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Abstract—We investigate optimal channel assignment algo-
rithms that maximize per node throughput in dense multi-
channel multi-radio (MC-MR) wireless networks. Specifically, we
consider an MC-MR network where all nodes are within the
transmission range of each other. This situation is encountered
in many real-life settings such as students in a lecture hall,
delegates attending a conference, or soldiers in a battlefield.
In this scenario, we show that intelligent assignment of the
available channels results in a significantly higher per node
throughput. We first propose a class of channel assignment
algorithms, parameterized by T (the number of transceivers per
node), that can achieve Θ

(
1

N1/T

)
per node throughput using

Θ(TN1− 1
T ) channels. In view of practical constraints on T , we

then propose another algorithm that can achieve Θ
(

1
(log2 N)2

)
per node throughput using only two transceivers per node.
Finally, we identify a fundamental relationship between the
achievable per node throughput, the total number of channels
used, and the network size under any strategy. Using analysis
and simulations, we show that our algorithms achieve close to
optimal performance at different operating points on this curve.
Our work has several interesting implications on the optimal
network design for dense MC-MR wireless networks.

I. INTRODUCTION

Starting with the seminal work in [1], there has been a lot of
research on studying optimal scaling laws for wireless ad hoc
networks under different assumptions about node capabilities
[2], [3], availability of infrastructure support [4], [5], mobility
[6], [7], channel models [8], traffic models [9], etc. Given the
vast literature in this area, we refer the interested reader to the
excellent surveys [10], [11] for an overview of this work.

One practical way to improve the capacity of wireless ad
hoc networks is to deploy MC-MR networks. The resulting
capacity gains are mainly due to the use of additional channels
as compared to the single channel model of [1]. This has
attracted much attention recently and several works study the
problem of channel assignment, routing, and scheduling in
general MC-MR networks under different constraints [12],
[13], [14]. The work in [15] extends the analytical framework
of [1] and derives scaling laws for general MC-MR networks.
It is shown in [15] that, depending on the number of interfaces
per node and the number of available channels, there can be
a degradation in the network capacity.

Much of this work on scaling laws has focused on general ad
hoc networks where it is assumed that the nodes are randomly
distributed in an area and that multi-hop routing is necessary
for end-to-end communication. However, one scenario that
has received little attention is where all nodes are within the

!"#$% !"#&%

!"#$# $"#%#

%"#&# &"#'#

'"#(# ("#)#

)"#*# *"#!#

$%

&%

'%

(% )%

*%

+%

,%

!"#$% !"#&%

!"#$"#%"#&# !"#'#

'"#("#)"#*# $"#(#

%"#)#

&"#*#

$%

&%

'%

)%

(%

,%

+%

*%

!"#$% !"#&%

!"#$"#%# !"#&"#)#

&"#'"#(# $"#'"#*#

)"#*# %"#(#

$%

&% '%

(% *%

)% ,%

+%

Fig. 1. Three possible channel assignments in a Parking Lot network of 8
nodes with 2 transceivers per node. For each transceiver (Tx-1 and Tx-2), the
entries in the tables show the list of nodes that share an orthogonal channel
on that transceiver. The resulting effective topology is shown on the right.

transmission range of each other. This scenario, which we
refer to as the Parking Lot model, is encountered in many
real-life settings. Examples include students in a lecture hall,
delegates attending a conference, or a platoon of soldiers in a
battlefield. Because of its prevalence, it is important to study
this model in more detail and understand fundamental limits
on its performance.

The Parking Lot model is not very interesting when con-
sidering single-channel wireless networks because in this case
there is only one feasible solution. To ensure connectivity,
all transceivers must use the same channel. This results in
every node being one hop away from every other node.
However, when nodes are equipped with multiple transceivers
and the network has multiple available channels, the problem
of channel assignment to different transceivers to maximize
per node throughput becomes non-trivial. In this case, to
increase network capacity, the transceivers must be assigned
to different channels. This can result in a network graph that
effectively has a multi-hop topology even though all nodes are
within each other’s transmission range and could reach each
other in one hop if they were using the same channel. Further,
by choosing different assignments, a variety of such effective
network topologies can be formed. For example, Fig. 1 shows
three possible channel assignments to the transceivers in an 8
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node Parking Lot network with 2 transceivers per node. Also
shown is the resulting topology for each assignment. Note that
these are only three out of many possible channel assignments
for this network.

This example illustrates that the presence of multiple
transceivers adds a “degree of freedom” and expands the
network design space considerably. Now the problem of
throughput maximization involves a joint optimization of the
channel assignment, routing, and scheduling strategies. This
is subject to the following tradeoff: Given a fixed number of
transceivers per node, when a channel assignment scheme uses
more channels, it allows for more concurrent transmissions.
However, the path between any two nodes tends to become
longer, leading to more relay transmissions and reduced per
node throughput. To keep the path lengths small, more nodes
should share a channel. However, this reduces throughput as
at most one node can transmit per channel at any time. This
is because spatial reuse of frequency channels is not possible
in the Parking Lot model.

Thus, the key design objective is to maximize the number
of concurrent transmissions while keeping the path lengths
small. However, this by itself is not sufficient. For example,
one could assign the first transceiver of all nodes to the same
channel and form many small groups using the remaining
transceivers. With this assignment, all nodes are within one
hop of each other while many concurrent transmissions are
possible. However, the common channel of the first transceiver
becomes a bottleneck. What is needed is to ensure that there
is sufficient capacity for all flows in the network.

In this paper, we study the problem of optimal channel
assignment, routing, and scheduling in an MC-MR Parking Lot
network where the goal is to maximize the uniform per node
throughput. In addition, we are interested in characterizing
the scaling behavior of per node throughput as a function of
network size. We focus on static channel assignment algo-
rithms where a particular assignment, once assigned, is used
for a reasonably long period of time. This is motivated by the
practical limitations and resulting overheads associated with
dynamic channel switching. In this setting, there is rich design
space involving the number of available channels, number of
transceivers per node and the network size that we explore.
Our main contributions are:
• We propose a class of algorithms parameterized by T ,

the number of transceivers per node, that can achieve
Θ
(

1
N1/T

)
per node throughput using Θ(TN1− 1

T ) chan-
nels in the Parking Lot model. Thus, an algorithm in
this class can achieve Θ(1) per node throughput if
T = Θ(log2N).

