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Abstract—In this paper, we study the process of information
diffusion in a microblog service developing Galton-Watson with
Killing (GWK) model. Microblog services offer a unique ap-
proach to online information sharing allowing microblog users
to forward messages to others. We describe an information
propagation as a discrete GWK process based on Galton-Watson
model which models the evolution of family names. Our model
explains the interaction between the topology of the social graph
and the intrinsic interest of the message.

We validate our model on dataset collected from Sina Weibo
and Twitter microblog. Sina Weibo is a Chinese microblog web
service which reached over 100 million users as for January
2011. Our Sina Weibo dataset contains over 261 thousand tweets
which have retweets and 2 million retweets from 500 thousand
users. Twitter dataset contains over 1.1 million tweets which have
retweets and 3.3 million retweets from 4.3 million users. The
results of the validation show that our proposed GWK model
fits the information diffusion of microblog service very well in
terms of the number of message receivers. We show that our
model can be used in generating tweets load and also analyze the
relationships between parameters of our model and popularity
of the diffused information. To the best of our knowledge, this
paper is the first to give a systemic and comprehensive analysis
for the information diffusion on microblog services, to be used
in tweets-like load generators while still guaranteeing popularity
distribution characteristics.

I. INTRODUCTION

Microblog services offer a unique approach to online infor-
mation sharing that differs from online newsgroups, bulletin
boards, or social networking services. The size of a posting
cannot grow indefinitely and is limited (to 140 characters in
case of Sina Weibo and Twitter). The relationship between
users typically requires no reciprocal approval and is often
considered as a form of subscription. Although postings can be
configured to be private, most users keep theirs public, as well
as their follower information. Since its launch in 2006, Twitter
has now grown to a global service with hundreds of millions of
users where news crowdsourcing is making historical changes
as we have witnessed in recent MENA (Middle East North
Africa) events. As the favorable convenience and interaction,
the recording of information sharing and spreading has reached

an unprecedented level with today’s microblog services.
Word-of-mouth spreading is an integral mechanism of hu-

man information sharing and has long been studied in many
disciplines of sciences. Information diffusion on online social
media bears much relevance and similarity to offline word-of-
mouth spreading, but no past mechanism can beat it in terms
of speed and efficiency. As the tendency to share information
online will only accelerate, the study of online information
diffusion has direct implications on opinion mining, viral
marketing, and political campaigns, just to name a few.

Analysis of online network topologies and information
spreading patterns has laid foundation for explicative models
of information diffusion. In this work we build an explicative
model that takes the network topology of actual information
diffusion and characteristics of contents into consideration and
describes the process of diffusion comprehensively. We take
an analogy between the family name evolution and diffusion
by retweeting where a family name is carried on only by male
descents with offspring and information on mircoblogs spreads
only by those who choose to retweet it. The Galton-Watson
process is a branching stochastic process that has been used
for the evolution and extinction of family names, therefore we
employ the Galton-Watson (GW) process to our modeling of
information diffusion on microblog services. However, since
information diffusion stops rather quickly online because the
novelty of online news wears out with time, while family
names die out much slowly, we include a killing process in
our GW model to take into account such peculiar feature of
the online information diffusion. We collect data from Sina
Weibo and Twitter in order to use them in our analysis and
evaluation. The results of our experiments demonstrate that the
Galton-Watson process with Killing can describe the pattern
of information diffusion on microblogs very well and can be
efficiently used to generate synthetic loads of microblog online
information while still guaranteeing the statistical characteris-
tics in terms of tweets popularity. What’s more, our GWK
model and its parameters reveal the key features of popular
tweets.
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The structure of this paper is as follows. Section II covers a
survey of the related work. Section III describes our datasets.
Sections IV and V introduce the the Galton-Watson model
with the killing process and evaluate with our datasets. Finally,
in Section VII we conclude.

