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Emergence of Equilibria from Individual Strategies
in Online Content Diffusion
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Abstract—Social scientists have observed that human behavior
in society can often be modeled as corresponding to a threshold
type policy. A new behavior would propagate by a procedure
in which an individual adopts the new behavior if the fraction
of his neighbors or friends having adopted the new behavior
exceeds some threshold. In this paper we study the question of
whether the emergence of threshold policies may be modeled
as a result of some rational process which would describe the
behavior of non-cooperative rational members of some social
network. We focus on situations in which individuals take the
decision whether to access or not some content, based on the
number of views that the content has. Our analysis aims at
understanding not only the behavior of individuals, but also
the way in which information about the quality of a given
content can be deduced from view counts when only part of the
viewers that access the content are informed about its quality.
In this paper we present a game formulation for the behavior of
individuals using a meanfield model: the number of individuals
is approximated by a continuum of atomless players and for
which the Wardrop equilibrium is the solution concept. We derive
conditions on the problem’s parameters that result indeed in the
emergence of threshold equilibria policies. But we also identify
some parameters in which other structures are obtained for the
equilibrium behavior of individuals.

Index Terms—User-generated content, Complex Systems,
Video popularity, Game theory, Wardrop equilibria

I. I NTRODUCTION

Online media constitute currently the largest share of Inter-
net traffic. A large part of such traffic is generated by platforms
that deliver user-generated content (UGC). This includes,
among the other ones, YouTube and Vimeo for videos, Flickr
and Instagram for images and all social networking platforms.

Among such services, a prominent role is played by
YouTube. Founded in2005 by Chad Hurley, Steve Chen and
Jawed Karim and acquired in2006 by Google, YouTube scored
in 2011 more than1 trillion views (or, alternatively, an average
of 140 video views for every person on Earth), with more than
3 billion hours of video watched every month and72 hours
of video uploaded every minute by YouTube’s users1.

Of course, not all videos posted on YouTube are equal.
The key aspect is their “popularity”, broadly defined as the
number of views they score (also referred to asviewcount).
This is relevant from a twofold perspective. On the one hand,
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more popular content generates more traffic, so understanding
popularity has a direct impact on caching and replication
strategy that the provider should adopt. On the other one,
popularity has a direct economic impact. Indeed, popularity
or viewcount are often directly related to click-through rates
of linked advertisements, which constitute the basis of the
YouTube’s business model.

Recently, a number of researchers have analysed the evo-
lution of the popularity of online media content [1], [2], [3],
[4], [5], [6], with the aim of developing models for early-stage
prediction of future popularity [7].

Such studies have highlighted a number of phenomena that
are typical of UGC delivery. This includes the fact that a
significant share of content gets basically no views [6], as
well as the fact that popularity may see some bursts, when
content “goes viral” [4]. Also, in [7] the authors demonstrate
that after an initial phase, in which contents gain popularity
through advertisement and other marketing tools, the platform
mechanisms to induce users to access contents (re-ranking
mechanisms) are main drivers of popularity.

In this paper, we address such phenomena, by developing
a model, based on game theoretical concepts and tools, for
understanding how user’s behaviour drives the evolution of
popularity of a given content. The work is based on rational
decision-making assumptions, whereby the users have to de-
cide whether to see a given content or not. This configures as
a game, where users seek to maximize some expected utility
based on their “perception” of the quality of the content2 and
on viewcount. However, users suffer also a cost for accessing
contents of bad quality, i.e., waste of time and possibly
bandwidth, batteries, etc. In particular, in the decision process
the viewcount is used as a noisy estimator of the quality
of a content. Interestingly, this context resembles closely the
situation in the economic domain, where customers of a firm
which are uninformed do infer the quality of products from
the length of the queue they encounter upon requesting firm’s
goods to purchase [8].

Extensive advertising and marketing campaigns can be used
to push the viewcount of a given content up. And in the deci-
sion making process users do not know whether the viewcount
has been “pushed” by such means. Also, the decisions made
by different users influence the viewcount and consequently
the decisions made by other users, a process which suits well
the usage of game theoretical machinery.

Specifically, we describe the conditions for the adoption of

2This may come, e.g., from the name of user who posted the content.
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common behaviors in online content access. This is inspired
by findings in social science [9], [10], [11]: results there show
that emerging behaviours would propagate by a procedure in
which an individual adopts a novel behavior if the fraction
of neighbors or friends having adopted the same behavior
exceeds some threshold. In our context, the threshold would
be expressed in terms of viewcount or related metric.

In the sense of game theory, users of online media repre-
sent non-cooperative rational players connected through some
social tie, e.g., being users of the same UGC platform. Since
we consider systems composed by a very large number of
users, the customary tool to study the user behaviour is that
of Wardrop equilibria [12]. In particular, we have found a
number of conditions for which such equilibria exist and can
be characterized analytically. Explicit conditions were found
for content to stay at zero views or to become so popular that
it is makes sense for all users to access it the sooner the better.

Furthermore, we identify, for the general case, conditions
under which players tend to accrue around a common strategy
depending on initial conditions. This is due to the existence of
a continuum of equilibria: the system will settle at any point
very much depending on initial conditions imposed, for in-
stance, by a set of forerunners which cause significant changes
of the content popularity. Such conditions were identified in
early works such as [13] in other contexts: there, the authors
applied threshold type Nash equilibrium strategies in which
one purchases priority if and only if upon arrival the queue size
is larger than some threshold value. Key motivation in [13] is
predictability and control of purchase priority. What motivates
this work is predictability and control of online content access.

Novel contribution:in this paper, we move away from the
classical analysis of social networks in the spirit of [7], [4],
[5], [1]: instead, we provide a first analysis based on games.
The aim of this paper is to provide a novel perspective where
contents compete to gain popularity and are subject to the
effect of user’s choice. To the best of the authors’ knowledge,
this is the first attempt so far to describe content popularity in
UGC systems using game theoretical tools.

The remainder of the work is organized as follows. In
Sec. II we introduce the system model and the notation
used throughout the paper. Results for the case when plain
viewcount is used to make decisions are presented in Sec. III.
When decisions account alsofor a large increasing trendof
content popularity, i.e., looking for ’hot’ content, the dynamics
of the game becomes different. This case is analysed in
Sec. IV. In Sec. V we analyze the joint effectwhen both
the viewcount and its trend are both relevant to the user.
Finally, in Sec. VI we model the effect of side information
when users have some measure of future content dynamics.
Sec. VII reviews the related work and Sec. VIII concludes the
paper highlighting directions for expanding the current reach
of the work.