• In view of practical constraints on T , we propose an-
other algorithm that can achieve Θ

(
1

(log2N)2

)
per node

throughput using only two transceivers per node.
• We identify a fundamental relationship between the

network size, the total number of channels used, and
the achievable per node throughput under any strategy.
Our algorithms are shown to achieve close to optimal
performance at different operating points on this curve.

The rest of the paper is organized as follows. In Sec. II, we
present the network model and assumptions along with a dis-

cussion of our analytical approach. Sec. III and IV analyze two
channel assignment schemes that can achieve progressively
higher per node throughput by using more channels. In Sec.
V, we establish a fundamental relation between the number
of channels used, network size and per node throughput under
any scheme. We also define a common metric by which to
evaluate the performance of a scheme. This allows us to
bound the performance of the schemes studied in Sec. III
and IV against the best possible scheme. In Sec. VI, we
compare the performance of our channel assignment schemes
along with some other schemes using packet-level simulations.
Finally, we discuss the implications of our results on the
optimal network architecture for dense MC-MR networks in
Sec. VII-A.

II. NETWORK MODEL

Channel Model: We consider a wireless network of N
nodes, indexed 1, 2, . . . , N , where all nodes are within the
transmission range of each other. The network has a total
of F orthogonal frequency channels, each of bandwidth B
Hz. Every node in the network is assumed to have T ≥ 2
transceivers. As noted earlier, the T = 1 case has a trivial
solution. Each transceiver can be assigned at most one channel
at any time. We assume that the transceivers operate in the
half-duplex mode where they can either transmit or receive
(but not both) on their channel at any time. Further, we
assume a collision model for interference so that at most one
transceiver can transmit successfully on a channel at any time.
The link level transmission rate per channel is assumed to be
the same for all channels and is given by R bps.

Traffic Model: We consider the N source-destination pair
random unicast model where every node is the source of
one unicast session destined to another node that is chosen
uniformly at random. Each source generates packets of size
D bits at a rate given by λ packets/sec. We assume that the
source-destination pairings are not known a priori. Note that
if the pairings were known, then one can optimize the channel
assignments and routing with respect to them. This would
yield higher per node throughput. However, our focus is on the
case where the traffic patterns are not known a priori and/or
change rapidly. Under these assumptions, this traffic model is
equivalent to the model where each node generates packets
at rate λ packets/sec and each packet is equally likely to be
destined to any other node. We are interested in designing
algorithms that maximize the rate λ that can be supported.
We call this rate the uniform per node throughput.

Channel Assignment Model: We focus on static channel
assignment schemes where a particular assignment, once as-
signed, is used for a reasonably long period of time. Dy-
namic channel assignment can be shown to outperform static
schemes. Indeed, it can be shown to achieve the best possible
throughput under our model. However, factors such as switch-
ing delay, coordination overheads, and hardware constraints
make dynamic channel assignment challenging to implement
in practice.

Objective: Given this network model, our objective is to de-
sign a policy that maximizes the uniform per node throughput.
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Since the channel assignments under such a policy may effec-
tively create a multi-hop topology, the overall policy consists
of the channel assignment, routing as well as transmission
scheduling algorithms. For any given tuple (N,T, F ), this
can be formulated as an optimization problem that searches
over all possible channel assignment, routing, and scheduling
options and yields the maximum throughput. However, given
the enormous search space, this approach quickly becomes
intractable and does not yield useful insights.

Instead, we take a scaling analysis approach where we
focus on characterizing the scaling behavior of the achievable
throughput as a function of the network size N . This approach
is useful because, while being tractable, it provides insights
into the optimal network design and helps derive scaling laws.
In analyzing the scaling behavior of the throughput, we assume
that the number of available channels F can scale with N
according to a fixed function. For example, F (N) could be√
N . This approach significantly simplifies the problem and

allows us to develop algorithms whose achievable throughput
can be computed exactly in closed form. We will present these
algorithms in Sec. III and IV. For each algorithm that we
study, we will also calculate the exact total number of channels
used. Finally, in Sec. V, we will bound the “performance gap”
between these algorithms and the best possible throughput
that can be achieved by solving the optimization problem for
(N,T, F (N)).

For simplicity, in the rest of the paper, we assume normal-
ized and idealized transmission rates so that 1 packet can be
transmitted per channel use. This assumption is relaxed in the
simulations in Sec. VI.

III. HINT: HIERARCHICAL INTERLEAVED CHANNEL
ASSIGNMENT

In this section, we present a class of channel assignment
strategies that we call HINT-T which can achieve Θ

(
1

N1/T

)
per node throughput using F = Θ(N

T−1
T ) channels and T

transceivers per node. The main idea behind this strategy is to
form N

T−1
T groups, each of size N1/T , for every transceiver

index. Then it assigns transceivers to these groups in such a
way that every node can reach every other node in at most
T hops. For simplicity of presentation, we assume throughout
that N1/T is an integer. This scheme can be modified to be
applicable when this is not the case using similar ideas. For
brevity, we do not discuss this extension in the paper. However,
in the simulations in Sec. VI, we also implement this scheme
for the case when N1/T is not an integer.

A. HINT-2

To provide intuition, we first describe the assignment for
T = 2. The general case is treated in Sec. III-B.

1) Channel Assignment under HINT-2: Let M = N1/2.
Group the first transceiver of all nodes into M groups, each
containing M nodes. We call these the Tx-1 groups and assign
consecutively numbered nodes to them as follows. The first
Tx-1 group contains nodes 1, 2, . . . ,M , the second Tx-1 group
contains nodes M + 1,M + 2, . . . , 2M , and so on.
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Fig. 2. Channel Assignments under HINT-2 for N = 16.

Similarly, group the second transceiver of all nodes into
M groups, each containing M nodes. We call these the Tx-
2 groups and assign nodes to them as follows. The first Tx-2
group contains the first node from each Tx-1 group, i.e., nodes
1,M + 1, 2M + 1, . . . , (M − 1)M + 1. Likewise, the second
Tx-2 group contains the second node from each Tx-1 group,
and so on.

