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Abstract—Greedy embedding is a graph embedding that makes
the simple greedy packet forwarding scheme successful for every
source-destination pair. It is desirable that graph embeddings
also yield low hop stretch of the greedy over the shortest paths.
In this paper we study how topological and geometric properties
of embedded graphs influence the hop stretch. Based on the
obtained insights, we construct embedding heuristics that yield
minimal hop stretch greedy embeddings.

I. INTRODUCTION

In the greedy routing paradigm (studied initially in [1], [2],
[3]), the communication network is first embedded in a metric
space by assigning to each node a coordinate denoting its
location. From these coordinates, the straight-line geometric
distances between any pair of nodes can be calculated. Accord-
ing to the simplest deterministic greedy routing rule, a node
forwards a message to a directly connected neighboring node
so that the new message location would reduce and locally
minimize the distance of the packet to the destination.

Notable advantages of greedy routing are its small com-
putational complexity, small memory requirement per node,
and the use of local information only — each node finds
a next hop based on the coordinates of its neighbors. As
can be demonstrated by simulations, greedy routing based on
node locations and distances in Euclidean space can often be
successful, but is not guaranteed to be successful: it is easy
to construct examples where a packet reaches a node that is
closer to the destination than all of its direct neighbors so
that the forwarding fails even though a path to the destination
exists.

Routes found by greedy forwarding typically take more
hops than the corresponding shortest paths. For each source-
destination pair, we define the hop stretch as the ratio of hop
lengths of the greedy path to the corresponding shortest path
in the graph. The average and maximum hop stretch can be
used as measures of the hop stretch for the entire graph.

Both the rate of success and the hop stretch of the for-
warding depend on the graph topology but also on the node
locations. Thus, for a given topology, we can speak of the
success rate or the average hop stretch of the embedding. When
the success rate is guaranteed to be 1 (100%) we call the
embedding greedy [4].

If physical node coordinates are used for forwarding, the
success rate and hop stretch can not be influenced readily. This
motivates the study of network embeddings based on virtual
coordinates [5], chosen so as to optimize success rate, hop
stretch or some other quantity of interest (see also e.g. [6],
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[7] and the references therein.) Limiting the focus to metric
spaces, [8] presented a constructive proof that every finite,
connected, undirected graph has a greedy embedding in two-
dimensional hyperbolic space.

In this work, we study the possibilities for constructing
graph embeddings that are both greedy and have hop stretch as
low as possible. Allowing virtual coordinates, the procedure of
[8] can be used, and the resulting embedding will be greedy.
Henceforth, we refer to the procedure outlined in [8] as K-
embedding. Motivated by the observation that varying some
of the parameters of the K-embedding can cause significant
changes to the obtained average and maximum hop stretch, we
study how the properties of the K-embedded graphs influence
the hop stretch. We use the obtained insights to propose
embedding heuristics that yield low hop stretch greedy embed-
dings. Our heuristics can be applied to any greedy embedding
procedure based on the extraction of an arbitrary spanning
tree, including those described in [8], [9], [10], [11]. To the
best of our knowledge, ours is the first study to demonstrate
these insights and to construct corresponding heuristics.

The rest of this paper is organized as follows. Section II
provides more specific background on the problem at hand.
We present the main ideas of our approach in Section III and
further examine its qualities in Section IV. Technical details
of the implementation are relegated to Section V. The current
conclusions are in Section VI.

II. PRELIMINARIES

The input to the K-embedding algorithm [8] is a finite,
connected, undirected and unweighted graph representing a
communication network. The K-embedding places the graph
nodes in the hyperbolic plane, and uses the standard hyperbolic
distance (see e.g. [12]) for the forwarding function. The
generic algorithm of [8] finds a greedy embedding of the
infinite d-regular tree for any integer d > 3. To embed an
actual connected graph G, first a spanning tree T of G is
chosen and d is determined as the maximum degree of any
node in 7. Subsequently, the nodes of T are mapped to the
embedded nodes of the d-regular tree. The author in [8] proves
that the result is a greedy embedding of T. It is easy to see
that a greedy embedding of T is also a greedy embedding of
the graph G.