II. RELATED WORK

In this section we review prior work on the online social net-
works (OSNs) and social media; online information diffusion
and its analytical models. Most previous work to model in-
formation diffusion have considered Independent Information
Cascades and Linear Threshold models as building blocks and
estimated the properties of the obtained cascades. Different
from all the previous work, our Galton-Watson model with
a killing process introduced in this paper, takes both the
topology of microblog social graph and the intrinsic interest
of the message into consideration and therefore can describe
the online information diffusion more comprehensively and
in an accurate way. This is supported by our validation and
comparison between empirical tweets distributions and the
synthetic model-based information patterns. Specially, as op-
posed to previous work, in addition to modeling the diffusion
and popularity of online information, we also present an
asymptotic analysis of the proposed process, which in turn
allows us to not only validate the model to fit the actual tweets
propagation, but also to use it for tweet load synthesis. Besides,
this paper is to the best of our knowledge among the first
to take an analogy between the family names evolution and
the diffusion in microblog services, and as such to adapt the
Galton-Watson model to information diffusion.

A. Online social networks and social media

From citation networks to call graphs and group dynamics
in newsgroups, human dynamics in a great many forms of
interaction has long been studied. The following two have an-
alyzed the topological characteristics of online social networks
and online social media which are of particular relevance to
this work. Mislove et al. analyze four popular online social
networks including Flickr, Livejournal, Orkut, and Youtube
and find some basic features about OSNs such as a small world
phenomenon and high clustering coefficients [20]. Kwak et al.
report on news-media-like characteristics of Twitter [16].

B. Online information diffusion

These online social services offer a massively amount of
data on human interaction and have spurred research on infor-
mation sharing. Generally speaking, there are two directions
for the online information diffusion researches, characteristics
descriptions and analytical models.

Cha et al. provide an in-depth study of YouTube, including
an analysis of popularity evolution [4]. Guo et al. analyze the
popularity of various user-generated contents (UGC) and find
that the observed rank-ordered popularity distribution is not
power-law as expected but is a stretched exponential distri-
bution [12]. Lee et al. use a Cox proportional hazard regres-
sion model to predict the popularity of online contents [17].

Zaman et al. give a probabilistic collaborative filtering model
for predicting the popularity of information in Twitter and find
that the most important features for information propagation
in Twitter are the identity of the source of tweet and retweet-
er [23]. Lerman and Gosh conduct an empirical description
of news spread process on Digg and Twitter [18]. Ye et al.
show how breaking news spread through Twitter and provide
metrics for social influence of users [29].Goetz et al. use
”zero-crossing” approach to research the temporal dynamics
of the blogosphere [8]. Gomez-Rodriguez et al. develop an
efficient approximation algorithm to infer the information
diffusion network [9]. Work listed above can be construed
as of descriptive nature and do not answer causality of the
phenomena.

Other work focused on building analytical models of pop-
ularity and diffusion. Two models are widely used for online
information diffusion researches, Independent Cascades(IC)
and Linear Threshold (LT) models. Kempe et al. introduce
in [14] the LT model to find the influential users and then
maximize the information spread on online social networks.
Galuba et al. analyze the diffusion of URLs in Twitter and
propose to use the LT model to predict which users will
propagate which URLs [27]. Yang et al. develop in [28] a
Linear Influence Model (LIM) based on LT models which
can predict interactions between nodes in the information
dissemination process without requiring the knowledge of the
social network graph. On the other hand, IC models are firstly
used to analyze the information spread on blogosphere [19],
[7]. And epidemic model, which is a variation of an IC model
is also proposed to make the microscopic characterization of
information diffusion process [1], [10]. Cha et al. introduce the
cascade model into the research of information dissemination
on online social network such as Flickr [5], [6]. Myers et al.
improve the traditional cascade model in which information
can reach a node not only via the links of the social net-
work but also through the influence of external sources [21].
Guille et al. develop a concrete model which relies on the IC
model and is based on machine learning techniques to predict
the temporal dynamics of diffusion in social networks [11].
Similarly, [24] proposes a K-tree based model, established to
correct for missing data in information cascades, which makes
such a model suitable for all types of cascades.

III. DATASET DESCRIPTION

In this section, we give a brief overview of Sina Weibo
and Twitter datasets including the collection methodology and
their basic properties.