II. SYSTEM MODEL

We consider contents made available to a user by means of
YouTube or a similar platform. We denote byτ the lifetime of

(a) “President Obama Sings Sweet Home Chicago”

(b) “Chris Sharma Worlds’ First 5.15”

(c) “Montersino’s Sacher Cake”

(d) “Shakira – Waka-Waka”

(e) “Bruno Mars – Grenade”

(f) “Adele – Rolling in the deep”

Fig. 1: Dynamics of the viewcount for six sample videos: the push
dynamics can be identified with the first part of the dynamics,where
labels identify some actions that are significant for the diffusion of
the video; observe for cases a, b and c how a linear dynamics takes
over in the last part of the dynamics. The labels tagging the first part
of the dynamics mention specific events that identify the diffusion of
the content on specific platforms or channels.

a content, i.e., the time horizon during which the content bears
some interest. In general, such horizon differs depending on
the type of content: it can be typically of the order of weeks
to months for YouTube videos or a few days for news [7].A
possible extension to the case of variable time horizon is the
addressed in Sec. IV.

We denote byX(t) the viewcount attained by a given
content θ at time t seconds after it has been posted, for
0 ≤ t ≤ τ .

As in standard UGC platforms, there are two mechanisms
that coexist andcan jointly increase the viewcount:

• push: the content provider exploits some preferential
channels (including paid advertisement either directly on
the UGC system or via social networking platforms) to
make users aware of the content and to induce them to
access it. We callpush usersthe users that access the
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content as a reaction to the push mechanism.
• pull: users find about the content through standard search

and decide to access it based on the belief that the content
is relevant for them. We call users accessing a content
through the pull mechanismpull users.

In practice, many YouTube videos are subject to the push
and the pull mechanisms described above such as the examples
that we reported in Fig. 1. For instance, Fig. 1a, shows the
dynamics of a popular video with viewcountX ≥ 675000.
The YouTube statistics associated with the video describe
explicitly a series of events happening in the first part of the
dynamics ofX . For instance, the event B that appears around
02/12/2012, is precisely the event‘‘First embedded

on: plus.google.com’’ which indeed configures as a
push towards a social network platform. After the initial push,
such events vanish, and the rest of the dynamics appears
ascribed mostly to the pull mechanism defined above, with
a linear increase in the viewcount.

Also, some of the reported videos are representative of a
specific class of online contents, which are those we will be
dealing with in the rest of the paper. We can refer to those as
the contents that comply to theexponential-linearmodel, for
the sake of brevity. In particular, many such contents appear
to obey to the following dynamics: after an initial exponential
growth, the increase of the viewcount becomes linear. The way
to interpret such a behavior can be traced to the notion of push
and pull mechanisms described above: the exponential growth
corresponds to actions through which the source distributes
the content within a basin of target push viewers. When such
basin is finite and small with respect to the content diffusion
dynamics, the viewcount dynamics experiences a saturation
effect which takes over after an initial phase. However, at
that stage, the access to the content is due to pull users
that come across the content browsing online: they do so at
random from a very large basin, so that the access rate, i.e.,
the viewcount increase rate, is linear. These combined effects
are visible in the case of the first two videos, i.e. Fig 1a and
Fig 1b. In the case of the first video, the saturation effect is
well visible, whereas in the case of the second one the linear
increase following the saturation is dominating. The example
in Fig 1c is a case where all the dynamics is linear with
good approximation: as it will be clear in the following, in the
exponential-linear model this case is represented when either
the basin of push users is large or when the rate at which
contents are pushed is small.

Remark 1:Not all videos will diffuse according to the
proposed exponential-linear model. For instance, there exist
cases when the initial viewcount dynamics displays a charac-
teristic sigmoid shape. We reported in Fig 1d,e,f the viewcount
dynamics for three popular music videos: in those cases the
dynamics resembles the logistic curve associated to the spread
of epidemics. We can ascribe such similarity to the presence
of a positive feedback in the push mechanism, e.g., those who
access the content have some mean to recommend the content
for others to access it, through targeted recommendation or
similar mechanism. When a social network is present, this

X(t, θ)

tβ(θ) τ
τ − tβ(θ)

β

Fig. 2: The reward or the cost of contentθ for a tagged user is
represented by the time during which the content can be accessed,
i.e., when viewcount is larger than thresholdβ.

may happen due to the push of the content into the neighbor-
hood of those who view the content. A similar and perhaps
more powerful feedback effect can happen between different
channels on the same platform, e.g., YouTube channels, and
across different platforms through the recommendation list that
is presented to the platform users.
This also qualifies the type of exponential-linear dynamicsthat
we consider as those for which this type of feedback does not
play a significant role. In particular, in the case of Fig 1a,
the content is of interest at the national scale in the US, and
the viewers are likely driven to the content by general search
criteria (e.g., typing in a search engine). Also, in the case
of Fig 1c, the viewers are likely those who browse for some
specific recipe, whereas in the case of Fig 1b viewers are
interested in a niche sport, where the event is known within
the reference community. In all such cases we see that the
linear part of the dynamics takes over and becomes dominant.

Game model

In our model, we are interested in the uptake of the pull
users. Pull users interested in the given content do not knowin
advance its quality. They may discover it during interval[0, τ ]
at random. Their estimation of the interest/potential quality is
based on the viewcountX . In the simplest case, contents with
higher viewcount are more likely to be accessed.

We define byXps(t) the number of push users accessing
the content up to timet as a reaction to the push mechanism
and, analogously, byXpu(t) the number of those accessing it
through the pull mechanism. Clearly,X(t) = Xps(t)+Xpu(t).

Users have beliefs about the quality of the content. We
denote byπG the belief that a given content is good (i.e.,
of interest or anyway worth accessing) and, conversely, by
πB = 1 − πG the belief that the content is bad. We denote
by π = (πG, πB) the corresponding distribution. Stating
πG = 0.75 means that a user believes that every4 similar
contents she would get3 good ones and1 bad one.

