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Abstract—Location-Based Service (LBS) becomes increasingly
popular with the dramatic growth of smartphones and social
network services (SNS), and its context-rich functionalities attract
considerable users. Many LBS providers use users’ location
information to offer them convenience and useful functions.
However, the LBS could greatly breach personal privacy because
location itself contains much information. Hence, preserving
location privacy while achieving utility from it is still an challeng-
ing question now. This paper tackles this non-trivial challenge
by designing a suite of novel fine-grained Privacy-preserving
Location Query Protocol (PLQP). Our protocol allows different
levels of location query on encrypted location information for
different users, and it is efficient enough to be applied in mobile
platforms.

I. I NTRODUCTION

Location Based Service (LBS) has become one of the
most popular mobile applications due to the wide use of
smartphones. The smartphones, equipped with GPS modules,
have powerful computation ability to process holders’ location
information, and this brought the flood of LBS applications in
the smartphone ecosystem. A good example is the smartphone
camera: if one takes a photo with a smartphone camera, the
location where the photo is taken is embedded in the picture
automatically, which helps one’s remembrance. Furthermore,
the explosive growth of social network services (SNS) also
assisted its growth by constructing connections between loca-
tion information and social network. When a picture taken
by a smartphone (location embedded) is uploaded to the
Facebook album, the system automatically shows the location
of the picture on the map, and this is shared with the owner’s
friends in the Facebook (unless the privacy setting specifies
otherwise).

Many similar applications exploit both LBS and SNS. They
offer several attractive functions, but location information
contains much more information than barely the location
itself, which could lead to unwanted information leakage. For
example, when Alice and Bob both use check-in application in
Facebook (which leaves a location record in one’s webpage)
in a nice restaurant, it is inferable that they are having a
date and that they could be in a relationship. This inference
might be an unintended information leakage from Alice’s and
Bob’s perspective. Therefore, a privacy-preserving protocol is
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needed to prevent significant privacy breach resulted from the
combination of LBS and SNS.

The simplest way, which most of applications adopted, is
to exert group based access control on published locations:
specify a group of user who can or cannot see them. Social
photo sharing website Flickr only let users choose all users,
neighbours, friends or family to allow the access to the
locations, and SNS websites Facebook and Google+ addi-
tionally support custom groups to specify the accessible user
groups. Mobile applications are much worse. Many mobile
applications (e.g., Circle, Who’s around and Foursquare) even
do not offer group choices to the users, instead, they only
ask users whether they want to disclose the location or not.
Obviously, this is too simple to achieve what users need. First
of all, from users’ perspective, it is hard to explicitly determine
a user group such that their locations are visible only to them.
It is more natural to find a condition such that friends who
satisfy it can or cannot see the location. Secondly, binary
access control (can or cannot) is far beyond enough to properly
configure the privacy setting. In the previous example of the
two lovers Alice and Bob, Alice might want to share her date
at the restaurant with her best friends and discloses the exact
location to them. Besides, Alice might also want other friends
to know that she is having a good time in downtown, but not
detailed location. In this case, approximate settings between
‘can’ and ‘cannot’ are needed to fulfil her requirements.

As discussed above, existing privacy control settings in LBS
are ‘coarse’ in the sense that: 1) users can only explicitly
specify a group of users who can or cannot access the location
information; 2) access control policy supports binary choices
only, which means users can only choose to enable or disable
the information disclosure. The existing control strategies also
suffer from privacy leakage in terms of the server storage.
Even if one disables all of the location disclosure, his location
is still open to the server, which in fact is users’ top con-
cern. Therefore, a fine-grained privacy control executableon
encrypted location data is needed to further foster the LBS
and its related business market.

A. Contributions

This paper proposes a fine-grained Privacy-preserving Lo-
cation Query Protocol (PLQP) which enables queries to get
location information (e.g., Searching a friend’s approximate
location, Finding nearest friends) without violating users lo-
cation privacy. This is not a trivial job since simple anonymiza-
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tion makes it impossible to utilize them for queries. Also, if
one directly applies queries or functions on the raw location
information, privacy leakage is inevitable. Main contributions
of our work are three-fold.

• Fine-Grained Access Control: Our protocol allows users
to specify a condition instead of a group and exert access
control over the users who satisfy this condition. This is
more scalable since users can simply add a new condition
for new privacy setting instead of hand-picking hundreds
of users to form a new group. Also, this is more user-
friendly because users themselves do not clearly know
which of their friends should or should not access the
information most of time.

• Multi-leveled Access Control: The protocol also supports
semi-functional encryption. That is, the protocol enables
users to control to what extent (or level) others can learn
his location. The lowest level corresponds to nothing,
and the highest level corresponds to one’s exact location.
Levels between them correspond to indirect information
about one’s location.

• Privacy-Preserving Protocol: In our protocol, every loca-
tion information is encrypted and queries are processed
upon ciphertexts. Therefore, a location publisher’s friends
learn nothing but the result of the location query, which is
under the location publisher’s control. In addition, since
every location is encrypted, even the server who stores
location information does not learn anything from the
ciphertext.

