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Abstract—We consider the scenario where a mobile device
requires assistance from nearby devices to forward its com-
putational tasks to a cloud server. We incentivize cooperation
by allowing helper devices to conserve computational energy by
offloading their own tasks to the source device’s cloud, as compen-
sation for the communication energy lost during task forwarding.
We formulate an optimization problem with the objective of
minimizing the cloud cost incurred by the source device due to
tasks offloaded from helper devices, subject to no energy loss at
the helper devices. We observe that this problem cannot be solved
using a standard Lyapunov optimization approach. Instead, we
construct an alternate problem that follows the standard form
but has the same optimal objective value as the original problem.
The resultant Energy Compensated Cloud Assistance (ECCA)
algorithm does not require any statistics of the system and can
be implemented distributively.

I. INTRODUCTION

Mobile Cloud Computing (MCC) has been proposed to

augment the computation and storage capabilities of a mo-

bile device by offloading the processing of applications or

computational tasks/methods from mobile devices to remote

cloud resource providers [1][2]. In this work we consider

cooperation in MCC. In particular we study a scenario as

shown in Figure 1, where a mobile device (source node) having

reserved cloud resources requires the help of nearby mobile

devices (neighbour nodes) to forward its computing tasks to

a base station that is connected to the cloud service provider

(e.g., through the Internet). This scenario can arise whenever

the source node requires uninterrupted network connectivity

for offloading tasks to its cloud or requires higher throughput

for its transmissions. Similar to any other cooperative commu-

nication scenario, there is a net energy loss for a neighbour

node in forwarding the source node’s data packets. Hence,

suitable incentive is needed to induce the neighbour node to

cooperate.
We consider the following incentive for the neighbour

nodes. During cooperation a neighbour node may offload its

own computational tasks to the cloud of the source node.

The advantage of this incentive scheme is two-fold. First, a

neighbour node can mitigate the energy loss it incurs during

cooperation by saving the required computational energy of

its own tasks that are offloaded. Second, this incentive is

easy to implement even in a dynamic environment where the

neighbour nodes are temporarily cooperating and going out of

range due to mobility. This introduces a new paradigm for the

usage of cloud resources in wireless networks.
We formulate an optimization problem with the objective

of minimizing the cloud cost incurred by the source node
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Fig. 1. Cooperation in Mobile Cloud Computing

due to tasks offloaded from neighbour nodes subject to energy

compensation (i.e., no energy loss) at the neighbour nodes and

packet queue stability at all the nodes. The energy compensa-

tion constraint at a neighbour node involves the transmission

energy spent in a time slot, which depends on the state of its

packet queue. Therefore, the standard Lyapunov optimization

theory [3] cannot be used directly to solve the problem. In

particular, the conventional Min-Drift-Plus-Penalty algorithm

based on Lyapunov drift analysis is no longer guaranteed to

be asymptotically optimal. However, we construct an alternate

problem that falls under the standard Lyapunov optimization

framework and show that it has the same optimal objec-

tive value as the original problem. Furthermore, an optimal

control policy for the reformulated problem is also optimal

for the original problem. This results in a dynamic Energy

Compensated Cloud Assistance (ECCA) algorithm that can

be implemented in a distributed fashion. Through simulation

of ECCA in a cooperative MCC system, we study the effect

of different system parameters on the minimum cloud cost

incurred by the source node that ensures energy compensation

to the neighbour nodes.

The rest of the paper is organized as follows. In Section II

we present the related work. Section III describes the system

model and problem formulation. In Section IV we present

an equivalent problem and the ECCA algorithm that solves

the problem. Section V presents simulation results, and we

conclude the paper in section VI.

II. RELATED WORK

One main purpose of cloud offloading is to save the expen-

diture of computational energy by mobile devices. Towards

this end several research papers have focused on the aspects of

offloading mechanisms. Karthik et al. in [4] studied the general

guideline that applications or tasks with high computational
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energy requirement and low data load are desirable to be

executed remotely. Migration of an entire application for

remote execution was studied in [5][6].