The content access configures as a game where we define
players, strategiesand utilities. Players: the playersare pull
users: based on their beliefπ, they may access the contentθ

or not.
Strategies:they accessθ when the viewcount is above a
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certain threshold, i.e.,X(t) ≥ β ≥ 0.3 Hence, thestrategyfor
a certain user isthe viewcount thresholdβ ≥ 0. Of course,
all other players also adopt their own strategy with respectto
θ and we denoteα the vector of strategies of all remaining
users:α is a vector of viewcount thresholds for all other users.

Utilities: users face either acostC or arewardR for playing
strategyβ: the cost and the reward is the fraction of lifetime
when the content is in the viewcount range, i.e, when they are
willing to access it. The rationale to define this cost/reward is
the following. Let a good content be worth one unit reward,
and a bad content worth a unit cost. The user may hit several
similar contents at random over time. If they are good, the
fraction of those actually accessed will be proportional to1−
tβ
τ

, where we definetβ = min{t |β = X(t)}, i.e., tβ is the
smallest instant when the threshold is achieved. That also is
going to be the long term reward, or the cost, for accessing
similar online contents. Formally,

R(α, β,G) = (τ − tβ(G))+, C(α, β, B) = (τ − tβ(B))+

Finally, based on their beliefπ, players expect a utility when
playingβ that amounts to

U(α, β) = πGR(α, β,G) − πBC(α, β, B)

According to the above expression, the cost and the reward
are a function of the interval when the content is above the
threshold, i.e., when the users can benefit from it, and depends
on the other players strategy. Furthermore, the action taken by
players depends on their belief on the quality of the content.

In the following we will investigatesymmetric equilibria,
i.e., equilibria for which all users playα ≥ 0. We can hence
adopt a simplified scalar notation and definetα = min{t|α =
X(t)}.

Let a tagged user playingβ when all the remaining users
useα: we make the assumption that Wardrop conditions holds.
Namely, for a large number of users any unilateral deviation
of a single user does not affect the utilities of other users.
I.e., deviations due to a single user action are negligible.
Wardrop equilibria are much easier to compute than the Nash
equilibrium; however, Wardrop is a good approximation for
the latter, as in [14].4.

The tagged user expects to gain a certain rewardR(α, β,G),
for a good content and expects to suffer a costC(α, β,B)
when the content is bad: under which conditionsα is the
best response to itself, namelyβ∗(α)? We answer to this
question in the next sections under different knowledge of the
viewcount dynamics available to users.

Before we introduce our analysis, we recall that the utility
function has the following expression forβ ≥ βτ,B

U(α, β) =

{

0 if β ≥ βτ,G

πG(τ − tβ(G)) if βτ,B ≤ β ≤ βτ,G

3We consider the reference case when players select based on the viewcount
only for the sake of explanation. We will extend the model to other interesting
cases in next sections.

4A traditional application of Wardrop equilibria is road traffic, where users
tend to settle to routes minimizing their delay: the effect of a route change
of an individual driver belonging to a flow is negligible system-wide to the
utilities of other users.

whereβτ,θ is solution of the following equation

tβτ
(θ) = τ (1)

We observe that the utility functionU is nonincreasing for
β ≥ βτ,B. However the best responseβ∗(α) can be found only
in the interval[0, βτ,B]. As a result we restrict our analysis
to case whenβ ≤ βτ,B in which the utility function can be
expressed as

U(α, β) = πG(τ − tβ(G))− πB(τ − tβ(B))

III. PLAIN V IEWCOUNT

The basic model that we introduce in this section is based
on the assumption that pullusers rely on the number of hits
of the contents to judge if it is worth to access it or not, i.e.,
they judge based on how many users accessed it. Thus, they
play based on the dynamics. We hence specialize our analysis
to two cases.

A. Linear case

First, we examine the case when the process of diffusion
of contents is linear. This is the case when the time scale of
the content diffusion is very large compared to the pool of
potential users.A mechanism that that is able generate such
a dynamics is the combined effect of an advertisement which
is broadcasted to a very large pool of viewers, e.g., covering
newspapers or other general audience media, and people so
made aware of the existence of the content who decide to
access the content with some random delay thereafter.

Thus, we letXps(t, θ) = λpst·1(t) where1(t) is the unitary
step function, andXpu(t, θ) = λpu(t− tα) · 1(t− tα)

5.
Observe that in this caseλps = λps(θ), whereasλpu is

independent ofθ. In fact, we assume pull users judge based
on viewcount only [8]. However, we assume thatλps(G) ≥
λps(B).

Lemma 1: In the linear case, under the assumption
λpu(G) ≥ λpu(B), it holds

i. if πG

λps(G) ≥
πB

λps(B) , thenβ∗(α) = 0.
ii. if πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
≥ πB

λps(B)+λpu
, then

β∗(α) = α

iii. if πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
< πB

λps(B)+λpu
, then

β∗(α) = βτ,B

Proof: We need to distinguish two cases, namelyα ≥ β

andα ≤ β, determine the best response for each case, and
then by comparison choose the best responseβ∗ = β∗(α).
The expression for the utility in the two cases follows.

If α ≥ β, thenX(t, θ) = Xps(t, θ) for 0 ≤ t ≤ tβ . Thus,
we can write simply

tα =
α

λps(θ)
, tβ =

β

λps(θ)

and the expression for the utility

U(α, β) = τ(πG − πB)− β
( πG

λps(G)
−

πB

λps(B)

)

(2)

5In a single source diffusion model, for instance,X = N(1−exp(−λt)) =
Nλt+ o(t)
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If α ≤ β, then X(t, θ) = Xps(t, θ) for 0 ≤ t ≤ tα and
X(t, θ) = Xps(t, θ) +Xpu(t, θ) for tα ≤ t ≤ tβ. In this case,

tα =
α

λpu(θ)
, tβ =

β − α

λps(θ) + λpu

+ tα

and in turn

U(α, β) = τ(πG − πB)− α
( πG

λps(G)
−

πB

λps(B)

)

−(β − α)
( πG

λps(θ) + λpu

−
πB

λps(θ) + λpu

)

(3)

Now, we can distinguish the three statements in the claim:
i. πG

λps(G) ≥
πB

λps(B) : in the first case, due to linearity,β = 0
maximizes the utility; in the second case, we observe that
indeed it must holdπG ≥ πB, and then

πGλps(B)− πBλps(G) ≥ 0 ≥ λpu(πB − πG)

so that πG

λps(G)+λpu
≥ πB

λps(B)+λpu
: in turn the utility function

is maximized again ifβ = 0. Hence, it holdsβ∗(α) = 0.
ii. In the first case, it is optimal to maximizeβ, which brings

β = α. In the second case, in turn it is optimal to minimize
β, so that againβ = α. Hence,β∗(α) = α.

iii. In the first case, the best response is the same as in ii. In
the second case, instead, it is optimal to maximizeβ, so that
againβ = βτ,B. However, the last term of (3) is positive and
β = βτ,B maximizes it. Also, by comparison with (2), indeed
β∗(α) = βτ,B in this case.