A. Sina Weibo and Twitter

Twitter is a well-known microblog service, where a user
can unidirectionally follow other users and subscribe to their
tweets. Sina Weibo (weibo in Chinese means microblog) is
a Chinese microblog service with Twitter-like unidirectional
follow relationships. Followers on both services can retweet
some of the messages they receive from their followings and
these retweets are seen by their own followers. The distance
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TABLE I
SINA AND TWITTER DATASET SUMMARY

Dataset Time Tweets forwarded Retweets Users
Suser 8 ∼ 12/2011 261,833 1,996,170 500,000
Tuser 8/2011 1,133,568 3,316,609 4,332,445

between a retweeter and the tweet’s original publisher is
measured in hops where the publisher is considered at the 0th

hop. Retweeting is an easy and popular mechanism to share a
tweet with followers.

Sina Weibo makes public two statistics per tweet: the
number of retweets and the number of comments for the tweet,
both of which represent the popularity of the tweet. However,
Twitter does not offer comments to a tweet and thus we only
use the number of retweets in this work. In latter sections, we
measure the popularity of a tweet by the number of retweets.

B. Data collection methodology

For our study, we need the complete set of retweets per
tweet. Both Twitter and Sina Weibo provide a search API,
to which we input a tweet’s identification number (ID) and
are returned all retweets of the tweet where the retweeting
pathes from the original publisher to retweeters are provided
in detail. While for Sina Weibo we use this API, we use
the methodology from Kwak et al. [15] in Twitter to collect
followers, followings, tweets, and retweets of all Korean
Twitter users. We refer to this Korean Twitter dataset as Tuser.

There are over 100 million users on Sina Weibo as of
January 2011, of which size is too big for us to manage without
Sina Weibo company’s cooperation. Instead we use sampling
to reduce the size of the dataset for our work. In Sina Weibo,
each user has a 10-digit user ID, whose first digit is 1 or
2. We generate uniformly random numbers from 1 × 109 to
(3× 109− 1) and use them as user IDs to sample nodes from
Sina Weibo. With this uniform sampling method we obtain an
unbiased sample of 500, 000 users [13].

If a user with the uniformly sampled ID actually exists in
Sina Weibo and hence is successfully located, we collect all
his tweets which have retweets and are published from Aug.
1st, 2011 to Dec. 1st, 2011. For each tweet we have sampled,
we then collect all its retweets. We refer to this user unbiased
dataset from Sina Weibo as Suser.

C. Data description

Table I summarizes our datasets Suser and Tuser character-
istics.

Fig. 1 plots the CCDF (Complimentary Cumulative Distri-
bution Function) of the users’ followers from Suser and Tuser.
Neither has a simple power-law distribution. Today’s online
social networking services often have hundreds of millions
of users and are used not only for personal communication
but in numerous types of communication, including political
campaigns and advertisements. The degree distributions from
Cyworld, Twitter, and Orkut have been reported to deviate
from a strict power-law distribution [2], [16], [20].
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Fig. 1. CCDF of the number of followers
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Fig. 2. Maximum retweet hops distribution in two datasets

For each original tweet (message) M , we build the cor-
responding retweeting tree T (M) as follows. When node S
publishes the original tweet M , S is considered as the root of
T (M) and all of S’s followers which received the tweet are
the children nodes of S in T (M). For all children nodes, if
node A retweets the tweet M from his parent, then A generates
children nodes composed of all his followers, otherwise node
A is considered as a leaf node.

Fig. 2 plots the distribution of the maximum retweeting hops
in our two datasets, Suser and Tuser. This distribution shows
the depth of the diffusion and will be used in the forthcoming
as a validation metric.

IV. A GALTON-WATSON MODEL

The Galton-Watson model has been used with success to
model the evolution of family names [22]. The information
diffusion process via retweeting online bears a striking similar-
ity to the family name evolution. Family names are transferred
patrilineally, while information spreads only by those who
retweet. Family generations are analogous to retweeting hops,
which indicates the distance between the source of the original
tweet and the particular retweet.

One important factor in the above model is the decision
to retweet or not. Such a decision depends mainly on the
content of the tweet. In family dynamics, it would correspond
to fertility. On the other hand, the distribution of number of
followers (or descendants) is a topological property of the
microblog social graph (or the family tree). Thus we take two

2013 Proceedings IEEE INFOCOM

2393



important aspects of information diffusion in the retweeting
process: the intrinsic interest of the tweet message and the
topology of the social graph.