To start our study, we note that the average node degree of
the input graph, as a topological property, strongly influences
the average hop stretch of any greedy embedding. In the
extreme case when the graph is itself a tree (G =T), there is
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Figure 1. Dependence of the average hop stretch of a greedy embedding on

the average node degree of the graph, averaged over 32 instance of a G (ng, p)
graph. There is a range of critical node degrees, typically between 3 and 8
for which the hop stretch is maximal.

a unique path for each pair of vertices making the greedy and
the corresponding shortest path coincide, and the hop stretch
is 1. The other extreme case, when G is a complete graph,
also has an ideal hop stretch of 1 since in this case all pairs
are direct neighbors and both the greedy and the shortest paths
are always 1 hop. Graphs with average node degrees between
a bare tree and a complete graph typically have larger hop
stretch.

To demonstrate the dependence of the hop stretch on the
average node degree, we show an initial series of experiments
using the largest connected component of G (n,,p) graphs
with varying edge probability p, resulting in graphs with
n =~ 50 nodes. For several values of the average node degree
between those of a tree (2(n—1)/n $2) and a complete graph
(2n(n—1)/(2n) =n—1=~50) we perform a K-embedding based on
a spanning tree sampled uniformly at random [13], and average
the hop stretch over 32 graph instances. The results are shown
in Fig. 1. The figure shows that there is a range of critical node
degrees, roughly between 3 and 8 for which the hop stretch
is maximal. In light of this fact, our subsequent experiments
focus on node degrees from the critical range [3...8].

While the hop stretch depends on both the choice of
spanning tree and its mapping to the embedded nodes of
the d-tree, we find that in practice the mapping step has
relatively little impact. To illustrate this observation, we show
results from a typical experiment in which for a randomly
generated graph and a randomly chosen spanning tree, we
generate 600 different random spanning tree mappings. For
each mapping, we record the average and the maximum hop
stretch of the embedding. As typical values, the average hop
stretch is 1.28 £ 0.02 and the maximum hop stretch is 4.3 £
0.26. Since in our experiments, the spanning tree mapping does
not significantly influence the hop stretch of the embedding,
in the remainder of our study, we focus only on the choice of
spanning trees for low hop stretch embeddings.

Figure 2. A simplified model: The number of next hop candidates exponen-
tially decreases as the packet gets closer to the destination.

ITI. HEURISTICS
A. Maximum Weight Spanning Tree Heuristics

We start by laying the foundation for our first heuristic,
which we term the maximum weight spanning tree (MWST).
Consider a connected graph G that is K-embedded [8] starting
from some chosen spanning tree. The choice of a spanning tree
T partitions all graph edges into tree and non-tree (shortcut)
edges. A greedy path typically consists of some tree edges
and some shortcut edges. Intuitively, shortcut edges may help
make progress toward the destination more rapidly than the
tree edges and would thus lower the hop-stretch.

When can a packet take a shortcut? Consider a packet
currently at node S and destined for node D. There are between
1 and d tree edges incident to S, one of which leads to the
relative parent of S (denoted 7 (S)) when D is taken as the
root of the tree T. Forwarding to 7 (S) certainly brings the
packet closer to the destination D by the greedy property of
the embedding of 7. In addition, there may or may not be
some non-tree edges incident to S. Of those non-tree edges,
useful as a next hop will be only those that bring the packet
closer to D than 7 (S) is. The analysis of the exact shape
of the locus of points containing next hop node candidates
reachable via shortcuts from S is beyond the scope of this
work, but to gain some insight, here we resort to a simplified
calculation in which we consider the K-embedding of a graph
whose spanning tree is the full regular tree of degree d.

As a concrete example, Fig. 2 schematically illustrates the
first L =5 levels of a regular tree with d =4 spanning a random
graph on n nodes along with several possible packet source
locations (S; ... S4), and a single destination D. Assuming
that the graph has an average node degree & = 6 leaves on
average 2 non-tree edges incident on each node (not shown).
The locus of next hop shortcut candidates when the packet is
at node S, at level ¢ is labeled Ay in the figure and contains
approximately #A, = n/d(L_“l) nodes. The probability of a
non-tree edge between S; and any other node is assumed to
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Figure 3. The usage of shortcut edges vs. the average node degree. The

boxes show the 25th, 50th and 75th percentile as well as the minimum and
the maximum value.

be uniform, and the probability that a shortcut edge incident
on S; is inside Ay is approximately p, = #Ay/n = d—(L=t+1)
whence the probability of at least one useful shortcut is

6—d
pu=1-(=pP =1 (1-a- )

for £ =0..L— 1. The key point is that the value of py is small
for critical average degree values, and additionally, it decreases
exponentially as the packet approaches the destination.