II. RELATED WORK

There are several works achieving privacy-preserving loca-
tion query [1]–[4], which are based onk-anonymity model.
The k-anonymity model [5] has been widely used to protect
data privacy. The basic idea is to remove some features such
that each item is not distinguishable among otherk items.
However, relevant techniques which achievek-anonymity of
data cannot be used in our case for the following four reasons:
1) Those techniques protect the privacy of the data stored
in servers. In our PLQP, we do not store the data at all.
2) In LBS, location data is frequently updated, and this
dynamic behaviour introduces huge overhead to keep the data
k-anonymous. 3) As analyzed in Zanget al. [6], achievingk-
anonymity in location dataset significantly violate the utility of
it even for smallk, so it is not suitable for our location query
protocol. 4) k is generally a system-wide parameter which
determines the privacy level of all data in the system, but our
goal is to leave the decision of privacy level to each user.

Kido et al. [7] proposed a scheme which appends multiple
false locations to a true one. The LBS responds to all the
reports, and the client only collects the response corresponding
to the true location. They examined this dummy-based tech-
nique and predicted how to make plausible dummy locations
and how to reduce the extra communication cost. However,
their technique protects the users’ location privacy against LBS
provider. We are also interested in a user’s location privacy
against other users.

In the mix zone model proposed by Beresfordet al. [8],
users are assigned different pseudonyms every time he enters
the mix zone, and users’ paths are hidden by doing so. Several
works [9]–[11] are based on this model, but they guarantee the
privacy only when the user density is high and user behaviour
pattern is unpredictable. Also, most of them require trusted
servers.

There are also works related to CR (cloaking region) [12]–
[15]. In these works, the LBS receives a cloaking region
instead of actual users’ locations. Geditet al. proposed spatial
cloaking and temporal cloaking in [12]. Each query specifiesa
temporal interval, and queries within the same interval, whose
sources are in the vicinity of the first query’s source, are
merged to a single query. Otherwise, the query is rejected
because it has no anonymity. Kalniset al. [13] used the Hilbert
space filling curve to map the two dimensional locations to
one dimensional values, which are then indexed by a B+ tree.
Then, they partition the one dimensional sorted list into groups
of n users, which is the CR of their scheme. Since this Hilbert
Cloaking is not based on geometric space, it guarantees privacy
for any location distribution. However, a certain range, where
the user is located, is disclosed in CR-based approaches, and
this is out of users’ control. It is more desirable to allow users
themselves to configure it.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We denote every person engaged in the protocol as a user
Ui (we do not differentiate smartphone users and PC users),
the user who publishes his location as a publisherPi and the
user who queries the location information of other user as a
querierQi. Note that a user can be a querier and a publisher
at the same time. When he queries on others, he acts as a
querier and when he is queried, he acts as a publisher. That
is, Ui = Pi = Qi for the samei.

Also, mobile applications or SNS applications which sup-
port LBS are denoted as service providersSP . Q and P
retrieves keys fromSP , which are used for access control.
For simplicity, we consider only oneSP here.

We assume an independent semi-honest model for users and
service providers. That is, they all behave independently and
will try to extract useful information from the ciphertexts,
but they will follow the protocol in general and will not
collude with each other. We further assume that every user
communicate with each other via an anonymized network
(e.g., Tor: https://www.torproject.org) or other anonymized
protocol ( [16]) such that the privacy is not compromised
by the underlying network protocol. We assume the origin
of a packet is successfully hidden, which is out of this paper’s
scope (otherwise any attacker can achieve the location based
on the origin of the packet).

B. Location Assumption

For simplicity, we assume the ground surface is a plane,
and every user’s location is mapped to an Euclidean space
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with integer coordinates (with meter as unit). That is, ev-
eryone’s location can be expressed as a tuple of coordinates
representing a point in a grid partition of the space. This does
not affect the generality since there exists a bijection between
spherical locations and Euclidean locations. By approximating
the coordinates in the Euclidean space to the nearest grid point,
we can show that it results in errors of the Euclidean distance
between two locations at most

√
2 meters when the space is

partitioned using grid of side-length1 meter.
The Euclidean distance between two users with loca-

tions x1 = (x11, x12, x13) and x2 = (x21, x22, x23) is

dist(U1,U2) = |x1 − x2| =
√

3
∑

i=1

(x1i − x2i)
2. Given a real

location on the surface of the earth, we need to compute
the surface distance, denoted asSD(Ui,Uj), between these
two points. By assuming that the earth is a sphere with
radius R meters, it is easy to show thatSD(Ui,Uj) =

2 arcsin(
dist(Ui,Uj)

2R ) · R. Then the surface distance can be
quickly computed from the Euclidean distance. To check if
the surface distance satisfies certain conditions, we can convert
it to check if the Euclidean distance satisfying corresponding
conditions. For example,dist(U1,U2) ≤ D is equivalent as
SD(Ui,Uj) ≤ 2R arcsin(D/2R). For simplicity and conve-
nience of presentation, in this paper, we will focus on the
Euclidean distance instead of the surface distance. Noticethat
although we consider only Euclidean space here, our protocol
works for any system where distance is a polynomial of
location pointsx’s, wherex is a vector.