Let us now formalize our model. A GW is a branching
stochastic process {Xn}, where Xn represents the number
of users on the microblog service that receive a particular
tweet through a path of n retweeting hops. The process {Xn}
is then evolving according to the recurrence formula: X0

= 1 and Xn+1 =
∑Xn

j=1 ξj , where for each generation n,
ξj is a sequence of Independent and Identically Distributed
(IID) discrete random variables following a distribution f(k)
representing the number of offspring of a node. For the
purpose of our tweet propagation modeling we assume that:

f(k) = (1− α)�{k=0} + αD(k)�{k>0} (1)

where α is the probability that a user receiving a tweet message
can retweet it, and D(k) is the degree distribution of the
microblog social graph, i.e. the distribution of number of
followers for the microblog.

It is however important to notice that our tweets propagation
modeling and the original GW family name process may
differ from the process termination’s perspective. Typically,
a tweet has a shorter lifetime than a family name (in terms
of hops) and will inevitably die faster, i.e. no more retweeting
activity is observed. While a genealogical tree, depending on
the distribution of the number of male offspring is more likely
to last longer. This can be explained by the fact that online
content might be more prone to a platitude effect due to lack of
content novelty. In order to account for this peculiar property,
we model an extinction process that will govern the original
GW trees.

A. Analytic approach

First, we describe the GW trees without considering the
extinction process. The mean evolution of a GW tree can
be easily analyzed through the Wald equality that gives
� {Xn+1} = μ� {Xn}, where μ = � {ξ} is the mean number
of offspring of members, i.e. the mean number of people
receiving a micromessage retweeted from one user directly
in one retweeting process. In other terms, we have:

� {Xn+1} = μn (2)

where n ≥ 0.
Using the previous assumptions expressed in Eq. 1 we can

rewrite μ as μ = αδ where α is the probability of retweeting a
message and δ is the mean number of followers of microblog
users that have a least one followers, resulting finally in:

� {Xn+1} = (αδ)n (3)

where n ≥ 0.
It should be noticed that for the retweeting process, X1

doesn’t meet Eq. 3. When the information source publishes a
tweet, all followers of the publisher can receive the message
at the first hop which means X1 is equal to δ but not to αδ.

In this case, Eq. 3 should be amended as follows to describe
the retweeting process:

� {Xn+1} = δ(αδ)n−1 = (α)n−1(δ)n (4)

where n > 0 and X0 = 1.
Eq. 4 has the interesting property of separating two effect-

s on the information spreading on microblog services: the
intrinsic interest of the message represented by α and the
properties of the social graph represented by δ. The mean
total number of users receiving a tweet can be derived as
M̄ =

∑∞
i=1 Xi and the mean total number of retweets is

derived as T̄ =
∑∞

i=1 αXi.
A more refined analysis of the evolution of GW trees can

be done through the Probability Generating Function (PGF)
that is defined for a discrete random variable X with pdf p(k)
as :

φ(s) = �
{
sX

}
=

∞∑
k=0

p(k)sk (5)

We define φn(s) = �
{
sXn

}
as the PGF of Xn. In the context

of the GW tree it is easy to prove that φn+1(s) = φn(φ(s)).
Deriving the precise value of the PGF in general is hard and
closed form for it is available in a very limited number of
cases. However the PGF relationship is useful for deriving
asymptotic properties of the GW process. It is easy to see that
φn(0) = p(0), which is the probability that the nth generation
is the last generation and that φ′n(1) = � {Xn}, which is the
mean number of users receiving the message at nth generation.

There are two cases of interest here. First case is subcritical
and happens when, δα < 1, and the second case is supercritical
when δα > 1. One important parameter is the probability
of extinction, i.e. the probability that Xk = 0 for a k. This
probability can be derived as the smallest positive solution q of
the equation s = φ(s), where φ(s) is the PGF of the number
of offspring of a node. Let’s here derive the parameters for the
subcritical and supercritical cases that are observed in practice.