Thus we expect that for small node degrees (from the critical
interval [3...8]), on average the fraction of used shortcuts com-
pared to the total number of hops taken by greedy forwarding
will be small. To support this claim numerically, we set up an
experiment to determine the usage of non-tree hops. We start
by extracting the largest connected component of G(n,,p)
graphs of varying size ng and edge probability p, resulting
in graphs with n = 50 nodes and node degrees [3...15]. From
each such graph we sample 1000 spanning trees uniformly
at random and K-embed them. For each such embedding, the
usage of shortcuts is recorded. The results are presented in
Fig. 3. Indeed, as predicted by our simplified model, small
node degrees imply that the greedy routes mainly consist
of tree edges. In other words, for node degrees from the
critical interval, shortcuts, although present are rarely used for
greedy forwarding and this is the reason for the corresponding
increase of the average hop stretch.

Based on these observations, we propose a heuristic for
choosing spanning trees that yield small hop stretch of greedy
graph embeddings. The hop stretch measures the extent to
which greedy paths coincide with the shortest paths of the
graph. To lower the hop stretch, we need to increase this
coincidence. If we choose a spanning tree whose edges rep-
resent as many of the shortest paths in the graph as possible,
the embedding based on this tree will have low hop stretch
since the greedily forwarded packets will be taking the tree
edges and thus greedy paths will more closely approximate
the shortest paths.

To construct a tree consisting of the edges that are most
frequently used by the shortest paths in the graph, for exper-
imental purposes, we proceed as follows: We assign to each
edge in the graph a weight that represents the total number of
shortest paths (for all pairs) that pass through that edge. From
this weighted graph we choose the spanning tree of maximum
weight and use it as a basis of a greedy embedding. We call
this tree the maximum weight spanning tree (MWST).

To initially examine the hop stretch properties of K-
embeddings based on the MWST, we set up an experiment
that correlates the average hop stretch and the utilization of
shortcuts in greedy embeddings based the MWST and 1200
spanning trees sampled uniformly at random from the largest
connected component of a 60-node G (n,p) graph of average
node degree 3.5. Fig. 4 shows the results. For control, the
minimum weight spanning tree (mWST) is also included.

We observe from Fig. 4 that for randomly sampled span-
ning trees, typically only 15-30% of the traversed edges are
shortcuts, while the majority of hops (70-85%) taken by
greedy forwarding are tree edges for most spanning trees.
Some spanning trees provide better utilization of shortcut
edges, and as expected this improves the hop stretch of the
embedding. Thus, one way to lower the hop stretch appears
to be choosing a spanning tree that provides better shortcut
utilization. However, this relation holds only on average, and
the dependency between the hop stretch and the fraction of
shortcuts is weak. On the other hand, the MWST shows an
average hop stretch of 1.14 (14%) compared to the values
for random trees (20-55%) and at the same time, the MWST
renders an embedding having a notably low participation of
shortcuts in the greedy paths (about 13%).

To investigate whether the MWST retains the low hop
stretch of the embedding for varying node degrees and multiple
graph instances, we perform an experiment similar to the one
described in Sec. II, but this time including the embeddings
based on the MWST as well as the mWST. The results
are shown in Fig. 5 and confirm that on average, for the
entire interval of critical node degrees, the MWST performs
consistently and significantly better than the average random
tree and the minimum weight spanning tree. Above the critical
interval, the three curves coalesce since more and more nodes
are directly connected and greedy forwarding trivially finds
the one-hop paths to the destinations.

Further evaluation of the MWST heuristic over a wider class
of test cases is presented in Sec. IV.

B. Minimum Diameter Spanning Tree Heuristics

In this section, we investigate the usability of an alterna-
tive low-stretch heuristic for K-embedding — the minimum-
diameter spanning trees (mDST).

From our previous considerations it appears that a spanning
tree “representing” a large number of shortest paths of the
graph, provides relatively low hop stretch. Since the maximum
path length in a minimum diameter spanning tree of the graph
is the lowest among the spanning trees, we conjecture that
mDSTs will, like MWSTs, also represent a large number of
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Figure 5. Dependence of the average hop stretch of a greedy embedding on
the average node degree of the graph, averaged over 32 instance of a G (ng, p)
graph. There is a range of critical node degrees, typically between 3 and 8
for which the hop stretch is maximal.

shortest paths and thus provide low hop stretch compared to
a randomly sampled spanning tree.