Each of the groups thus formed is assigned an orthogonal
channel. Since there are a total of 2M groups, the total number
of channels used is 2M . Note that the first transceiver of every
node is assigned to a Tx-1 group while the second transceiver
of every node is assigned to a Tx-2 group. Fig. 2 illustrates
this assignment for a network of N = 16 nodes using channels
f1 to f8. Note that nodes in Tx-2 groups are obtained by in-
terleaving nodes from the Tx-1 groups. As shown later in Sec.
III-B, the same idea can be applied in a hierarchical fashion to
obtain assignments for the general T case. Hence, we call this
family of schemes HINT-T: Hierarchical Interleaved Channel
Assignment with T transceivers.

2) Scheduling and Routing under HINT-2: We next de-
scribe the scheduling and routing strategy that is used with
this assignment.

Scheduling Strategy: Every transceiver in a group gets the
same fraction of time to transmit on that group’s channel.
Since each group has M transceivers, every transceiver gets
1/M of the total transmission capacity of the channel.

Routing Strategy: For any source node s, if a destination
node d is in the same Tx-1 group, it transmits directly to d in
one hop on its Tx-1 channel. Else, s transmits to that node r
in its Tx-2 group which shares its Tx-1 group with d. Node r
then forwards to d using its Tx-1 channel.

For example, in Fig. 2, the route from node 1 to node
3 follows the path 1 − 3 on channel f1. This involves
transmissions only by the first transceiver of node 1. On the
other hand, the route from node 1 to node 11 follows the path
1− 9 on channel f5 and 9− 11 on channel f3. This involves
transmissions by the second transceiver of node 1 and the first
transceiver of node 9. It can be seen that this routing strategy
ensures that every node is within 2 hops of any other node.

3) Throughput Analysis of HINT-2: We now show that the
HINT-2 assignment along with the scheduling and routing
strategy as described above can achieve a throughput of 1/M
for every node.



4

Theorem 1: For N1/2 = M (where M is an integer),
HINT-2 can achieve a uniform per node throughput of 1/N1/2

using 2N1/2 channels.
Proof: The proof uses the following observation. Because

of the symmetry of the assignment, it is sufficient to focus on
the total load on each of the two transceivers of node 1 and
show that it can be supported. The details are provided in
Appendix A.

B. HINT-T

We next present the assignment strategy for T > 2.
1) Channel Assignment under HINT-T: Let M = N1/T .

Similar to the T = 2 case, the HINT-T strategy forms MT−1

groups for every transceiver index. The groups corresponding
to transceiver index k are called Tx-k groups where 1 ≤ k ≤
T . Each Tx-k group contains M nodes and is assigned one
orthogonal channel. Since there are a total of TMT−1 such
groups, the total number of channels used under HINT-T is
TMT−1. The node assignment to these groups is performed
as follows.

Fix a transceiver index k where 1 ≤ k ≤ T . Let i and j
be integers such that 1 ≤ i ≤ MT−k and 1 ≤ j ≤ Mk−1.
Then the Tx-k group number (i − 1)Mk−1 + j contains the
following nodes:

{(i− 1)Mk + j, (i− 1)Mk + j +Mk−1,

(i− 1)Mk + j + 2Mk−1, (i− 1)Mk + j + 3Mk−1,

. . . , (i− 1)Mk + j + (M − 1)Mk−1}. (1)

This definition ensures that every Tx-k group has M
nodes. Further, the total number of Tx-k groups is∑MT−k

i=1

∑Mk−1

j=1 1 = MT−1.
Fig. 3 shows the HINT-3 assignment for a network of N =

27 nodes with T = 3 transceivers per node. It also illustrates
the routing strategy that will be described in Sec. III-B3. Note
that this assignment ensures that every node is within 3 hops
of any other node. In general, the HINT-T assignment ensures
that every node is within T hops of any other node.

2) Level Sets: In order to describe the routing strategy, we
define the following collection of sets for each transceiver
index k where 1 ≤ k ≤ T . For 1 ≤ i ≤ MT−k, define
Sik as the set containing the nodes (i − 1)Mk + 1 to iMk.
For each k, there are MT−k such sets, each containing Mk

consecutively numbered nodes. We call them the “level k sets”.
Fig. 3 illustrates these sets for N = 27. Note that for k = 3,
there is only one such set S13 and it consists of all nodes.

The following properties follow directly from the definition
of the level sets and the HINT-T assignment in (1).

1) Any two level sets Sik and Sjk where i 6= j are disjoint.
2) Any level set Sik where k > 1 is a union of M level sets

from level k − 1.
3) Under the HINT-T assignment (1), for 1 ≤ k ≤ T −1, no

two nodes from any Sik are in the same Tx-k+1 group.
To illustrate the third property in Fig. 3, note that nodes

1, 2, 3 from the first Tx-1 group are in different Tx-2 groups.
Similarly, nodes 3, 6, 9 from the third Tx-2 group are in
different Tx-3 groups. This is precisely the interleaving of
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Fig. 3. Channel Assignment under HINT-3 for N = 27. Also shown are
the level sets and the route from node 25 to node 14.

nodes from lower Tx groups to form upper Tx groups as
seen in HINT-2. HINT-T generalizes this interleaving to T
hierarchical levels.

3) Scheduling and Routing under HINT-T: We now de-
scribe the scheduling and routing strategy that is used with
HINT-T.

Scheduling Strategy: Similar to HINT-2 strategy, every
transceiver in a group gets 1/M of the total transmission
capacity of the channel.

Routing Strategy: For any two nodes a and b, define k(a, b)
as the smallest k for which there exists a level set Sik such
that both a and b are in Sik. Note that at least one such set
always exists since the set S1T contains all nodes. Further,
k(a, b) ≤ T for all a, b. The routing strategy from a source
node s to a destination node d can be described using these
k(a, b) values.

First, calculate k(s, d). If k(s, d) = 1, then d is in the same
Tx-1 group as s and s transmits directly to d in one hop using
its first transceiver. If k(s, d) 6= 1, then d is in a different Tx-1
group than s and the packet is routed as follows.

If d is in the same Tx-k(s, d) group as s, then s transmits
directly to d in one hop using its k(s, d)th transceiver.