The above results provide a characterization of the possible
symmetric Wardrop equilibria of the system.

Theorem 1: i. if πG

λps(G) ≥
πB

λps(B) , then0 is a symmetric
Wardrop equilibrium

ii. if πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
≥ πB

λps(B)+λpu
,then

all 0 ≤ β ≤ βτ,B are symmetric Wardrop equilibria
iii. if πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
< πB

λps(B)+λpu
, then

βτ,B is a symmetric Wardrop equilibrium
It is possible to interpret the above result as follows:πG

λps(G)

represents the time pace at which push users are believed to
access a good content. SimilarlyπB

λps(B) represents the time
pace at which push users are believed to access a bad content.
Thus, condition i. suggests that it is always convenient to
anticipate the access to the content. In case ii., the situation is
dictated by the uptake of pull users, because they increase the
viewcount thus reinforcing the believed viewcount pace of a
good content against that of a bad content. Finally, in case iii.
there is no incentive in accessing the content.

B. Exponential case: fixed time horizon

Let us consider the content dissemination process operated
by a content provider using a finite set of potential target
users. After the content is posted by the provider directly to
users, it will be transmitted to more and more users by using
some preferential channels. In this case, we need to model the
push dynamics accounting for the sizeN of the pool of push
users, i.e., we assume that the content provider disseminates
the content according to

Ẋps(t, θ) = λps(θ)(N −Xps(t, θ)),

so that

Xps(t, θ) = N(1− e−λps(θ)t) for t ≥ 0 (4)

We reported in Fig. 3 the shape of the utility function under
the exponential casefor a fixed time horizon.As it can be
observed in case a), for smaller values ofα, i.e, α = 400 a
low value of the beliefπG causes the access to be delayed till
time τ , whereas for increasing values ofπG we observe first
a local maximum atα (πg = 0.75), and finally the strategy
β = 0 takes over corresponding to very large values ofπG.
Indeed, such a behavior of the utility function resembles – for
a fixedN – what we observed in the linear case. However, at a
closer look, namely in Fig. 3c) we understand that the situation
is more elaborate: in particular, we know that number of push
usersN impacts the speed at which the viewcount increases.
As such, a smallN does notpermit to pass the thresholdα,
whereas a very large oneincentivizesearly access: recall that
βmax := βτ,B means access at timet = 0. In between, the
presence of a maximum predicts, as in the linear case, the
existence of best responses that lie in the interior of[0, βmax].
This intuitive numerical insight is confirmed by the theoretical
results that we detail in the following.

We distinguish two cases, namelyα < β andβ ≤ α.
If β ≤ α, we have

tβ(θ) = −
1

λps(θ)
log

(

1−
β

N

)

, tα(θ) = −
1

λps(θ)
log

(

1−
α

N

)

Hence the utility becomes

U(α, β) = (πG − πB)τ + log
(

1−
β

N

)( πG

λps(G)
−

πB

λps(B)

)

Let β∗

1(α) (resp.β∗

2 (α)) be the best response toα in [0, α]
(resp.[α, βmax])

Lemma 2: In the exponential case, under the assumption
λps(G) > λps(B), it holds forβ ≤ α

• If πG

πB
<

λps(G)
λps(B) thenβ∗

1 (α) = α

• If πG

πB
>

λps(G)
λps(B) thenβ∗

1 (α) = 0

• If πG

πB
=

λps(G)
λps(B) then for everyβ∗

1 ∈ [0, α] is optimal

Proof: The proof is similar to the one developed in the
linear case forβ ≤ α.

Now, we study the second case:α ≤ β. If tα ≤ t ≤ tβ ,

X(t, θ) = N(1− exp(−λps(θ)t) + λpu(t− tα) (5)

for which we obtain

tβ = λps(θ)
(

W
(λps(θ)

λpu

N
e

λps(θ)

λpu
N(1− β

N
)

(

1− α
N

)

)

− log
(e

λps(θ)

λpu
N
(

1− β
N

)

(

1− α
N

)

))

(6)

whereW (·) is the Lambert function [15]. We can obtain the

derivative of the above expression by lettingξ(β) = e
ζ(θ)(1−

β
N

)
(

1− α
N

)
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(a) Caseα = 400
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(b) Caseα = 700

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Expo. push: λ
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ps
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Fig. 3: The utility function forN = 1000, for τ = 10 days,λps(G) = 10−1 views/day,λps(B) = λps(G)/10. a)α = 400 views, b)α = 700
views. Increasing values of the beliefπG determine different shapes for the utility function. c) Increasing values ofN = 700, 1000, 50000
for α = 700. All graphs forλpu = 1.5Nλps(G).

andζ(θ) = λps(θ)
λpu

N

d

dβ
tβ =

1

λps(θ)

d

dβ
W (ζ(θ)ξ(β, θ)) − log(ξ(β))

=
1

λpu

·
1

1 +W (ζ(θ)ξ(β, θ))

After some cumbersome algebra, we derive
Lemma 3: In the exponential case, under the assumptions

λps(G) > λps(B) andλps(G)N ≤ λpu, for α ≤ β it holds

• If πG ≤ πB thenβ∗

2(α) = βτ,B

• If 1+W (ζ(G)ξ(α,G))
1+W (ζ(B)ξ(α,B)) ≥ πG

πB
for all β ∈ [α, βτ,B] then

β∗

2(α) = α

• If 1+W (ζ(G)ξ(βτ ,G))
1+W (ζ(B)ξ(βtau,B)) ≤ πG

πB
for all β ∈ [α, βτ (B)] then

β∗

2(α) = βτ,B

• otherwiseβ∗

2(α) is the solution of the following equation

1 +W (ζ(G)ξ(β∗

2 (α), G))

1 +W (ζ(B)ξ(β∗

2 (α), B))
=

πG

πB

Proof: The derivative of the utility functionU is

U ′(α, β) =
1

λpu

( πB

W (ζ(G)ξ(β,B))
−

πB

W (ζ(G)ξ(β,G))

)

(7)
Sinceξ(β,G) > ξ(β,B) andζ(G) > ζ(B) then it is easy to
check under conditionπG ≤ πB thatU ′(α, β) > 0. Hence the
utility function attains a unique maximum atβτ,B.

