛ . If C>h, the destination
will fetch the message from one of the h homes or the C−h
nodes that hold the copies. The probability density function
for this delivery delay is (hΛ+(C−h)λ)e−hΛ−(C−h)λ. Then,
the corresponding expected delay is 1

hΛ+(C−h)λ . By combining
the results of the two cases, we can deduce the theorem.