1) Subcritical case: μ < 1: when m = φ′(1) < 1, it can
be proved that q = 1 is the smallest positive solution. This
means that the diffusion tree will surely die. The number of
generations (τ ) of a subcritical GW diffusion tree can also be
bounded as [26]:{

log δ
| log μ|

(
1− log log δ−| log μ|

log δ

) (
1− 1

δ

) ≤ � {τ}
� {τ} ≤ log δ

| log μ| +
2−m
1−m

(6)

The mean total number of users receiving a tweet (M ) and
the mean total number of retweets (T ) are derived as :

M̄ =
1

1− αδ
, T̄ =

αδ

1− αδ
(7)

2) Supercritical case: μ > 1: When m = φ′(1) > 1,
we have q < 1 and the tree will continue to grow with
a probability 1 − q. More precisely, we can observe the
asymptotic behavior, when n → ∞, and in this supercritical
case Xn converges either to ∞ with a probability 1− q or to
0 with a probability q. In other words, when μ > 1, one
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can consider that asymptotically the process will die with
probability q at each stage, or express differently which means
that �rob {Xn > 0} = 1 − q for n sufficiently large. In the
supercritical case, the number of generations can be potentially
infinite and results in an infinite number of members of the
GW tree. However, if we assume that the tree will be extinct
at some point we can derive the expected numbers of members
as:

M̄ =
1

1− φ′(q)
, T̄ =

α

1− φ′(q)
(8)

where φ is the PGF of Xn as defined above.

B. Killing process

So far, we can already derive from the GW process the
probability of extinction and the mean number of generations
for a tweet spreading. However as we will observe in the next
section on our empirical data , the dynamic of the GW process
might capture an overestimated model for the propagation of
tweets. In essence, we can observe that in real life the hop
depth of the propagation trees and the mean number of users
receiving a tweet are lower than what are predicted by the
GW process. As discussed previously, this difference might be
explained intuitively by the difference in nature between the
genealogy of offspring which is modeled by the GW process
and the actual information spreading that might be influenced
by the content novelty.

We therefore need to introduce a killing probability π,
which represents the probability that the GW process is killed
prematurely at the nth generation, resulting in a Galton-Watson
process with Killing (GWK). The probability that the process
is killed after k generations becomes π(1− π)k−1.

One might at the first glance think that a GWK process
with retweeting probability α is equivalent to a classical GW
process with retweeting probability αK = (1−π)α. However,
this is not the case because when killing happens in the GWK
process, in the last hop where all nodes are stopped together,
we cannot assume anymore that nodes have offsprings inde-
pendently from each others, which is a different assumption
compared with the classical GW model. Nonetheless, the GW
process with retweeting probability αK can be considered as
a lower bound of the GWK process, with α, the probability of
having offspring at any hop (except the last one) in the GW
process, being strictly lower than the corresponding probability
in the GWK process. For this reason, one can then expect
the number of receivers in a GW process with a retweeting
probability αK and μK = αKδ to be a strict lower bound of
the number of receivers in a GWK process.

In general, in a GWK process, a GW tree falls in one
of three situations: either it is finished because of natural
extinction of the GW process, or it is killed because of the
killing process or it can also grow infinitely. If μ < 1 then the
probability of the third situation happening is 0. This typically
means that the probability of generating a finite GW tree is
larger for the GWK process than for GW. However, a major
issue is that one can’t disambiguate the reasons why a tree
would stop growing because of a natural extinction or a killing

process. We will see in the next section that this might create
problems during the estimation of the killing probability π.

C. Asymptotic analysis of the GWK process

As described earlier, the PGF of Xn in a GW process is
obtained recursively from the PGF of the number of offspring
φ(s) through φn+1(s) = φn(φ(s)). When a killing probability
is added to the GW process the PGF of the overall number of
members of the GW tree is given by :

φM (s) =

∞∑
n=1

φn(s)π(1− π)n−1 (9)

and it verifies the following equation φM (s) = πφ(s) + (1−
π)φM (φ(s)). The mean number of members of the GW tree,
or equivalently the mean number of users receiving a tweet,
can be derived as :

M̄ = φ′M (1) =
∞∑

n=1

φ′n(1)π(1− π)n−1 (10)

where φ′n(1) = μn for GW process. We have therefore this
relation for a GW process with a killing probability π:

M̄ =

{
μπ

1−μ+μπ , when μK < 1

∞ when μK ≥ 1
(11)

In [22] it is showed that if the offspring distribution has finite
mean μ = φ′(1), the dominant tail will be P (M = m) ≈
R(m)m−1−κ where

κ =
log(1− π)−1

logμ
(12)

This result means that we expect the distribution of the number
of users receiving a tweet to have a power law behavior with
an exponent 1 + κ.