In order to complete the proof, it is sufficient to show that
the functionU is either non-increasing, or there is someβ̄
such thatU is non-decreasing forβ < β̄ and non-increasing
for β > β̄.

Assume that there exists āβ such thatU ′(α, β̄) ≤ 0. From
(7), it is sufficient to show that

U ′(α, β) ≤ 0 for all β > β̄

We can show the above propriety by lettinḡW (β) =

1+W (ζ(G)ξ(β,G))
1+W (ζ(B)ξ(β,B)) and it turns out that

∂W̄ (β)

∂β
=

1

(1 +W (ζ(B)ξ(β,B)))2
(ζ(B)W (ζ(B)ξ(β,B))(1 +W (ζ(G)ξ(β,G)))

1 +W (ζ(B)ξ(β,B))

−
ζ(G)W (ζ(G)ξ(β,G))(1 +W (ζ(B)ξ(β,B)))

1 +W (ζ(G)ξ(β,G))

)

To show ∂W̄ (β)
∂β

≤ 0, we impose the inequality

ζ(B)W (ζ(B)ξ(β,B))

(1 +W (ζ(B)ξ(β,B)))2
≤

ζ(G)W (ζ(G)ξ(β,B))

(1 +W (ζ(G)ξ(β,G)))2
(8)

We can obtain the above inequality under assumption
λps(G)N ≤ λpu by letting

f(y) =
yW (y e

y(1−
β
N

)

(1− α
N

)

(1 +W (y e
y(1−

β
N

)

1− α
N

))2

Hence the derivative off can be expressed as

∂f

∂y
= w(ȳ)

w2(ȳ) + w(ȳ)(1 − y(1− β
N
)) + 2 + y(1− β

N
)

(1 + w(ȳ)2
(9)

whereȳ = y e
y(1−

β
N

)

(1− α
N

) . In fact it can be showed thaṫf is positive

for y(1− β
N
) ≤ 1 i.e., λps(G)N ≤ λpu.

Overall, the above cases are summarized in the following
theorem

Theorem 2:Let λps(G) > λps(B) and λps(G)N ≤ λpu,
then in the exponential case

i) If πG ≤ πB thenβτ,B is a symmetric Wardrop equilib-
rium

ii) If πG > πB then the following cases hold

a) If πG

πB
<

λps(G)
λps(B) and 1+W (ζ(G)ξ(α,G))

W (ζ(B)ξ(α,B)) ≥ πG

πB
for all

β ∈ [α, βτ,B] then all0 < β ≤ βτ,B are symmetric
Wardrop equilibria
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b) If πG

πB
<

λps(G)
λps(B) and 1+W (ζ(G)ξ(βτ ,G))

1+W (ζ(B)ξ(βτ ,B)) ≤ πG

πB
for

all β ∈ [α, βτ,B] thenβτ,B is a symmetric Wardrop
equilibrium

c) If πG

πB
<

λps(G)
λps(B) and there exists āβ is the solution

of the following equation

1 +W (ζ(G)ξ(β̄, G))

1 +W (ζ(B)ξ(β̄, B))
=

πG

πB

then β̄ is a symmetric Wardrop equilibrium

iii) If πG

πB
>

λps(G)
λps(B) , then the following cases hold

a) if 1+W (ζ(G)ξ(α,G))
1+W (ζ(B)ξ(α,B)) ≥ πG

πB
for all β ∈ [α, βτ,B] then

0 is a symmetric Wardrop equilibrium
b) if 1+W (ζ(G)ξ(α,G))

1+W (ζ(B)ξ(α,B)) ≤ πG

πB
for all β ∈ [α, βτ,B], then

there exists a symmetric Wardrop equilibrium which
is given by






0 if τπB < πGtβτ,B
(G)

βτ,B if τπB > πGtβτ,B
(G)

β∗ ∈ {0, βτ,B} if τπB = πGtβτ,B
(G)

(10)

Theorem. 2 displays a structure of the best response that
is similar to the result obtained for the linear case, but we
should highlight some differences. First, the additional request
λps(G)N ≤ λpu is excluding the case when the effect of the
pull mechanism is negligible compared to push mechanism.
This means that we are restricting to the case when the
aggregated maximum rate at which the viewcount can increase
due to the push mechanism is smaller than the increase that
is generated once the viewcount is above threshold for pull
users. Indeed, this is the interesting case when the content
provider’s aim is to attract a large basin of pull users usinga
target limited audience of push users.

Second, we observe that the term πθ

λps(θ)+λpu
that was

present in the linear case is now replaced by a term involving
the Lambert functionW (·) [15]: this is due to the combined
effect of the exponential growth and the linear growth above
the threshold, accounting for the saturation of the basin of
push users. In the case whenN is very large orλps is very
small, the term collapses to the condition expressed in the
linear case.

IV. VARIABLE TIME HORIZON

In this section, we are interested in the case where the time
horizonduring which the content is accessed by pull users is
not fixed. But, it is determined by the popularity of the content
and by the quality perceived by users. In particular, when the
popularity of a content is subject to saturation, we can model a
vanishingẊ to encode the condition when a content which is
present online for a long time becomes stale. Conversely, fresh
uptaking contents will experience large values ofẊ and will
be preferred. This case fits well specific types of contents such
as news or pop songs, for which thetrend of the viewcount
increase may be the main trigger for the users’ interest in some
content. Pull users still adopt a threshold strategy and browse
the content if

Ẋ(t, θ) ≥ γth (11)

Let us consider the exponential push case introduced in the
previous section. Condition (11) determines a variable horizon
to access contentθ:

τ(α, θ) = Ẋ−1(γth)

Because the time horizonτ = ∞ for γth ≤ λpu, we restrict
our analysis to the case whenγth > λpu.