Else, s determines the node with the smallest value of
k(r, d) among all of its neighbors r in its Tx-k(s, d) group.
Denote this node by r∗. Then s relays the packet to node r∗

using its k(s, d)th transceiver. Node r∗ now uses the same
algorithm as described before to route the packet to d.

This procedure is illustrated for the HINT-3 assignment in
Fig. 3 where node 25 wants to send to node 14. We first
calculate k(25, 14). Using Fig. 3 , it can be seen that S13 is
the only set that has both nodes 25 and 14. Thus, we have
that k(25, 14) = 3. Next, since 14 is not a neighbor of 25
in its Tx-3 group, node 25 calculates k(7, 14) and k(16, 14)
for its Tx-3 group neighbors 7 and 16. Using Fig. 3, we have
k(7, 14) = 3 and k(16, 14) = 2. Therefore, node 25 forwards
the packet to node 16 for relaying to the destination. This
procedure is now repeated by node 16. The following Lemma
characterizes the HINT-T routing strategy.

Lemma 1: The HINT-T routing strategy ensures that there
are at most T hops between any pair of nodes.

Proof: The full proof is provided in Appendix B.
4) Throughput Analysis of HINT-T: We now show that the

HINT-T assignment along with the scheduling and routing
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strategy as described above can acheive a throughput of 1/M
for every node.

Theorem 2: For N1/T = M (where M is an integer),
HINT-T achieve a uniform per node throughput of 1/N1/T

using TN
T−1
T channels.

Proof: The proof is based on similar ideas as Theorem 1
and is provided in Appendix C.

C. Discussion of HINT-T

Theorem 2 implies that if T = log2N and if there are
N log2N/2 channels available, then HINT-T can achieve a
per node throughput given by 1/N1/ log2N = 1/2. Thus, it
is possible to get Θ(1) per node throughput if each node
has log2N transceivers and there are N log2N/2 channels
available. This is in sharp contrast to the case of a single
radio network, i.e., T = 1. Note that the best possible uniform
throughput for T = 1 under static channel assignment is 1/N .
This is because when T = 1, all transceivers must share the
same channel so that the network remains connected. However,
when T > 1, much higher throughput can be achieved. This
shows that there is a fundamental difference between single
radio and multi radio networks when static channel assignment
is used.

However, requiring Θ(log2N) transceivers per node
is impractical. Also impractical is the availability of
Θ(N log2N/2) channels. This raises the following questions:

1) Do we really need the number of transceivers per node
and total channels required to grow to infinity to get Θ(1)
per node throughput?

2) Is there a fundamental way to characterize the perfor-
mance of any channel assignment strategy? Specifically,
what is the relationship between number of transceivers,
number of channels used, network size and per node
throughput?

We address these questions in the following sections.

IV. TOWARDS λ = Θ(1) WITH T = 2

A. LOG-2 Assignment

In this section, we describe a strategy called LOG-2 that
achieves Θ

(
1

(log2N)2

)
throughput per node with only two

transceivers per node using O
(

N
log2N

)
channels. The main idea

behind this strategy is the following. We first form two sets of
groups, one per transceiver index. Each set contains O

(
N

log2N

)
groups, each group having size O(log2N) nodes. Then the
strategy assigns nodes to these groups in such a way that a
node can reach any other node in at most O(log2N) hops. For
simplicity of presentation, we assume in the following that N
is of the form N = M log2M where log2M ∈ Z+. This
scheme can be modified to be applicable when this is not the
case using similar ideas.

1) Channel Assignment under LOG-2: The channel assign-
ment is performed as follows. First, group the first transceiver
of all nodes into M Tx-1 groups, each containing log2M con-
secutively numbered nodes. Thus, the kth Tx-1 group contains
nodes (k − 1) log2M + 1, (k − 1) log2M + 2, . . . , k log2M .
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Fig. 4. Assignment under LOG-2 for a network of size N = 8 log2 8 = 24.

Next, group the second transceiver of all nodes into M Tx-
2 groups, each containing log2M nodes. We assign nodes to
them as follows. For 1 ≤ i ≤ log2M , the ith node from Tx-
1 group number ((j − 1 + 2i−1) mod M) is assigned to be
the ith node of Tx-2 group number j (where 1 ≤ j ≤ M ).
The “mod M” operation used here and in rest of the paper is
defined as follows. For any non-negative integers a and b, we
use the following definition:

(a mod M)M
=

{
M if a = bM
x if a = bM + x where 0 < x < M

Each of the groups thus formed is assigned an orthogonal
channel. Since there are a total of 2M groups, the total number
of channels used is 2M . Fig. 4 shows this assignment for a
network of N = 24 = 8 log2 8 nodes with T = 2. To illustrate
the working of the algorithm, consider Tx-2 group number
7. For 1 ≤ i ≤ 3, the ith node from Tx-1 group number
((7− 1 + 2i−1) mod 8) is assigned to be the ith node of this
group. For i = 1, this is given by the first node of Tx-1 group
(6 + 1 mod 8) = 7, i.e., node 19. For i = 2, this is given by
the second node of Tx-1 group (6 + 2 mod 8) = 8, i.e., node
23. And for i = 3, this is given by the third node of Tx-1
group (6 + 4 mod 8) = 2, i.e., node 6.

The following property follows from the definition of the
LOG-2 assignment strategy:

Property 1: In any Tx-2 group number j, there is one node
from each of the Tx-1 groups numbered ((j− 1 + 2i−1) mod
M) where 1 ≤ i ≤ log2M .

This means that the difference between the Tx-1 group
numbers of consecutive nodes in a Tx-2 group follows the ge-
ometric sequence 20, 21, 22, . . . , 2i−1 where 1 ≤ i < log2M .
This is precisely the intuition behind this strategy, as illustrated
in Fig. 5. This figure shows the nodes in the first Tx-2 group
(black circles) under LOG-2 assignment for N = 64 placed
on a ring. It can be seen that the neighboring nodes of 1 are
located progressively farther away as we traverse clockwise on
the ring. Note that the assignment on Tx-1 ensures that node
1 can reach close by nodes 2, 3, 4 in one hop. As we show
in the next section, using a combination of local neighbors on
Tx-1 and progressively farther away neighbors on Tx-2, this
strategy ensures that a node is within 2 log2M+1 hops of any
other node. We note that the idea behind this strategy bears a
resemblance to prior works on distributed hash tables for fast
lookup such as Chord [16].
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Fig. 5. Idea behind the formation of Tx-2 groups under LOG-2.