V. VALIDATION

In this section we will validate our usage of the GW
and GWK model for describing information diffusion over
microblogs. We first describe how to estimate the model
parameters and thereafter show that the GWK can be applied
to the retweeting trees. However, because of lack of space,
we will just show the results of the validation over the Sina
Weibo dataset, Suser. The similar results are obtained over the
Twitter dataset Tuser.

A. Parameter estimation

The model described in the previous sections depends on
three main parameters:αi the retweeting probability of the
tweet i, δ the mean number of followers of microblog users
that have at least one followers, and π, the probability that
a tweet diffusion tree is killed at each hop. We first need to
propose way of extracting these parameters over a dataset. Out
of these three parameters the first one has to be derived for
each tweet and the last two have to be derived over the whole
dataset and can be considered as properties of the microblog
site. A major issue that we have to deal with is relative to the
ambiguity of the cause of death of a diffusion tree. A diffusion
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TABLE II
GALTON-WATSON PARAMETERS ON MICROBLOG

Dataset δ π %(μi < 1)
Suser 93.4 0.49 54.2%
Tuser 103.92 0.53 77.5%

tree can be finished because of natural extinction caused by
the GW process or of being killed by the killing process. As
α is relative to the GW process and π to the killing process,
being able to separate these two effects is very important.

1) Inference of δ: For the forthcoming analysis we need
to obtain the distribution of the number of followers and to
derive from it the mean and its PGF. As explained earlier,
the initial user unbiased Sina Weibo dataset contains 500,000
microblog users. As the number of followers of a user is the
open and available information, deriving the follower statistics
is straightforward. We observe on this dataset a mean of 93.4
followers, and a very large deviation equal to 4520.2, showing
the very large variability of the number of followers in the
dataset. Twitter dataset has a mean of 103.92 followers, and
a deviation equal to 1436.8. We use the resulting distribution
as D(k) in Eq. 1.

2) Estimation of αi: The second important parameter to
estimate is the retweeting probability αi. However this value
should be estimated when the diffusion tree is not in the
”killed” state. To ensure this, we estimate αi in the retweeting
tree of i as the proportion of users that retweeted the message
among all users who received the message excluding these in
the last diffusion hop.

3) Estimation of π: The last parameter to infer is π, the
probability of killing a tweet at each hop. We therefore need
to ensure that a tweet is not naturally extinct , before using
it for estimating π. In order to achieve this, we calculate for
each diffusion tree the probability that the tree is naturally
extinct at the last hop. If we assume that a tweet i has
a tree with N receiving users in its last hop, and that the
retweeting probability of this tweet is αi, then the probability
of extinction is given by Pe(i) = (1 − αi)

N . We derive for
all tweets this value and decide to put aside all tweets that
have a probability of extinction larger than 5%, or in other
terms, we focus on all tweets which the probability of being
killed at the last hop is larger than 95%, resulting in 37,866
tweets. We thereafter derive the value π by fitting the formula
π(1 − π)l to the distribution of maximum retweeting hop
number l measured over these tweets. We show in Fig. 3 the
fit over the distribution of maximum hop number of Suser.
We can see that the distribution of generation number follows
the expected exponential decrease. We estimate π = 0.49 for
Sina Weibo and π = 0.53 for Twitter.

B. GW model validation

As explained in section IV-A, there is a fundamental dif-
ference among the two cases: μ < 1 and μ > 1. The GWK
process parameters calibrated over Suser and Tuser are shown
in Table II. Here we can estimate for each tree a μi using

2 4 6 8 10 12 14
10−5

10−4

10−3

10−2

10−1

100

max retweeting hop number

p
ro

p
o
rt

io
n

Distribution of retweeting hop
π fitting with 0.49

Fig. 3. π fitting with distribution of maximum retweeting hop number of
Suser

the following estimator that is known to be the maximum
likelihood estimator of μ:

μ̂ =

∑L
i=2 Xi∑L−1
i=1 Xi

, (13)

where L is the maximum hop length of the retweeting tree.
Note that we do not consider the number of offspring for
X0(i.e. X1) in numerator, because as stated in section IV-A,
Eq. 3 is not suitable for X1.