Again, we are interested to compute the utility function
for a tagged user given a certain common threshold strategy
α played by other users; the objective is to compute the
best responseβ for the tagged user as done before. Let
Xth(θ) = N − γth

λps(θ)
, τ0(θ) = 1

λps(θ)
log

(λps(θ)N
γth

)

and

τ1(θ) =
1

λps(θ)
log

( λps(θ)N
γth−λpu

)

.
Observe that the interval of time when pull users will access

the content becomes now[τ0(θ) τ1(θ)]: the duration of such
interval corresponds to the useful lifetime of the content as
dictated by the interest of the users based on (11) and by the
content type.

We distinguish again two intervals, namely0 ≤ β ≤ α and
α ≤ β ≤ τ , and denoteβ∗

1 andβ∗

2 the best response in those
intervals, respectively. However, we need to account also for
(11) and to detail the utility accordingly.

It follows that if β ≥ α, then

U(α, β) = πG

(

τ1(G) − tβ(G)
)+

− πB

(

τ1(B)− tβ(B)
)+

If α > Xth(G) andβ ≤ α

U(α, β) = πG

(

τ0(G)− tβ(G)
)+

+ πG

(

τ1(G)− tα(G)
)+

−πB

(

τ0(B)− tβ(B)
)+

− πB

(

τ1(B)− tα(B)
)+

If Xth(B) ≤ α ≤ Xth(G) andβ ≤ α, then

U(α, β) = πG

(

τ1(G)− tβ(G)
)

−πB

(

τ0(B)− tβ(B)
)+

− πB

(

τ1(B)− tα(B)
)+

If Xth(B) ≥ α andβ ≤ α, then

U(α, β) = πG

(

τ1(G)− tβ(G)
)

− πB

(

τ1(B)− tα(B)
)

With a similar analysis as that employed in the proof of
Thm.3, we can write:

Theorem 3:In the exponential case, under the assumptions
λps(G) > λps(B) andλps(G)N ≤ λpu, it holds

• If πG ≤ πB thenβ is a symmetric Wardrop equilibrium
whereβ = βτ (B) is solution oftβ(B) = τ

• If πG > πB, πG

πB
<

λps(G)
λps(B) and 1+W (ζ(G)ξ(α,G))

1+W (ζ(B)ξ(α,B)) ≥ πG

πB

for all β ∈ [α, βτ0,B ] then all values in the interval[0, β̃]
are symmetric Wardrop equilibria.

• If πG > πB , πG

πB
<

λps(G)
λps(B) and 1+W (ζ(G)ξ(βτ ,G))

1+W (ζ(B)ξ(βτ ,B)) ≤ πG

πB

for all β ∈ [α, βτ0,B (B)] then β̃ is a symmetric Wardrop
equilibrium.
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Fig. 4: The utility function forN = 1000, for τ = 10 days,λps(G) = 10−1 views/day,λps(B) = λps(G)/10. a) Detail of the discontinuities
of U(α, β) for γ = 0.01, 0.1, 1, whereα = 0.18 b) Extremal type of best response forα = 0.029, γ = 1.5 and under increasing values of
the beliefπG. c) Same as b) but forγ = 0.3. Discontinuity inα corresponds to local maxima forπG = 0.25, 0.50.

• If πG > πB , πG

πB
<

λps(G)
λps(B) and there existsβs solution

of the following equation

1 +W (ζ(G)ξ(βs, G))

1 +W (ζ(B)ξ(βs, B))
=

πG

πB

thenβs is a symmetric Wardrop equilibria.
• If πG

πB
>

λps(G)
λps(B) and and1+W (ζ(G)ξ(α,G))

1+W (ζ(B)ξ(α,B)) ≥ πG

πB
for all

β ∈ [α, βτ0,B ] then0 is a symmetric Wardrop equilibrium.
• If πG

πB
>

λps(G)
λps(B) and and1+W (ζ(G)ξ(α,G))

1+W (ζ(B)ξ(α,B)) ≤ πG

πB
for all

β ∈ [α, βτ0,B ] then there exists a symmetric Wardrop
equilibrium which is given by







0 if τπB < πGtβτ0,B

βτ (B) if τπB > πGtβτ0,B

β∗ ∈ {0, βτ0(B)} if τπB = πGtβτ0,B

(12)

The overall result in Thm.3 shows a structure that is close
to that obtained in Thm. 2. We can conclude that the presence
of a selective preference expressed in terms of the viewcount
trend does not affect the structure of the Wardrop equilibria.
In fact, they are of the kind determined before in the case of
a fixed length interval: either extremal ones or a continuum of
such restpoints. It is interesting to notice that this is following
irrespective of the fact that the utility function is linearas a
function of the ”viewing time”, i.e., the time that is usefulfor
the viewers, but, pull users’ preferences depend on a non-linear
function of the threshold type.

V. COMBINED EFFECT OFTREND AND V IEWCOUNT

In general, contents that are present online since a long
time display different popularity than contents which lastonly
a short time [7]. As we noticed in the previous section,
when popularity saturation occurs,̇X vanishes for larget.
If users choose among contents with different trend and
different viewcount, they would naturally choose a content
with large viewcount and large increasing trend. To this respect
y(t) = Ẋ(t)X(t) encodes the condition when the pull user
still values the viewcount, but, she favors a large increasing
trend given two contents with the same viewcount.

Symmetric equilibria can be determined when in the system
all users adopt a strategy

α := y(tα), 0 ≤ tα ≤ τ

and again we determine the best response for a user deviating
usingβ := y(tβ) as a reply, where0 ≤ tβ ≤ τ .

It is easy to see that in the linear case, the model developed
in the previous section applies as long as one replaces the
dynamics with the one below

Xps(t, θ) = λ2
ps(θ)t+λps(θ), Xpu = λ2

pu(t− tα) ·1(t− tα)

so that all the results can be specialized accordingly replacing
λps and λpu with λ2

ps and λ2
pu wherever they appear. The

intuition is that when the regime of content diffusion is linear,
i.e., when a large number of push users exists, the trend
of popularity has the only effect to reinforce the inequality
λps(B) 6= λps(G). We then move to a more interesting case.

A. Exponential push case

In the exponential case, the dynamics again is the same
captured by (4), (5). We can specialize the analysis to the two
cases as done before. Ifα ≥ β, y(tβ) = β implies that

β = λps(θ)N
2(1 − e−λps(θ)tβ )e−λps(θ)tβ

where the solution is such thattβ = − 1
λ(θ)f(β, θ) where we

let f(β, θ) := log
(

1
2

(

1 +
√

1− 4β
λps(θ)N2

))

.