C. Problem Statement

Each user Ui has his location informationxi =
(xi1, xi2, xi3) which determines his current location. He also
has an attribute setSi which determines his identity (e.g., Uni-
versity:I.I.T, Degree:Ph.D, Major:Computer Science). Then, a
querierQi uses his current location information and attribute
set to execute a query (function)f on a publisherPj ’s location
informationxj . According toQi’s location informationxi and
his attribute setSi, he obtains the corresponding query result
f(xi, Si, xj). Note that differentxi andSi leads to different
level of query result. During the whole protocol,Qi or Pj

cannot learn any useful extra information about each other’s
location information.

In this paper, we propose novel protocols such that the
location publisher exerts a fine-grained access control on who
can access what location information. For example, a publisher
could specify the following access control policies: (1) a user
can know which city I am in if s/he is in my friend list; or (2)
a user can check whether the distance between him and me
is less than 100 meters if s/he is my classmate; or (3) a user
can compute the exact distance between us if we both went to
the same university. We generally assume that a userUi has
a set of attributesAi, and that an access control policy of the
publisher is specified by a boolean function (specified as an
access treeT ) on all possible attributes of users.

According to the location information disclosed to the
querier, we define four different levels of queries.

Definition 1. Level 1 Query: When the query ends,Q learns
whetherdist(Q,P) ≤ τ or not if the attributes of the querier
satisfy a certain condition specified by the publisher, where
τ is a threshold value determined byP . The querier knows
nothing else about the location of the publisher.

Definition 2. Level 2 Query: When the query ends,Q learns
whetherdist(Q,P) ≤ τ when the attributes of the querier
satisfy a certain condition specified by the publisher, where
τ is a threshold value determined byQ. The querier knows
nothing else about the location of the publisher.

Definition 3. Level 3 Query: When the query ends,Q learns
thedist(Q,P) if the attributes of the querier satisfy a certain
condition specified by the publisher. The querier knows nothing
else about the location of the publisher.

Definition 4. Level 4 Query: When the query ends,Q learns
the functionF (x) of the locationx of P if the attributes of the
querier satisfy a certain condition specified by the publisher.
Here functionF is defined by the publisher. The querier knows
nothing else about the location of the publisher.

It is easy to show that the leveli query provides better
privacy protection than leveli + 1 query, for i = 1, 2. Level
4 query provides most information in general. In level 4
query, the functionF could be used by the publisher to exert
fine-grained access control on his location information. For
exampleF (x) could return the city of the location, the zip-
code of the location or the exact location information.

IV. BACKGROUND

In our Privacy-preserving Location Query Protocol (PLQP),
various cryptographic concepts are used. We introduce eachof
them in this section.

A. Attribute-Based Encryption (ABE)

As Junget al. discussed in detail in their work [17], in
the Attribute-Based Encryption (ABE) [18], the identity of
a person is viewed as a set of attributes. This enables the
encrypter to specify a boolean function to do access control.
There are two types of ABE system: Goyalet al.’s Key-
Policy Attribute-Based Encryption [19] and Bethencourtet
al.’s Ciphertext-Policy Attribute-Based Encryption [20]. The
KP-ABE specifies the encryption policy in the decryption key,
and the CP-ABE specifies the policy in the ciphertext. Due to
many reasons discussed in [17], we will employ CP-ABE as
a component of access control.

1) Access TreeT : In most of previous ABE works (e.g.,
[19] [20] [21]), encryption policy is described with an access
tree. Each non-leaf node of the tree is a threshold gate
by a threshold valueθ, and each leaf nodex is described
by an attribute. A leaf node is satisfied if a key contains
the corresponding attribute, and a non-leaf threshold gateis
satisfied if at leastθ children are satisfied.

Note that this threshold-gate based access tree is able to
express arbitrary condition, which makes the privacy control
in our protocol flexible and scalable.
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2) Definition: With the access tree defined as above, the
CP-ABE scheme is defined as follows:

Setup → PK,MK. The setup algorithm takes nothing as
input other than the implicit security parameter. It outputs the
public parameterPK and a master keyMK. The master key
belongs to the key issuer and is kept secret.

Encrypt(PK, M , T ) → ET (M). The encryption algorithm
takes as input the public keyPK, a messageM , and an access
treeT . It will encrypt the messageM and returns a ciphertext
CT such that only a user with key satisfying the access tree
T can decrypt it.

KeyGenerate(PK, MK, S) → SK. The Key Generation
algorithm takes as input the public keyPK, the master key
MK and a set of attributesS. It outputs a private keySK
which contains the attributes inS.

Decrypt(PK, SK, ET (M)) → M . The decryption algo-
rithm takes as input the public parameterPK, a private key
SK whose attribute set isS, and a ciphertextCT which
contains an access treeT . It outputs the original messageM
if and only if the setS satisfies the access treeT .

We direct the readers to [20] for detailed construction.

B. Homomorphic Encryption (HE)

Homomorphic Encryption (HE) allows direct addition and
multiplication on ciphertexts while preserving decryptability.
That is, following equations are satisfied (Note that this isonly
an example of a HE, and detailed operations vary for different
HE system).