Table II also gives the proportion of tweets in μ < 1 case
for each dataset. We have first to assess if the killing process
is needed or not. For this purpose we can do two tests: first
to check if the number of observed hops is compatible with
the formula given in Eq. 6, and to check if the mean number
of receiving nodes is compatible with Eqs. 7 and 8. The first
method is only applicable to subcritical tweets and the second
method is applicable to all tweets. Using the lower bound
in Eq. 6, we observed that 89% of tweets have a maximum
retweeting hop number less than the lower bound given for the
GW model. Moreover, we show in Fig. 4, a graph showing
the number of receivers as predicted by the Galton-Watson
model and what is observed. We observed that for 83% of
tweets, the observed receivers number is less than the value
predicted by the Galton-Watson model (below the line y = x
line). Indeed, one can expect that tweets which are naturally
extinct will have a mean receivers number following the GW
equations. However we can observe that there is considerable
proportion of tweets that have a number of receivers much
less than the mean predicted by the GW model. The two
above results validate that we need to add a killing process
that will account for the reduction of number of receivers and
the smaller hop lengths.

We explained in section IV-B, that the number of receivers
in a GWK process can be lower bounded by the number of
receivers in a modified GW process with retweeting probabil-
ity αK . We show in Fig. 5 the comparison of the number of
receivers predicted over the modified GW process with what is
observed. The figure confirms that the modified GW process
acts as a strict lower bound to the GWK process. However
as expected this bound is not very tight. The above analysis
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Fig. 4. Comparison of number of receivers in a tweet tree as predicted by
the GW model with what observed.

Fig. 5. Comparison of number of receivers in a tweet tree as predicted by
the modified Galton Watson model with what observed.

validates the relevance of the GWK process for analyzing the
propagation on microblog systems. In the following we present
two possible applications demonstrating the usefulness of the
GWK model.

VI. APPLICATIONS

We present two applications of our GWK model in this
section. The first application shows the use of the proposed
GWK model in synthetic workload generation with similar
statistical properties to empirical microblogs load, validating
that our proposed is constructive. This opens way to imple-
ment microblog traffic simulators that can be used to stress
microblog systems. The second application we will describe
is relative to highly popular tweets. The GWK model and its
parameters provide fine grain features that will be shown to
be highly relevant to understanding the popularity of tweets.

A. Tweet load synthesis

The GWK model provides a way of generating tweet
propagation trees by simulating the GWK model with pa-
rameters derived over an empirical dataset. The simulation
can be easily implemented as it simply consists of beginning
from one seed user and generating the first generation by
choosing a number of receivers following the distribution f(k)
defined in Eq. 1. Recursively, each user of a new generation

chooses its receivers number following the same distribution.
At the end of each generation we check with probability π
if the generation should be killed. The parameter π, and the
distribution D(k) are obtained following the above described
methods. The parameter αi is chosen randomly from an
empirical distribution obtained over the corresponding dataset.
This can be implemented in a small program that generates
trees similar to the ones generated by microblogs. We show in
Fig. 6 the Complementary Cumulative Distribution Function
(CCDF) of receivers number in the trees generated following
the GWK model and we compare it with the empirical CCDF
obtained over the dataset Suser. As can be seen there is a
very good fit between the two distributions both in the head
and the tail. We also show in Fig. 7 the distributions of the
maximum retweeting hop number both in the tree synthesized
by the GWK model and what observed empirically over the
dataset Suser. Here the fit is also striking.
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Fig. 6. Comparison of the CCDF of receivers in trees generated by the GWK
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The above analysis shows that the GWK can be used to
synthesize retweeting trees that have realistic macroscopic
distribution. This validates the use of the GWK model for
microblog workload simulation.
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Fig. 8. Popularity against estimat-
ed μ in Suser

Fig. 9. Popularity against estimat-
ed μ in Tuser

B. Popular tweets characteristics

The asymptotic analysis of the GWK shows the importance
of the κ = log(1−π)−1

log μ in predicting the tail behavior of
popularity, measured by the number of retweets, and the
audience, measured by number of receivers. This feature is
interesting as it mixes in a single equation all the parameters of
the GWK and weights the impact of each of these parameters.
It is therefore interesting to look at the value of this feature
for overall tweets. However a more precise look shows that as
π is a parameter of the global microblog and is constant for
all tweets, so that κ is directly related to μ = αδ.