2) Cover Sets: In order to describe the routing strategy,
we define the following collection of sets for each Tx-2
group j (where 1 ≤ j ≤ M ). For every ith node in
this group, we define a set Uij as follows. For 1 ≤ i ≤
log2M − 1, Uij contains 2i−1 Tx-1 group numbers, starting
from ((j−1+2i−1) mod M) and incrementing by 1 and using
the “mod M” operation as defined before. For i = log2M ,
Uij contains (2i−1 + 1) Tx-1 group numbers, starting from
((j − 1 + 2i−1) mod M) and incrementing by 1 while using
the mod M operation. For example, for the network in Fig. 4,
we have:

U11 = {1},U21 = {2, 3},U31 = {4, 5, 6, 7, 8}
U17 = {7},U27 = {8, 1},U37 = {2, 3, 4, 5, 6}

There are a total of M log2M such sets. The routing strategy
we discuss next uses these sets as follows. A node at the ith

level of Tx-2 group j is responsible for relaying to nodes in
those Tx-1 groups whose index is in the set Uij . Thus, this
set lists all those Tx-1 groups that are “covered” by this node.
Hence, it is called a Cover Set. For example, in Fig. 4, node
5 which is at the 2nd level in Tx-2 group 1 forwards data for
destinations in the set of Tx-1 groups in U21. Likewise, node
6 which is at the 3rd level in Tx-2 group 7 forwards data for
destinations in the Tx-1 groups of U37. Note that for any j, the
sets Uij are disjoint and their union covers all Tx-1 groups.

3) Scheduling and Routing under LOG-2: We now describe
the scheduling and routing strategy of LOG-2.

Scheduling Strategy: Every transceiver in a Tx-1 group gets
the same fraction of time to transmit on that group’s channel.
However, only the first node gets all the transmission time in a
Tx-2 group. As we will see next, the routing strategy of LOG-
2 requires only the first node of each Tx-2 group to transmit
on that group’s channel.

Routing Strategy: Consider a node n that has a packet
destined for node m. This packet could have been generated
by node n itself, or it could have been forwarded to n to be
relayed to m. In both cases, node n does the following. Let
the Tx-1 group number of nodes n and m be g(n) and g(m)
respectively. In order to route a packet from n to m, n first
checks if m is in its Tx-1 group, i.e., if g(n) = g(m). If
yes, then n transmits directly to m in one hop using its first
transceiver. Else, n transmits the packet to the first node in
Tx-1 group number g(n) for relaying to n. Note that this step
is not required if n itself is the first node in its Tx-1 group.
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Fig. 6. Illustration of the routing strategy under LOG-2. Black arrows show
transmissions in Tx-1 groups. Red arrows show transmissions in Tx-2 groups.

Let q be the first node in Tx-1 group g(n). Note that under
LOG-2, q will also be the first node in Tx-2 group g(n).
Node q checks if m is in its Tx-2 group. If yes, it transmits
directly to m in one hop using its second transceiver. Else,
node q transmits the packet to that node in its Tx-2 group that
“covers” node m. More precisely, q transmits to the ith node
in its Tx-2 group for forwarding to m where 2 ≤ i ≤ log2M
and g(m) ∈ Uig(n). This process is repeated until the packet
gets delivered.

In Fig. 6, this procedure is illustrated for the 24 node
network of Fig. 4. Suppose node 3 wants to send to node
18. Using Fig. 4, we have that g(3) = 1 and g(18) = 6. Thus,
node 3 transmits the packet to node 1 in its Tx-1 group for
relaying to 18. Node 1 checks if 18 is in its Tx-2 group. Since
it is not, node 1 determines the node in its Tx-2 group that
covers node 18. This node is given by the third node, i.e., node
12, since U31 = {4, 5, 6, 7, 8}. Therefore, node 1 transmits the
packet to node 12 in its Tx-2 group. Node 12 now repeats this
procedure. Fig. 6 shows the final outcome of this process. The
entire route is given by 3-1-12-10-14-13-17-18. Note that the
hops alternate between Tx-1 and Tx-2 group transmissions.
Further, only the first node of a Tx-2 group transmits in any
Tx-2 group transmission.

The following Lemma characterizes routing under LOG-2.
Lemma 2: The LOG-2 routing strategy ensures that there

are at most 2 log2N + 1 hops between any pair of nodes.
Proof: The proof is based on the observation that at each

step in a Tx-2 transmission, the distance between the node
holding the packet and the destination decreases by at least
half. The full proof is omitted for brevity.

4) Throughput Analysis of LOG-2: We now show that the
LOG-2 assignment along with the scheduling and routing
strategy as described above can achieve a throughput of
1/(log2M)2 for every node.

Theorem 3: For N = M log2M where log2M ∈ Z+,
LOG-2 can achieve a uniform per node throughput of
1/(log2M)2 using 2M channels.

Proof: The proof is based on the following observations.
Because of the symmetry of the assignment, it is sufficient
to focus on the total load on the nodes in the first Tx-1
group and the first Tx-2 group. Then we calculate a bound on
the total number of group-to-group traffic flows that involve
these groups. This is used to show that a per node input
rate of 1/(log2M)2 is feasible. The full proof is provided
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in Appendix D.

B. Discussion of LOG-2

Theorem 3 shows that LOG-2 can achieve a per node
throughput of at least 1/(log2(N))2 with only 2 transceivers
per node. Thus, we can get close to Θ(1) per node throughput
with O(1) transceivers per node. However, this answers the
first question raised in Sec. III-C only partially. As we show
in the next section, under the Parking Lot model of Sec. II,
it is necessary to have Ω(N) channels to get Θ(1) per node
throughput irrespective of the number of transceivers per node.
However, given Ω(N) channels, it is not clear if one can
achieve Θ(1) per node throughput using O(1) transceivers per
node under static channel assignment. It is our conjecture that
this is not possible.