As a first experiment, we examine the correlation between
the spanning tree diameter and its weight as defined in Sec. III.
For this purpose, we sample 2000 spanning trees uniformly
at random from a 50-node graph representing the largest
connected component of a G (n, p) graph with an average node
degree of 4. Typical results are illustrated in Fig. 6. along with
the MWST, mWST, and mDST. We observe that while the
mDST does not capture as much graph weight as the MWST,
it still has more weight than most random spanning trees. This
encourages further investigation of the hop stretch provided by
mDSTs.
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Figure 6. Spanning tree weight percentage of the total graph weight vs.

spanning tree diameter for 2000 spanning trees sampled uniformly at random
and used as a basis for the greedy embedding of a random 50-node graph.
The MWST, mWST and mDST are also shown.
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Typical hop stretch results for a G (n, p) graph

IV. EMPIRICAL EVALUATION

In this section we present additional comparative results on
various properties of the MWST and mDST heuristic.

So far we have considered random graph instances gener-
ated from the G (n, p) model. Here we also use graphs gener-
ated by placing nodes uniformly at random in the Euclidean
plane and placing an edge between pairs of nodes if the
Euclidean distance between them is below a chosen threshold.
We refer to this model as a wireless graph. The average node
degree of the wireless graph can be varied by varying the
threshold distance. We use the largest connected component
from the generated graphs.

Figures 7 and 8 illustrate instances of connected components
of G(n,p) and wireless graphs, as well as typical histograms
of the average hop stretch for 400 spanning trees sampled
uniformly at random. The MWST, mWST and mDST are also
shown.

Figures 9 and 10 show the correlation between the average
hop stretch and the spanning tree diameter for the G (n,p)
and the wireless graph model. We observe that for the general
random spanning tree, there is no strong correlation between
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graph model

the two quantities, but the correlation becomes notable toward
the low stretch - low diameter end of the spectrum. We also
observe that a spanning tree of maximum weight does not
necessarily have the minimum diameter, but the diameter of
the MWST is usually low.

We conclude that for both graph types, MWST consistently
shows the best stretch performance. The mDST has somewhat
higher, but still satisfactorily low hop stretch.

V. IMPLEMENTATION ASPECTS

Typically, in an unweighted network graph, there are mul-
tiple shortest paths for a pair of nodes. In generating edge
weights for the purpose of creating the MWST, we took into
consideration all possible shortest paths in our graphs. To
calculate all shortest paths, for each pair, we used a slightly
modified version of an efficient algorithm for finding the k-
shortest loopless paths in a network [14]. Once the weighted
graph is obtained from the initial unweighted topology, finding
the MWST or the mWST is a matter of applying a classical
minimum spanning tree algorithm (e.g. [15], [16]).

The mDST heuristic, on the other hand, seems more
amenable for implementation in that finding minimum diame-
ter spanning tree can be performed efficiently ([17], [18]) and
via distributed computation ([19]).

VI. CONCLUSION

Greedy embeddings [4] are a promising tool for information
routing in networks, including electronic and social networks.
The advantages of greedy embedding are that message routing
is guaranteed to succeed, even though nodes maintain infor-
mation only about their directly connected neighbors. Greedy
embedding is a hard problem, but recently several interesting
solutions have been proposed [8], [9], [10], [11]. However,
a problem left open in these works has been to find greedy
embeddings that are low-stretch — meaning that the paths taken
in such networks have length close to that of the shortest path.

In this work we studied how topological and geometric
properties of greedy embeddings [8] influence the hop stretch.
Based on the obtained insights, we constructed the maximum-
weight spanning tree (MWST) and inferred the minimum-
diameter spanning tree (mDST) heuristics for reduction of hop
stretch. We provide arguments and insights suggesting why our
proposed heuristics are justified. We note that our heuristics
can be applied to any greedy embedding procedure based on
the extraction of an arbitrary spanning tree, including those
described in [8], [9], [10], [11]. For the graph models con-
sidered in our evaluations, these heuristics typically improve
average hop stretch from e.g. 50% (worst) or 30% (average) to
<15%. The MWST is the best performer most of the time. The
mDST heuristic is easier to calculate in a distributed fashion.
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