Enc(m1) · Enc(m2) = Enc(m1 +m2)

Enc(m1)
Enc(m2) = Enc(m1 ·m2)

where Enc(m) stands for the ciphertext ofm.
In general, there are two types of HE: Partially Homo-

morphic Encryption (PHE) and Fully Homomorphic Encryp-
tion (FHE). PHE supports constant number of additions and
multiplications, and FHE supports unlimited additions and
multiplications but it is much less efficient than PHE. As
discussed by Lauteret al. in [22], the decryption time of
FHE system is too high to be used in a real application,
and in most of cases one only needs a few number of
multiplications or additions. Therefore, Pallier’s system, which
is much simpler and thus efficient, is our choice: it involves
only one multiplication for each homomorphic addition and
one exponentiation for each homomorphic multiplication.

1) Definition of Paillier’s Cryptosystem:Paillier’s cryp-
tosystem is composed of three algorithms –KeyGenerate,
Encrypt andDecrypt.

KeyGenerate → EK,DK. An entity randomly chooses
two large prime numbersp andq of same bit length. He then
computesn = pq andλ = (p− 1)(q − 1). Next, he setsg =
(n+ 1) andµ = (λ modn2)−1 modn. Then, the encryption
key isEK = (n, g) and the decryption key isDK = (λ, µ).

Encrypt(EK,m) → E(m, r). The encrypter selects a ran-
dom integerr ∈ Zn and computes the ciphertext

E(m, r) = gm · rn modn2

and publishes it.

Decrypt(E(m, r), DK) → m. The holder ofDK = (λ, µ)
can decrypt the ciphertextE(m, r). He computes the following
to recover the message:

m = L((E(m, r))λ modn2) · µ modn

whereL(a) = (a− 1)/n modn.
The Paillier’s cryptosystem satisfies the following homo-

morphic properties:

E(m1, r1) · E(m2, r2) = E(m1 +m2, r1r2) modn2

E(m1, r1)
m2 = E(m1 ·m2, r

m2

1 ) modn2

Note thatDK can decrypt only the ciphertexts encrypted
with EK which pairs with it. Also, the random numberr in a
ciphertextE(m, r) does not contribute to decryption or other
homomorphic operation. It only prevents the dictionary attack
by randomizing the ciphertext. For sake of simplicity, we use
E(m) instead ofE(m, r) in the remaining paper.

C. Functional Encryption (FE)

Functional Encryption (FE) is a new encryption scheme
recently proposed after the Attribute-Based Encryption (ABE).
To the best of our knowledge, the concept is first proposed
by Bonehet al. in [23]. In the open direction of their work,
they proposed the terminology ‘Functional Encryption’ and
its general concept, and later in 2011, Bonehet al. formally
defined it and discussed its challenge [24]. According to their
study, the FE is defined as follows: FE is an encryption scheme
such that a key holder can learn a specific function of the data
based on the ciphertext, but nothing else about the data. This
is totally different from the traditional encryption scheme in
terms of the differentiated decryption. In traditional encryption
schemes (e.g., PKI, ABE), decryption result of a ciphertextfor
every authorized users is same: the plaintext. In FE, encrypter
can specify a function for each key such that each decryption
result is the corresponding function of the plaintext.

There are a few recent works related to FE ( [25], [26]).
However, they mainly focus on hiding encryption policy from
ordinary users. To the best of our knowledge, there is no formal
construction of FE which satisfies the definition of FE [24].

V. PRELIMINARY DESIGN

In our PLQP, we require that a publisher could specify
several access control structures for all potential location
queriers. Different access trees will allow access to different
level of knowledge about the location information, which
is achieved by using FE in our protocol. However, strictly
speaking, the encryption in our protocol is not a formal FE
because we only support a constant number of functions of
the data, so we refer to it as semi-functional encryption. To
allow a set of possible queries by all users, we first present
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distance computation and comparison algorithms which will
be used to provide four levels of functions over location data
in our semi-functional PLQP.

1) Privacy Preserving Distance Computation:Let x =
(x1, x2, x3) and y = (y1, y2, y3) be a publisherP ’s and
a querierQ’s 3-dimensional location respectively. We use
Algorithm 1 to let Q securely computedist(P ,Q) without
knowingP ’s coordinates or disclosing his own one.

Algorithm 1 Privacy Preserving Distance Computation
1: Q generates a pair of encryption and decryption keys of

Paillier’s cryptosystem:EK = (n, g), DK = (λ, µ). We
assumen is of 1024-bit length.EQ denotes the encryption
done byQ using his encryption keys.

2: Q generates the following ciphertexts and sends them to
P at x.

EQ(1),EQ(

3
∑

i=1

y2i ), {EQ(yi) | i = 1, 2, 3},

3: P , after receiving the ciphertexts, executes the following
homomorphic operations:
{

{EQ(yi)
−2xi} = {EQ(−2xiyi)}, for i = 1, 2, 3

EQ(1)
∑

3

i=1
x2

i = EQ(
∑3

i=1 x
2
i )

4: P computes and sends the following to the querierQ:

EQ(
3

∑

i=1

x
2
i ) · EQ(

3
∑

i=1

y
2
i ) ·

3
∏

i=1

(EQ(−2xiyi))

= EQ(
3

∑

i=1

(xi − yi)
2) = EQ(|x − y|2)

5: Q uses the private keyDK to decrypt theEQ(|x − y|2)
to get the distance.