V. EFFICIENCY OF A POLICY

Let P denote the set of all possible feasible policies for
channel assignment, routing, and scheduling under the network
model described in Sec. II. We show that there exists a simple
relation between the total number of channels used, network
size, and maximum per node throughput achievable under any
policy p ∈ P . Let Cp denote the number of channels used by
the channel assignment under p. Let L̄p denote the resulting
average path length traversed by a packet under p. This average
is taken over all source-destination pairs. Finally, let λp be
the maximum per node input rate that can be supported under
p. Then, since the total traffic load cannot exceed the total
transmission capacity of the network, we must have that

NλpL̄p ≤ Cp. (2)

The left hand side of (2) denotes the time average total number
of transmissions required to deliver packets from all sources to
all destinations. This cannot exceed Cp, the maximum number
of transmissions possible per unit time. Since L̄p ≥ 1 under
any p, it follows from (2) that Cp = Ω(N) when λ = Θ(1).

Note that (2) is a necessary condition for the feasibility of
any input rate λ and can be used to establish a lower bound
on the performance of any policy as shown next.

Definition 1: Consider any channel assignment, routing,
and scheduling policy p ∈ P that uses Cp channels in a
Parking Lot network of size N . Suppose it can support a
maximum per node input rate of λp. Then the efficiency of p,
ηp, is defined as:

ηp
M
=
Nλp
Cp

(3)

Since L̄p ≥ 1 under any p, using (2) it follows that ηp ≤ 1 for
all p ∈ P . This includes the throughput maximizing policy
obtained by solving the optimization problem for the tuple
(N,T,Cp) as discussed in Sec. II. Therefore, the maximum
per node throughput achievable under a given policy p that
uses Cp channels in a network of size N is within a factor
ηp of the maximum per node throughput achievable under
any policy that uses Cp channels on the same network. Thus,
the efficiency of a policy establishes a lower bound on its
performance.

Using the results in Sec. III and IV, the efficiency of the
HINT-T and LOG-2 strategies can be calculated. Since HINT-
T uses TN

T−1
T channels to support per node rate of 1/N

1
T ,

we have:

ηHINT-T =
N

N1/T × TN T−1
T

=
1

T
(4)

For a fixed T , we note that ηHINT-T is independent of the
network size N . Thus, HINT-T is within a constant factor
of the optimal solution.

Likewise, for N = M log2M , LOG-2 uses 2M channels
to support per node rate of 1/(log2M)2. This yields:

ηLOG-2 =
N

(log2M)22M
=

1

2 log2M
>

1

2 log2N
(5)

Thus, the LOG-2 scheme is within a logarithmic (in network
size) factor of the optimal solution. This may suggest that
HINT-T has a better performance than LOG-2. However, note
that for any given T , the maximum per node throughput
under HINT-T is 1/N1/T while LOG-2 can achieve at least
1/(log2N)2 with T = 2 which exceeds 1/N1/T for suffi-
ciently large N .

VI. SIMULATION-BASED EVALUATION

We now present simulation-based evaluation of HINT-T
and LOG-2. We also compare their performance against two
representative schemes that we call RING and GRID. These
are described in the next section. In our simulations, we
consider a Parking Lot network with 4 transceivers per node.
Our simulations are performed using OPNET [17].

A. RING and GRID Channel Assignment

The RING assignment scheme first forms N/4 Tx-1 groups,
each of size 4 and containing consecutively numbered nodes.
The other transceiver groups are obtained by shifting node
ids in each Tx-1 group by 2, 3 and 4 respectively, with
wraparound. Fig. 7 shows this for N = 16. The resulting
topology resembles a ring (similar to Example 1 in Fig. 1),
hence the name. The GRID scheme places nodes in a 2-dim
degree 4 torus grid and assigns a channel to each link in the
resulting graph. Thus, each Tx group contains 2 nodes.

Under the RING assignment, it is easy to show that the
average path length over all source-destination pairs is Θ(N).
Similarly, the total number of channels used is N = Θ(N).
Thus, using (2), it follows that the maximum per node through-
put under RING is O(1/N). Further, using (3), we have that its
efficiency is ηRING = O(1/N). Under the GRID assignment,
the average path length over all source-destination pairs can be
shown to be Θ(

√
N) while the total number of channels used

is 2N = Θ(N). Thus, using (2), it follows that the maximum
per node throughput under GRID is O(1/

√
N). Further, using

(3), we have that its efficiency is ηGRID = O(1/
√
N).

B. Simulation Setup

The input topology is a Parking Lot MC-MR network of
size N nodes where N is varied between 16 and 100. These
nodes are placed in a 250m × 250m area and use a fixed
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Fig. 7. Channel Assignment under RING for N = 16.

transmit power such that all nodes are within the transmission
range of each other. Every node has 4 identical transceivers,
each capable of operating on a channel of bandwidth 10 MHz.
We assume that such channels are available starting from 900
MHz. Each transceiver independently uses 802.11 CSMA for
medium access on its assigned frequency channel. The raw
MAC level throughput per channel is 1.2 Mbps.

Under each scheme, the assignments to the different
transceivers are determined at the start of a simulation run
and fixed for the duration of that run. In each run, traffic is
generated using the uniform all-pair unicast model. Specif-
ically, every node generates packets according to a Poisson
process of fixed rate and each packet is equally likely to be
destined to any of the other nodes. We assume that all packets
are fixed size UDP packets of length 436 bytes that includes
control headers. Each simulation run has a duration of 150
seconds at the end of which we count the total number of
packets delivered successfully to their destinations. We use
the default link state routing protocol available in OPNET
for routing packets. We do not implement the load balanced
routing strategies under HINT and LOG as discussed in the
earlier sections. Thus, we expect the achievable performance
of HINT and LOG with load balanced routing to outperform
what we report here.

Our objective is to compare the maximum achievable per
node throughput under each scheme. In addition, we are inter-
ested in comparing it against the theoretical bounds. Given a
network size N and an assignment scheme X , we estimate it as
follows. Simulations are run with increasing values of the input
rate until when the total number of delivered packets does
not increase anymore. We call this the “saturation throughput”
under X for a given N and use it as a measure of the maximum
per node achievable throughput under X for N . Note that
the theoretical bounds for maximum throughput are derived
under idealized assumptions such as collision free transmission
scheduling, load balanced routing, no buffer overflows, and
ignoring any control overheads (such as due to CSMA and link
state routing updates). This no longer holds in the simulations
which are closer to the realistic setting. However, these factors
affect all of the schemes being compared and the saturation
throughput can be thought of as a measure of the remaining
effective capacity.