U(α, β) = (πG−πB)τ+
( πG

λps(G)
f(β,G)−

πB

λps(B)
f(β,B)

)

After observing thatf(0, θ) = 0 andf(β,G) ≤ f(β,B) ≤ 0,
again we obtain two extremal cases: whenπG

λps(G) ≥ πB

λps(B)

thenU(α, β) − (πG − πB)τ ≤ 0 so thatβ = 0 maximizes
the utility. In the opposite case, namely,πG

λps(G) ≤ πB

λps(B) ,
U(α, β)− (πG − πB)τ ≥ 0, so thatβ = α does.

If α ≤ β, the condition for

β = X(t)
(

λps(θ)Ne−λps(θ) + λpu

)

gives: tβ = tα(θ)−
N

λpu

[

1−
W (f(β,B)ξ(B)e−ξ(B))

ξ(B)e−2ξ(B)

]

8



0 5 10
−2000

−1000

0

1000

2000

λ
pu

β 1(λ
pu

)

Fig. 5: The shape of functionβ1(λpu) for increasing values ofλpu:
the vertical asymptote corresponds to the valueλs

pu.

where we used the definition ofWeW = x and we stressed
the dependence oftα on θ. It is important to notice that in this
case,tβ is not continuous, so that in correspondence oftα(G)
andtα(B) the utility function has possibly two discontinuities.
We reported in Fig. 4(a) the shape of the utility function for
increasing values ofγ = 0.01, 0.1, 1 λpu = γNλps(G). For
larger values ofγ the effect of discontinuities becomes negli-
gible with respect to the shape of the utility function (indeed
we are looking for the best response, i.e., the maximum of
U(α, β)).

In particular, we observe in Fig. 4(b) that for the choice of
parameters there, i.e.,γ = 1.5, the shape of the utility function
leads again to the customary extremal type of best response
that we observed in the linear case. That is, access at time
t = 0, i.e.,β = βmax for largeπG and access at timetβ = τ ,
i.e., β = 0 for smaller values ofπG. However, forγ = 0.3,
see Fig. 4(c), we find Wardrop equilibria (β∗(α) = α) in the
interior of [0, βmax]. Further numerical explorationconfirmed
that the equilibria form an interval. Thus, again, we find that
there exist conditions (in this case, smallerλpu) when the
system has a continuum of equilibria as in previous cases.

VI. U SERS WITH SIDE INFORMATION

In the previous section we have considered the product of
the trend and magnitude of the viewcount as a metric: as
seen there, the structure of the equilibria that we can expect
resembles closely what we found in the previous cases: either
extremal Wardrop equilibria or a continuum of restpoints. We
want to describe the case when potential viewers may be
provided additional information on the upcoming popularity
of a certain content, e.g., relying on some predictors or some
apriori information they have. They judge whether to access
or not a given content based on the product of the popularity
X and the popularity trenḋX. But, they only know how such
metric is going to accumulate over time, i.e., the metric fora
user that approaches the content at timet is

y(t) =

∫ τ

t

X(u)Ẋ(u)du =
1

2
(X2(τ) −X2(t))

This metric can be used as a simple benchmark case: it
contains information on the future dynamics ofX(θ), and it is
defined by the current and the final values of the viewcount.

However, the amount of such information in general is not
sufficient at timet to state the type of the content. Of course,
more sophisticated metrics are possible. Nevertheless, the one
at hand will do for the purpose of showing that by making the
potential viewers of a content aware of some side information,
the system may experience a deep change in the structure of
the equilibria.

Let all users adopt strategy

α := y(tα), 0 ≤ tα ≤ τ

and in the same way as done before we want to determine the
best response for a user adoptingβ := y(tβ) as a reply, where
0 ≤ tβ ≤ τ .

In the caseβ ≥ α, we recall that the dynamics is

X(t, θ) = α+ λ(θ)(t − tα)

whereλ(θ) := (λpu+λps(θ)) for the sake of notation, so that

α+ λ(θ)(tβ − tα) =
√

X2(τ, θ)− 2β

which solves fortβ =
1

λ(θ)

(

α
λpu

λps(θ)
+

√

X2(τ, θ) − 2β
)

.

The corresponding expression for the utility isU(α, β) =

U0(α, β)−

[

πG

√

X2(τ,G)− 2β

λ(G)
−

πB

√

(X2(τ, B) − 2β)

λ(B)

]

where the termU0(α, β) = (πG−πB)τ−αλpu

(

πG

λps(G)λ(G) −

πB

λps(B)λ(B)

)

and it turns out that

dU(α, β)

dβ
=

πG

λ(G)(X2(τ,G)− 2β)
1
2

−
πB

λ(B)(X2(τ, B)− 2β)
1
2

which is decreasing withβ ∈ [−∞, βτ,B], whereβτ,B :=
1
2X(τ, B) as follows by comparing the ratio of the two positive
terms appearing in the expression above under the assumption
X(τ,G) ≥ X(τ, B)). When πG

λ(G) 6= πB

λ(B) theU(·, β) overR
attains a unique maximum at

β1 =
1

2

−X2(τ,G)
(

πB

λ(B)

)2
+X2(τ, B)

(

πG

λ(G)

)2

(

πG

λ(G)

)2
−
(

πB

λ(B)

)2

so that there exists also one maximum ofU(α, β) in [tα, τ ].
We can distinguish three cases based on the fact that
1) β1 ≤ α: the best response in this case isβ∗(α) = α

2) α < β1 < βτ,B: the best response isβ∗(α) = β1

3) β1 ≥ βτ,B: the best response in this case isβ∗(α) =
βτ,B.

Finally, we notice that whenπG

λ(G) =
πB

λ(B) , case 1) applies.
In the caseβ < α, we can derive a similar analysis starting

from the dynamicsX(t, θ) = λps(θ)t, so that

β = y(tβ) =
1

2

(

X2(τ, θ)− λ2
ps(θ)t

2
β

)

so thattβ =
√

X2(τ, θ) − 2β, and

U(α, β) = (πG − πB)τ

−

[

πG

√

X2(τ,G) − 2β

λps(G)
−

πB

√

(X2(τ, B)− 2β)

λps(B)

]
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In turn, we can recognizethe same structure for the best
response as in the previous case, where the maximum of
U(·, β) (when πG

λps(G) 6=
πB

λps(B) ), overR is attained at

β2 =
1

2

−X2(τ,G)
(

πB

λps(B)

)2
+X2(τ, B)

(

πG

λps(G)

)2

(

πG

λps(G)

)2
−
(

πB

λps(B)

)2

and the three cases write
1) β2 ≤ 0: the best response in this case isβ∗(α) = 0.
2) 0 < β2 < α: the best response isβ∗(α) = β2.
3) β2 ≥ α: the best response isβ∗(α) = α.