Note that the locationy is kept secret toP during the whole
protocol, since he does not know the private key; on the other
hand, the locationx is also kept secret sinceQ only achieves
E(|x − y|2). However, the locationx is inferred ifQ runs the
same protocol at different places for four times in Euclidean
space (three times in Euclidean plane). This will be discussed
in detail in Theorem VI.1.

2) Privacy Preserving Distance Comparison:Let x =
(x1, x2, x3) andy = (y1, y2, y3) be publisherP ’s and querier
Q’s 3-dimensional location respectively. We use Algorithm 2
to let Q learn whetherdist(P ,Q) is less than, equal to or
greater than a threshold valueτ , which is determined by the
publisherP .

The reasonδ and δ′ are chosen fromZ2972 andZ21022 is
because otherwise the comparison is not correct due to the
modular operations. This will be further discussed in Section
VI-F.

On the other hand, ifQ wants to determine the threshold
value τ , he can send another ciphertextE(τ2) at the Step 2.
Then,P computesE(τ2)δ · E(1)δ′ = E(δτ2 + δ′) at the Step
4 and proceeds same as Algorithm 2.

Algorithm 2 Privacy Preserving Distance Comparison
1: Q generates encryption and decryption key pair of Pail-

lier’s cryptosystem:EK = (n, g), DK = (λ, µ).
2: Q generates the following ciphertexts and sends them to

the userP with locationx.

EQ(1),EQ(
3

∑

i=1

y2i ), {EQ(−2yi) | i = 1, 2, 3}

3: P , after receiving the ciphertexts, randomly picks two
integersδ ∈ Z2972 , δ

′ ∈ Z21022 and executes the following
homomorphic operations:


























{EQ(−2yi)
δxi = EQ(−2δxiyi) | i = 1, 2, 3}

EQ(
∑3

i=1
y2
i )

δ = EQ(δ(y2
1 + y2

2 + y2
3))

EQ(1)δ
∑

3

i=1
x2

i = EQ(δ
∑

3

i=1
x2
i ))

EQ(1)δ
′

= EQ(δ′)

EQ(δ
∑

3

i=1
x2
i ) · EQ(δ′) = EQ(δ

∑

3

i=1
x2
i + δ′)

4: P computes the followings and sends them back to the
other user aty.

EQ(δ
3

∑

i=1

x
2
i + δ

′) · EQ(δ
3

∑

i=1

y
2
i )

3
∏

i=1

(EQ(−2δxiyi))

= EQ((δ
3

∑

i=1

(xi − yi)
2) + δ

′) = EQ(δ|x − y|2 + δ
′)

EQ(1)δτ
2
+δ′ = EQ(δτ 2 + δ

′)

5: Q uses the private keyDK(λ, µ) to decrypt the cipher-
texts and getsδ|x − y|2 + δ′ and δτ2 + δ′. If, without
modular operations, both of them are less than the modulo
n, we have:

δ|x − y|2 + δ′ < δτ2 + δ′ ⇔ |x − y| < τ

VI. PRIVACY PRESERVINGLOCATION SERVICES

In this section, we propose the construction of Privacy-
preserving Location Query Protocol (PLQP). First of all, we
define a group for CP-ABE.

Let G0 be a multiplicative cyclic group of prime orderm
and g be its generator. The bilinear mape used in CP-ABE
is defined as follows:e : G0 × G0 → GT , whereGT is the
codomain of the mape. The bilinear mape has the following
properties:

1) Bilinearity : for all u, v ∈ G0 anda, b ∈ Zq, e(ua, vb) =
e(u, v)ab

2) Symmetry: for all u, v ∈ G0, e(u, v) = e(v, u)
3) Non-degeneracy: e(g, g) 6= 1

Definition 5. The Decisional Diffie-Hellman (DDH) problem
in an integer group with generatorg is defined as follows:
on input g, ga, gb, gc = gab ∈ Z, wherea, b, c ∈ Z, decide
whetherc = ab or c is a random element.

Definition 6. The Decisional Bilinear Diffie-Hellman (DBDH)
problem in groupG0 of prime orderp with generatorg is
defined as follows: on inputg, ga, gb, gc ∈ G0 and e(g, g)z =
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e(g, g)abc ∈ GT , wherea, b, c ∈ Zq, decide whetherz = abc
or z is a random element.

The security of our construction relies on the assumption
that no probabilistic polynomial-time algorithms can solve
the DDH problem or DBDH problem with non-negligible
advantage. This is a widely made assumption in various
cryptographic works ( [17], [26], [27]), which is reasonable
since discrete logarithm problems in large number fields are
widely considered to be intractable ( [17], [28], [29]).

The reason we introduce CP-ABE here is to exert fine-
grained access control over the location queries. Even if one’s
location satisfies a certain condition, one cannot gain any
information from the query if his identity attributes do not
satisfy the pre-defined encryption policy.

A. Initialize

The service providerSP initializes the system by following
the instructions:

Algorithm 3 Initialize
1: ExecutesSetup (CP-ABE) to generate public and master

key pairs:
{

PK = 〈G0, g, h = gβ, f = g1/β, e(g, g)α〉
MK〈β, gα〉

2: ExecutesKeyGenerate (CP-ABE) for all users within the
system to issue them private keys corresponding to their
attributes.