In this setup, we implement the following: RING, GRID,
2×HINT-2, 2×LOG-2, and HINT-4. 2×HINT-2 implements
HINT-2 on transceivers 1, 2 and repeats it on transceivers 3, 4.
Similarly, 2×LOG-2 implements LOG-2 on transceivers 1, 2
and repeats it on transceivers 3, 4. Table I summarizes the
theoretical performance bounds for these schemes.

Algorithm λp Cp ηp =
Nλp
Cp

RING O
(

1
N

)
O(N) O

(
1
N

)
GRID O

(
1√
N

)
O(N) O

(
1√
N

)
2×HINT-2 O

(
1√
N

)
O(
√
N) O(1)

2×LOG-2 O
(

1
(log2 N)2

)
O
(

N
log2 N

)
O
(

1
log2 N

)
HINT-4 O

(
1

N1/4

)
O(N3/4) O(1)

TABLE I
SUMMARY OF THEORETICAL PERFORMANCE BOUNDS.

C. Simulation Results and Discussion

We first compare these schemes in terms of their saturation
throughput. Fig. 8(a) plots the per node saturation throughput
(in packets/sec, pps) vs. N. As can be seen, HINT-4 outper-
forms the RING scheme by 200-300% for high tens of nodes,
and outperforms its nearest rival GRID by nearly 150% at
N = 100. The behavior of the curves is consistent with the
theoretical bounds with RING showing the largest drop as N
increases. Note that the per node throughput under 2×LOG-2
scales as Θ(1/(log2N)2) which is the best scaling perfor-
mance among all of these schemes. However, in the finite
range of N considered here, HINT-4 outperforms 2×LOG-2.
Both GRID and 2×HINT-2 also outperform 2×LOG-2 up to
a crossover point, after which 2×LOG-2 is better. We expect
2×LOG-2 to eventually outperform HINT-4 as well after a
sufficiently large N .

We note that GRID generally has a better performance
than both 2×HINT-2 and 2×LOG-2. However, this plot only
considers the per node saturation throughput and does not
capture the total number of channels used. To incorporate this,
we next compare these schemes in terms of their efficiency.
Fig. 8(b) plots the total network saturation throughput vs.
the number of channels used under each scheme. Recall that
efficiency of a scheme is the ratio between maximum total
network throughput and the total number of channels used.
Thus, the slope of the performance curve for a scheme in Fig.
8(b) can be interpreted as its efficiency at that point. It can be
seen that both 2×HINT-2 and 2×LOG-2 have much higher
efficiency than GRID. Further, this gap increases with N .

Fig. 8(b) also agrees quite well with the theoretical bounds.
2×HINT-2 and HINT-4 both have a theoretical efficiency of
O(1), i.e., independent of N (see Table I). Their curves in
Fig. 8(b) have a slope that does not decrease with N . On
the other hand, RING has an efficiency of O(1/N) which
goes to 0 as N increases. Its curve in Fig. 8(b) flattens to
slope 0 quickly. GRID has efficiency O(1/

√
N). Its curve

also flattens, but more slowly than RING. Finally, 2×LOG-2
has efficiency O(1/ log2N) and its slope is even more slower
to flatten.

In terms of both per node throughput and efficiency, RING
has the worst performance. Intuitively, this is because under
RING, packets have to traverse O(N) hops on average,
resulting in a vast majority of traffic being relay traffic. GRID
improves upon RING because the average distance between
nodes is now O(

√
N). It has similar scaling as HINT-2 in

terms of throughput but uses a lot more channels. Thus,
it has poor efficiency. The HINT-T schemes have the best
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Fig. 8. (a) Saturation Throughput per node vs. Network Size under different
schemes. (b) Total Saturation Throughput vs. Number of Channels used under
different schemes. The slope of each curve is the efficiency of that scheme at
that point.

performance in terms of their efficiency which does not depend
on N . However, in terms of throughput, T must be large to
remain close to O(1) as N increases. LOG-2 can achieve this
with just 2 transceivers. However, its efficiency is not as good
as HINT-T. Thus, both HINT and LOG are order optimal or
close to order optimal along one of the dimensions (throughput
or efficiency).

VII. CONCLUSIONS AND FUTURE WORK

A. Implications for Network Architecture
Our results have several interesting implications on the

architecture of dense MC-MR networks. The scaling laws
in [1] imply that in a random ad hoc network, if individual
transceivers can only operate over channels of fixed bandwidth
(that does not increase with N ), then the best possible scaling
is O(1/

√
N) even if the network has a large number of

channels available and each node has multiple (but finite)
transceivers. The idea behind the optimal strategy in [1] is
to keep transmit power sufficiently low, just enough to ensure
connectivity, and use multi-hop routing. The motivation behind
reducing the transmit power is to maximize spatial reuse of
the finite network bandwidth.

In contrast, our results show that in the Parking Lot model, it
is possible to get significantly higher throughput if nodes have
multiple transceivers and the number of available channels
scales with the network size. Our results also suggest that
in this model, reducing power to maximize spatial reuse of
frequency does not help. It is better to preserve the Parking
Lot structure and use all available channels while keeping
inter-node distance small in the resulting effective topology
by careful channel assignment.