Previous works [25] showed that there are two paths for a
tweet to become popular: a path that is endogeneous and in-
volves having retweeters that have a large number of followers
so that the tweet attains a large audience, and an exogeneous
path that explains the popularity by the intrinsic interest of
the message. Each one of these paths can be represented in
μ = αδ where δ accounts for number of followers and α
accounts for the intrinsic interest of the tweet, meaning that μ
mixes these two aspects. The theorical analysis shows a clear
distinction of the asymptotic behaviors between μ > 1, where
the tree is expected to become infinite in absence of killing,
and the case μ < 1 where the tree will surely extinct even
without killing. It will be interesting to check if tweet audience
and popularity, measured in term of number of receivers and
number of retweets, are related to the value of μ.

We plot in Figs 8 and 9, the relation between the estimated
μ using Eq.13 for each retweeting tree and the popularity
evaluated as the number of retweets. While one would expect
that large μ leads to large popularity, this is definitely not the
case. Table III contains the characteristics of highly popular
tweets. As can be seen all highly popular tweets in the two
datasets are sharply concentrated around a value of μ = 1. In
fact we observe that what leads to a large diffusion and a large
popularity is rather a balance between followers number and
retweeting probability that results in μ being close to one. This
is confirmed by looking at the CCDF of the estimated specific
δi for each retweeting tree instead of the global constant δ
which is shown in Fig. 10. Here we get δi from δi = μi

αi

where we also don’t consider the 0th hop and 1st hop as
section IV-A stated. As can be seen in Suser the popular tweets
generally exhibit δ values that are generally larger than those

observed over the whole dataset, but still these tweets have
not very large δ. The situation is slightly different in Tuser

where all popular tweets have smaller δ’s than other tweets.
Nonetheless, either for Sina Weibo or Twitter dataset, popular
tweets never happen for small δ’s.

The above observations give an interesting characterization
of highly popular tweets. These tweets have a δ relatively large
(larger than 50 for Twitter and larger than 200 in Sina Weibo)
and accordingly small retweeting probability (to end up with
a μ close to 1). In particular no popular tweets resulting from
several hops of small neighborhood diffusion has been ob-
served, ruling out social rumors type of propagation. We also
see few popular tweets with a large value of δ excluding the
followers of publisher. This last observation is in accordance
with [3].
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VII. CONCLUSION AND FUTURE WORK

In this paper we have analyzed information spreading
patterns on microblogs and built a novel model for the
information spreading. The model is based on the analogy
with the Galton-Watson branching processes that describe the
evolution of family names. We refine the model with the killing
process and validate the applicability over two datasets from
Sina Weibo and Twitter. We present two applications of our
model, namely, microblog workload generation and popular
tweet characterization. We show that the Galton-Watson with
Killing model is useful not only for describing the information
diffusion but also for providing the insights into popular
tweets.

This work is leading us to the following new directions. The
GWK incorporates time as a discrete generational index, and
does not account for the temporal dynamics of tweet diffusion.
We are considering a continuous time model that captures the
temporal dynamics. In our model we have used the values of
the mean number of followers, δ, the retweeting probability,
α, and the killing probability, π, but have not addressed factors
behind them. The user’s social capital in the network as well
as the history of retweets are likely to be correlated to the
parameters of our model. In addition one particular observation
of interest is that highly popular tweets all have a μ value
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TABLE III
CHARACTERIZATION OF HIGHLY POPULAR TWEETS

Dataset Popularity range Popularity% Mean of μ Median of μ 1-percentile 99-percentile Tweet%
Tuser All popularity 100% 3.691 1.247 1.000253 28.5956 99%
Tuser popularity > 100 0.182% 1.053 1.002 1.000011 1.271943 51.13%
Tuser popularity > 1000 0.002% 1.003 1.000 1.000006 1.028369 17.83%
Suser All popularity 100% 3.596 1.000 0.984 34.1492 99%
Suser popularity > 100 3.06% 1.394 0.8583 0.7676 1.0262 66.8%
Suser popularity > 2000 0.09% 0.904 0.9376 0.8237 1.002 1.5%

close to 1. We leave the study of compounding factors for
future work.
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