SK = 〈D = g(α+r)/β, ∀j ∈ S : Dj = grH(j)rj , D′
j = grj 〉

Here we assume secure channels exist between users and
service providersSP such that private keys are securely
delivered to each user.

B. Protocol for Level 4 Query

After the query ends,Qj learnsPi’s exact locationxi.

Algorithm 4 Level 4 Query Protocol
1: A publisherPi creates an access treeTi4 which specifies

the access authority for the level 4 query.
2: When a querierQj sends a level 4 query toPi, Pi encrypts

his location using the CP-ABE algorithmEncrypt:

ETi4
(xi,1), ETi4

(xi,2), ETi4
(xi,3)

3: These are sent toQj , andQj decrypts it with his private
key SK if it satisfies the access treeTi4, and achieves
Pi’s locoation.

C. Protocol for Level 3 Query

After the query ends,Qj learns thedist(Qj,Pi).

Algorithm 5 Level 3 Query Protocol
1: A publisherPi creates an access treeTi3 which specifies

the access authority for the level 3 query.
2: When a querierQj wants to send a level 3 query to

Pi, he initiates the Secure Distance Computation protocol
(Section V-1) by generating encryption and decryption
Paillier key pairEKj = (nj , gj), DKj = (λj , µj).

3: Then, he calculates the following ciphertexts and sends to
Pi:

E(1),E(x2
j1 + x2

j2 + x2
j3), {E(−2xji)}i=1,2,3

4: Pi, after receiving them, calculates the ciphertext below:

E(|xi − xj |2)

5: The ciphertext above is encrypted again with the access
treeTi3 using the CP-ABE algorithmEncrypt, which we
refer to doubly nested ciphertexts:

ETi3
(E(|x1 − x2|2)

6: The doubly nested ciphertext is sent back toQj , and if
Qj ’s private keySK satisfies the access treeTi3, he can
decrypt it and use his Paillier key pair to decrypt the
ciphertext again to achieve|x1 − x2|2. Then, he obtains
the dist(Qj ,Pi).

Theorem VI.1. If Q executes the level 3 query for more than
three times at different places in Euclidean space, level 3 query
is equivalent to level 4 query.

Proof: This is also mentioned in the Section V-2. IfQ
executes the level 3 query for four times at different locations,
he achieves 4 distances:{|xi−y|}i=1,2,3,4, wherexi’s areQ’s 4
different locations andy is P ’s location. These are essentially
four equations with three variablesy1, y2 andy3:

(xi1−y1)
2+(xi2−y2)

2+(xi3−y3)
2 = |xi−y|2 (i = 1, 2, 3, 4)

which can be solved. Therefore,P ’s location y can be com-
puted in this case.

Similarly, it can be proved that ifQ executes the level 3
query for more than two times at different places in Euclidean
plane, level 3 query is equivalent to level 4 query.

D. Protocol for Level 2 Query

After the query ends,Qj learns whetherdist(Qj ,P) is less
than, equal to or greather thanτ , whereτ is a threshold value
determined byQj .

Theorem VI.2. SupposeD is the greatest possible distance in
the location space, ifQ executes the level 2 query forΘ(logD)
times, level 2 query is equivalent to level 3 query.

Proof: SinceQ can control the threshold valueτ , he can
first execute a level 2 query withτ = D. Then, he uses binary
search to execute level 2 queries with differentτ ’s until he
finds theτ such thatτ = |x − y|, wherex andy areQ’s and
P ’s locations respectively. Then, he finds the distance.
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Algorithm 6 Level 2 Query Protocol
1: A publisherPi creates an access treeTi2 which specifies

the access authority for the level 2 query.
2: When a querierQj wants to send a level 2 query to

Pi, he initiates the Secure Distance Comparison protocol
(Section V-2) by picking two large prime numberspj , qj
of the same length, thennj = pjqj , gj = nj + 1,
λj = (pj − 1)(qj − 1) and µj = λ−1

j mod nj, which
form Paillier key pairEKj = (nj , gj), DKj = (λj , µj)
(The subscriptions indicate that these keys are used by
Qj).

3: Then, he calculates the following ciphertexts and sends
them toPi:

E(1),E(x2
j1 + x2

j2 + x2
j3), {E(−2xji)}i=1,2,3,E(τ

2)

4: Pi, after receiving them, picks two random integersδ ∈
Z2970 , δ

′ ∈ Z21022 and calculates the ciphertexts:














E(
3

∑

k=1

x
2
j,k)

δ · E(1)δ
∑

3

k=1
x2

i,k+δ′ ·
3
∏

k=1

E(−2xjk)
δxik

E(τ 2)δ · E(1)δ
′

= E(δτ 2 + δ
′)

wherexi andxj refer toPi’s andQj ’s locations respec-
tively.