Again, when πG

λps(G) =
πB

λps(B) , case 1) applies.
Now, to complete our analysis, we need to determine the

best response between the two cases: we need to detail the
relation betweenβ1 andβ2. To so do we can rewrite for the
sake of convenience

β1(x) =
1

2

π2
Gx

2X2(τ, B)− π2
B(L + x)2X2(τ,G)

π2
Bx

2 − π2
G(L+ x)2

whereL = λps(G) − λps(B) andx = λps(G) + λpu. It can
be easily showed that

d

dx
β1(x) = π2

Gπ
2
B

2Lx(X2(τ,G)−X2(τ, B))(x − L)

(π2
Bx

2 − πG(L + x)2)2

which brings d
dx
β1(x) > 0 for x ≥ 0, with a singularity in

λs
pu =

πB

πG − πB

(λps(G)− λps(B)) − λps(B)

The typical shape ofβ1 is reported in Fig. 5. We observe that
β1(λpu = 0) = β2. The asymptotic value forλpu = ∞ is

β1(∞) =
1

2

π2
GX

2(τ, B)− π2
BX

2(τ,G)

π2
G − π2

B

It can be verified thatβ1(λpu) is injective. Hence, the above
analysis let us state:β1(∞) ≤ β1(0) = β2, which in turn leads
to the following

Lemma 4:For 0 ≤ λpu < λs
pu, it holds β1 ≥ β2, and for

λpu > λs
pu it holdsβ1 < β2.

Now we can combine the conditions above to derive:
Theorem 4:Let I = [0, βτ,B]

i. If λpu > λs
pu, then

Ws = [β1, β2] ∩ I

is the set of symmetric Wardrop equilibria for the system.
ii. If λpu < λs

pu thenWs ⊆ {0, βτ,B}.
Proof: Case i. follows immediately observing that for

β1 ≤ α the best response isβ∗(α) = α and for β2 ≥ α

the best response isβ∗(α) = α: both conditions are satisfied
simultaneously forα ≥ 0 if and only if α ∈ Ws.
Case ii. is proved observing that the conditions for case i fail,
so that only extremal cases can hold. In particular,Ws is not
always the empty set: ifβ2 ≥ 0, thenβ1 ≤ 0 so thatβ∗(0) = 0
and the same holds in the opposite case, i.e., ifβ1 ≥ α = βτ,B

thenβ1 ≥ α = βτ,B so thatβ∗(βτ,B) = βτ,B.
The result in Thm. 4 let us observe a neat phase transition

effect onλpu: when the intensity of the views due to the pull

mechanism is below thresholdλs
pu, only extremal Wardrop

equilibria are possible. Above that threshold, there can exist
a continuum of equilibria where the system can settle. Let
µ(·) denote the standard real measure: a sufficient condition
is provided in the following

Corollary 1: µ(Ws) > 0 if λpu > λs
pu andβ2 ≥ 0 > β1.

We can observe thatπG < πB impliesβ2 ≥ 0 andλpu > 0 >

λs
pu, so that a stronger sufficient condition than the one just

provided in turn becomes:πG < πB andβ1 ≤ βτ,B.

VII. R ELATED WORKS

The analysis of dynamics of popularity of online contents
has been subject of recent papers. The work [3] provides an
analysis of the YouTube system, with comprehensive view of
the characteristic of the generated traffic.

In [5] the authors address the relation between metrics
used to evaluate popularity. They observed that viewcount is
strongly correlated with several such metrics as number of
comments, ratings, or favorites. However, all such metricsdo
not correlate to average rating. In this paper we confine our
analysis to viewcount as the metric of interest. [7] focuses
on the core problem of predicting popularity, namely, the
viewcount, based on early measurements of user access. Based
on YouTube videos or Digg stories measurements, the authors
observe that contents increasing fast their viewcount in early
stages typically become popular later on. The proposed em-
pirical model, i.e.,logN(tr) = logN(to) + λ0(tr, t0) where
λ0(tr, t0), is a random multiplicative noise andN(tr), N(t0)
is the viewcount attr and t0; it resembles closely the expo-
nential model adopted in this work.

In [4] the authors propose a model accounting for change of
ranking induced by UGC online platforms. The model is meant
to overcome the limitations of the preferential attachment
models. Those models in fact cannot explain bursty growth
of content popularity; those in turn are claimed an inherent
property of the online platforms. The authors relate bursty
growth spikes to the way such systems expose popular contents
to users and perform re-ranking of existing contents causing
positive feedback loops.

The paper [6] provides analysis of power law behavior
for the rank distribution of contents; the distribution of most
watched videos is found heavily skewed towards the most
popular ones.

Threshold models similar to those studied in this work
are described by Granovetter [11] in social science. The
assumption is that individuals make binary decisions (in our
framework, view or not view a content), according to some
static internal threshold of others participating. A generaliza-
tion based on threshold distribution is addressed in [9].

VIII. C ONCLUSIONS

In this paper we characterized the access to online contents
by game theoretical means by leveraging on the concept of
Wardrop equilibrium. We deduced the structure of equilibria
in systems where users adopt threshold type policies to select
online contents. We explored several cases: the case when the
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plain viewcount is the metric, or the viewcount trend, or both
are combined as a product metric. We explored the case of
a fixed time horizon dictated by the content lifetime, and we
considered a case when the time horizon is not fixed. Finally
we explored the impact of side information available to users.

In all such cases we deduced the presence of a continuum of
equilibria, which has potential implications in the designand
control of platforms for online content access. In future work,
in particular, we are exploring the dynamics associated to such
sets of interior restpoints, when they exist, and comparing
those with typical dynamics of online contents. However,
not only equilibria are relevant: as showed in [10], threshold
strategies, under specific conditions, may well lead the system
to be asymptotically unstable; system trajectories may in turn
consist of cycles that can move into a chaotic dynamics,
essentially indistinguishable from random noise.
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