B. Open Questions
There are several open questions that offer directions for

future work. For example, it is not clear if one can achieve
Θ(1) per node throughput using O(1) transceivers per node
under static channel assignment. Similarly, it is not clear which
algorithm is the best given a particular (N,T, F ). Recall
that HINT-T has Θ(1) efficiency for any fixed T but its
throughput scales as Θ(1/N1/T ). On the other hand, LOG-2
has Θ(1/(log2N)2) throughput but Θ(1/(log2N)) efficiency.
Thus, it would be interesting to design a “universal” channel
assignment policy that has both high throughput and high
efficiency for finite T at all points of the curve (2).
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APPENDIX A
PROOF OF THEOREM 1

Because of the symmetry of the assignment, it is sufficient
to focus on the total load on each of the two transceivers of
node 1 and show that it can be supported. First, consider the
second transceiver of node 1. On this, node 1 transmits those
packets generated by itself that are destined for nodes in all
Tx-1 groups other than its own group. There are M − 1 such
groups and each group has M nodes. Node 1 generates packets
at rate λ

N−1 for each of these nodes. Thus, the total traffic load
on the second transceiver of node 1 is given by:

λM(M − 1)

N − 1
(6)

This must be less than the total transmission rate 1/M . Solving
this, we get:

λ ≤ N − 1

M2(M − 1)
=

M2 − 1

M2(M − 1)
=

1

M
+

1

M2
(7)

From this, it can be seen that λ = 1/M satifies (7).

http://www.opnet.com/
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Next consider the first transceiver of node 1. On this, node
1 transmits packets generated by itself that are destined for all
the other nodes in its own Tx-1 group. There are M − 1 such
nodes. In addition, node 1 transmits the relay packets that it
received for these nodes from its neighbors in its Tx-2 group.
There are M − 1 such neighbors. Thus, the total traffic load
on the first transceiver of node 1 is given by:

λ(M − 1)

N − 1
+
λ(M − 1)(M − 1)

N − 1
=
λM(M − 1)

N − 1
(8)

This is same as (6). Again, this must be less than the total
transmission rate 1/M . Using the same steps as before, we
have that λ = 1/M is feasible for this case as well. Since
HINT-2 uses 2M channels and M = N1/2, Theorem 1
follows.

APPENDIX B
PROOF OF LEMMA 1

To show Lemma 1, it is sufficient to show that k(r∗, d) <
k(s, d). This is because this means k(r, d) will eventually
become 1 and that means r is in the same group as d. Further,
this will take no more than T hops since k(s, d) ≤ T .

Consider the Tx-k(s, d) group of node s. By definition,
k(s, d) is the smallest k for which there exists a set Sik such
that both s and d are in Sik. Denote this set by Sj,k(s,d).
Note that this set is a union of M disjoint sets from level
k(s, d) − 1. Further, the Tx-k(s, d) group of node s contains
M nodes (including s), one from each of these M sets from
level (k(s, d)− 1). This follows by the HINT-T construction.

Now the level (k(s, d)− 1) set that contains s cannot have
d. Otherwise, k(s, d) cannot be the smallest k for which there
exists a set Sik such that both s and d are in Sik.

However, there must be one set of the remaining M − 1
level (k(s, d) − 1) sets that contains d. Othwerise, d cannot
be in Sj,k(s,d), a contradiction. Now there is one node from
this set in the Tx-k(s, d) group of node s. Call it n. Since d
is in the same level (k(s, d)− 1) set as n, we must have that
k(n, d) ≤ k(s, d)− 1. Thus, k(r∗, d) < k(s, d).

APPENDIX C
THROUGHPUT ANALYSIS OF HINT-T

Because of the symmetry of the CA and routing strategy
across nodes, it is sufficient to focus on the total load on
each of the T transceivers of node 1 and show that it can
be supported.

Consider the kth transceiver of node 1. At this level,
node 1 is responsible for forwarding packets destined to
(M − 1)Mk−1 nodes using its (M − 1) neighbors in its Tx-k
group. Next, we calculate the total number of source nodes
that generate packets that are destined to these nodes and that
are routed via the kth transceiver of node 1. We calculate this
number for each level, starting at level k and going upto level
T , making sure that no node is counted more than once.

At level k, 1 is the only such source node. At level k + 1
there are M −1 new source nodes, each a neighbor of node 1
in its Tx-k+1 group. At each next level, all the nodes counted
so far bring M −1 new (previously not counted) nodes. Thus,

at level k + 2, we have (1 + M − 1)(M − 1) = M(M − 1)
new source nodes. Similarly, at level k + 3, we have (1 +
M − 1 + M(M − 1))(M − 1) = M2(M − 1) new source
nodes. In general, it can be shown that at level k+ i, we have
M i−1(M−1) new soure noes. Summing from level k through
T , the total number of source nodes is given by:

1 +

T−k∑
i=1

M i−1(M − 1) = MT−k (9)

Thus, the total traffic load on the kth transceiver of node 1
is given by:

λMT−k(M − 1)Mk−1

MT − 1
=
λ(M − 1)MT−1

MT − 1
(10)

This cannot exceed the available transmission rate 1/M .
Solving this, we get

λ ≤ MT − 1

MT (M − 1)
(11)

It can be seen that λ = 1/M satisfies this.
APPENDIX D

THROUGHPUT ANALYSIS OF LOG-2
Because of the symmetry of the assignment, it is sufficient

to focus on the total load on the nodes in the first Tx-1 group
and the first Tx-2 group.

We calculate the total number of group-to-group flows that
involve the first Tx-1 group (as a source, destination, or relay).

Consider all the traffic flows that originate in the first Tx-
1 group and are destined to all nodes. Each flow involves a
sequence of transmissions where each transmission takes place
either in a Tx-1 group or a Tx-2 group. Note that no group
occurs more than once in any routing path.

Let ∆i denote the sum of the path lengths (measured in the
units hops or transmissions involving only Tx-1 groups) of
flows originating in the ith Tx-1 group and destined to nodes
in all other groups. Since the paths for flows originating in
any other Tx-1 group can be obtained by simply shifting the
paths for flows originating in the first Tx-1 group, we have
that ∆i = ∆1 for all i. Further, the sum of the number of
times the first Tx-1 group occurs across all the paths is also
equal to ∆1. Finally, this equals the total number of group-
to-group flows that involve the first Tx-1 group (as a source,
destination, or relay).

Next, note that the maximum path length (measured in the
units hops or transmissions involving only Tx-1 groups) is
(log2M + 1). This implies that ∆1 ≤M(log2M + 1). Thus,
the total load on the first Tx-1 group is upper bounded by

M(log2M + 1)λg = M(log2M + 1)
(log2M)2λ

M log2M − 1
(12)

Since this cannot exceed the total transmission capacity of the
first Tx-1 group,we must have that

M(log2M + 1)
(log2M)2λ

M log2M − 1
≤ 1 (13)

It can be seen that λ = 1/(log2M)2 satisfies this.
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