5: These ciphertexts are encrypted again with the access tree
Ti1 using the CP-ABE algorithmEncrypt:

ETi1
(E(δ|xi − xj |2 + δ′)), ETi1

(E(δτ2 + δ′))

6: The doubly nested ciphertexts are sent back toQj , and if
Qj ’s private keySK satisfies the access treeTi1, he can
decrypt them and uses his Paillier key pair to decrypt the
ciphertext again to achieveδ|xi − xj |2 + δ′ andδτ2 + δ′.
Then he is able to compare two values to learn whether
dist(Pi,Qi) is less than, equal to or greater thanτ .

E. Protocol for Level 1 Query

After the query ends,Qj learns whetherdist(Qj ,P) is less
than, equal to or greather thanτ , whereτ is a threshold value
determined byPi.

Theorem VI.3. If Q’s distance toP is less thanτ , 1evel 1
query is equivalent to level 4 query afterO(log τ) tries.

Proof: For sake of visualization, we prove the theorem in
Euclidean plane, but the proof also holds in Euclidean space.

1 3 4 5
2

τ

Q
P

Fig. 1. x̂ being inferred by binary search

First draw a circle whose center isP ’s location and the
radius isτ . Then, if Q is inside this circle, his level 1 query

Algorithm 7 Level 1 Query Protocol
1: A publisherPi creates an access treeTi1 which specifies

the access authority for the level 1 query.
2: When a querierQj wants to send a level 1 query to

Pi, he initiates the Secure Distance Comparison protocol
(Section V-2) by picking two large prime numberspj , qj
of the same length, thennj = pjqj , gj = nj + 1,
λj = (pj − 1)(qj − 1) and µj = λ−1

j mod nj , which
form Paillier key pairEKj = (nj , gj), DKj = (λj , µj)
(The subscriptions indicate that these keys are used by
Qj).

3: Then, he calculates the following ciphertexts and sends
them toPi:

E(1),E(x2
j1 + x2

j2 + x2
j3), {E(−2xji)}i=1,2,3

4: Pi, after receiving them, picks two random integersδ ∈
Z2970 , δ

′ ∈ Z21022 and calculates the ciphertexts:

E(δ|xi − xj |2 + δ′),E(δτ2 + δ′)

wherexi and xj refer toPi’s and xj ’s locations respec-
tively.

5: These ciphertexts are encrypted again with the access tree
Ti1 using the CP-ABE algorithmEncrypt:

ETi1
(E(δ|xi − xj |2 + δ′)), ETi1

(E(δτ2 + δ′))

6: The doubly nested ciphertexts are sent back toQj, and if
Qj ’s private keySK satisfies the access treeTi1, he can
decrypt them and use his Paillier key pair to decrypt the
ciphertext again to achieveδ|xi − xj |2 + δ′ andδτ2 + δ′.
Then he is able to compare two values to learn whether
dist(Pi,Qi) is less than, equal to or greater thanτ .

result is ‘<’; if he is outside the circle, the result is ‘>’; if he
is just on the circle, the result is ‘=’.
Q executes level 1 queries at another random placex′ which

is 2τ apart from his current locationx (i.e., |x − x′| = 2τ ).
Since the radius isτ , x′ must be outside the circle. Then, he
uses binary search on the line(x′, x) to find the point̂x such
that |x̂ − y| = τ (i.e., the intersection point with the circle).
Figure 1 illustrates this process, where point with numberi
represents the location where thei-th query is executed, and
the pointQ is his initial location.

The querier repeat the above process by randomly selecting
two more different pointsx′. We then found three points on
the circle. Consequently the locationy is successfully found.
The querier needs at mostlog2(2τ) tries to find a point on the
circle, and three such points are needed to locatey, so y can
be calculated after at most3 log2(2τ) times for level 1 query.

Theorem VI.4. SupposeD is the greatest possible distance
in the location space, ifQ’s distance toP is greater thanτ ,
the expected number of level 1 queries after whichQ achieves
P ’s location isΩ((D/τ)d logD), whered is 2 for Euclidean
plane and 3 for Euclidean space.
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For the simplicity, we only prove for Euclidean plane, but
same proof also holds for Euclidean space.

Proof: Q is outside the circle (the one drawn above), so
if he finds another location inside the circle, he can determine
the location ofP as proved. SinceQ does not know where is
the circle, he can only randomly choose any location in the
location space to execute the level 1 query. The probabilityof
first guess being inside the circle is approximately

(Size of circle / Size of Euclidean plane)≈ (πτ2)/(XY − 1)

where X is the number coordinates inx-axis and Y is
the number of coordinates iny-axis in the Euclidean plane.
The approximation comes from the reason that our location
system is discrete system with integer coordinates, andQ’s
current location will not be chosen. We can further deduce
that at each time, the probability ofi-th guess being inside
the circle is approximately(πτ

2)
XY−i . Therefore, the probability

that the point inside the circle will be found atk-th try
is approximately(1 − πτ2

XY−k )
k−1 · πτ2

XY−k . Then, the ex-
pected number of tries until the first success is approximately
∞
∑

i=1

k(1− πτ2

XY −k )
k−1 · πτ2

XY −k . Then, we have

∞
∑

i=1

k(1− πτ2

XY − k
)k−1 · πτ2

XY − k

>

∞
∑

i=1

k(1− πτ2

XY
)k−1 · πτ

2

XY

=
XY

πτ2
= Θ((D/τ)2)

Therefore, expected number of level 1 queries after which
a point inside the circle is guessed isΩ((D/τ)2). After this
point is found, the point on the circle can be found using
binary search, which leads toΘ(logD). With three this kind
of points, P ’s location can be calculated. Therefore, total
expected number of level 1 queries needed to correctly locate
P ’s location isΩ((D/τ)d logD).

Similarly, it can be proved that the expected total number
in Euclidean space isΩ((D/τ)3 logD).

So far, 4 different levels of query protocols are constructed.
However, note that level 1-3 queries are equivalent to the level
4 query unless some restrictions are applied, which is proved
above. Hence, some restrictions should be applied to protect
user’s location privacy.

According to Theorem VI.1, during the time period when
P ’s location does not change, level 3 query is equivalent to
level 4 query unless level 3 queries are limited to three times
(two times in Euclidean plane) in this period. Thus, theP
can choose to discard the query requests after three times of
queries.

According to Theorem VI.2, in the level 2 query, infor-
mation is leaked when one query returns that distance is
greater thanτ and another one returns that the distance is
less thanτ . So,P can choose to discard the query requests
when the comparison result changes (e.g., from|x − y| < τ
to |x′ − y| > τ ). Although not responding also leaks some

information, this letQ learn only that the distance is between
two pre-calculated two values.

Similar actions can be taken byP in the level 1 query. He
responds to queries until the comparison result changes, and
not responding to queries letQ learn only that the point on the
circle is somewhere between two points, and thus protecting
P ’s location.

F. Restrictions forδ, δ′

As mentioned in Section V-2,δ|x − y|2 + δ′ and δτ2 + δ′

should be less than the modulon, wheren is one of the param-
eters in Paillier’s cryptosystem (Section IV-B1). Otherwise,
due to the modular operations, the two parameters cannot be
compared.

Normally n = pq is a 1024-bit number, which indicates
n >= 21023. In Euclidean plane, the greatest possible distance
in a map of the world is

√
2C, whereC is the circumference

of the earth (approximately 40000km). This value is approx-
imately equal to6 · 107 ≈ 226. Therefore,|x − y|2 ≤ 252,
so it is sufficient to letδ ∈ Z2970 and δ′ ∈ Z21022 . Then,
δ|x − y|2 + δ′ < 21023 < n. In Euclidean space, the greatest
possible distance is the above distance in a map of the
world plus atmosphere height (vector addition). This valueis
approximately equal to the largest distance above (We estimate
the atmosphere height as 32km since 99% of the air is within
it, which is too small when compared with the circumference
of the earth). Therefore, the restrictions toδ, δ′ remain same.

VII. PERFORMANCEEVALUATION

In this section, we evaluate the extra communication and
computation overhead introduced in our Privacy-preserving
Location Query Protocol (PLQP).

Large Number Arithmetic library for smartphone is un-
available currently, so we implemented our protocol in a
computer with only one CPU underclocked to 900MHz, whose
computation ability is similar to a smartphone. We used GMP
library and CP-ABE toolkit [20] to implement the protocol in
Ubuntu 11.04.

Every parameter’s length is same as the construction, and we
randomly picked two locations for a querierQ and a publisher
P . Then, we executed each level query for 1000 times and
measured the average running time for each. Since the purpose
of the evaluation is to evaluate the computation performance,
so we issued a decryption key (of CP-ABE) containing all
attributes, which satisfies any access tree, to the querier.In
addition, it is well studied in previous works ( [17], [20],
[21]) that encryption and decryption time is proportional to
the number of attributes (leaf nodes) in the access tree, so we
fixed the attributes in each access tree to ten in every query
and did not further analyzed its impact on run time.

Table I shows the average run time of each query at the
querier’s and the publisher’s side. We found the run time is
dominated by the encryption and decryption algorithms of
CP-ABE, and the total run time of each query is less than
1.5 seconds. Also, Table II shows that the communication
overhead is less than 10 Kilobytes. Note that we only listed
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TABLE I
COMPUTATION OVERHEAD

Query Level Q’s Run Time (ms) P ’s Run Time (ms)
1 577.49 919.24
2 588.02 909.53
3 492.89 704.85
4 413.05 702.71

TABLE II
COMMUNICATION OVERHEAD

Query Level Q → P (Bytes) P → Q (Bytes)
1 1280 6592
2 1536 6592
3 1280 3296
4 0 3052

the extra overhead in the tables. The total overhead should
include other regular overhead (control messages, ACKs etc.).
In conclusion, the computation and communication overhead
of our protocol is low enough to be used in a real mobile
network.

VIII. C ONCLUSION

In this paper, we proposed a fine-grained Privacy-preserving
Location Query Protocol (PLQP), which successfully solves
the privacy issues in existing LBS applications and provides
various location based queries. The PLQP uses our novel
distance computation and comparison protocol to implement
semi-functional encryption, which supports multi-levelled ac-
cess control, and used CP-ABE as subsidiary encryption
scheme to make access control be more fine-grained. Also,
during the whole protocol, unless intended by the location
publisher, the location information is kept secret to anyone
else. We also conducted experiment evaluation to show that
the performance of our protocol is applicable in a real mobile
network.
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