In contrast to the above studies, the authors in [7][8][9] con-

sidered partitioning an application into fine-grained tasks and

then proposed offloading mechanisms. In [10], Cuervo et al.
proposed MAUI, a system which builds on the above ideas and

is shown to provide significant energy gains. One of the salient

features of MAUI is that it offloads fine-grained tasks based

on network conditions. Clonecloud [11] and Thinkair [12] are

other such systems developed for efficient offloading. None

of the works mentioned above consider network connectivity

loss that may occur when a mobile device needs to offload

tasks. In our work, the network connectivity loss is alleviated

by obtaining assistance from nearby mobile devices. The

practicality of this scenario for the case of smartphones has

been studied in a university setting by Liu and Striegel [13].

They have demonstrated that such opportunistic forwarding

can be reliable and stable. However, they have not considered

energy compensation as incentive for cooperation.

III. SYSTEM MODEL

We consider a discrete time based model. The time slots

are indexed by t ∈ {0, 1, . . .} with slot duration T . Let i ∈
{0, 1, . . . , N} denote the nodes (mobile devices), where node

0 represents the source node and nodes 1 to N represent the

neighbouring helper nodes. All nodes access the Internet and

the cloud through a Base Station (BS).

We assume that all required cloud service is already re-

served by node 0 and the cloud cost is proportional to the

computational energy requirement of tasks offloaded. Node 0

and the neighbour nodes enter into the following agreement

for cloud assistance and energy compensation. The neighbour

nodes may utilize the cloud for their own computing tasks, in

exchange for relaying the tasks of node 0. Furthermore, it is

guaranteed that the communication energy incurred by each

neighbour node is less than the computational energy gain

from offloading its own tasks. The detailed model formulation

is given in the following subsections.

A. Task Profile

The mobile devices are equipped with systems such as

MAUI [10] or ThinkAir [12] which partition an application

into fine-grained tasks. Each task is associated with some

data load, which contains a set of operations and input data.

We assume that the data load of a task is fragmented into

packets of fixed length l bits. The cloud executes a task after

reassembling all the packets associated with the task. Since the

data load of tasks vary, each task is associated with a random

number of packets, which is denoted by M and it takes values

from Z++. The computational energy requirement of a task

is assumed to be known apriori [10] [11] [12]. We represent

the computational energy requirement of a task by random

variable E (in joules), and it takes values from R++. The

ordered pair (E,M) represents a task profile, and for each

task in the system it is chosen independently according to

a fixed distribution. At node i, let M̄i represent the average

data size per task and Ēi represent the average computational

energy requirement per task. We assume that all the tasks in

the system are independently executable and are delay tolerant.

We denote the task arrival process by A(t) =
(A0(t), . . . , AN (t)), where Ai(t) represents the number of

new tasks that arrive at node i at the beginning of slot

t. We assume that A(t) is i.i.d. over time slots. Let us

index the tasks that has arrived in slot t at node i by

j ∈ Ti(t) = {1, . . . , Ai(t)}. Let us denote the set of task

profiles at node i by Xi(t) = {(Eij(t),Mij(t))} and define

X (t) = {X0(t), . . . ,XN (t)}.

B. Channel Model

The channels are assumed to be block fading with additive

white Gaussian noise. We assume that the channel gains

remain constant over a slot and their values are normalized

by the noise power. In a time slot t, Γ(t) = [(Γ0i(t)), (Γi(t))]
is the channel state vector, where Γ0i(t), i �= 0, represents the

normalized channel gain between node 0 and neighbour node

i, and Γi(t) represents that between the node i and the BS.

Note that, here we allow i = 0, meaning that there could be a

direct link between node 0 and the BS. We assume that Γ(t)
is i.i.d. over time slots.

In time slot t, let P (t) ∈ [0, Pmax] be the transmission

power chosen where, Pmax is the maximum power that can

be used in any time slot and is determined by hardware

constraints. We assume that the packets cannot be fragmented

further. Let us define μ̂(t) as the maximum number of packets

that can be transmitted using power P (t) in time slot t. From

the Shannon bound, we have

μ̂(t) =

⌊
WT

2l
log2(1 + P (t)Γ(t))

⌋
(1)

where W is the bandwidth. We denote by W1 the bandwidth

between node 0 and the neighbour nodes and by W2 the

bandwidth between the nodes and the BS. Note that, as

explained later, even though we have used the rate-power

relation (1) for simplicity of illustration, the proposed analysis

and ECCA are valid as long as the rate-power relation is

concave.

Boundedness assumption: We assume that the task

arrivals, data size and energy of a task, and the normalized

channel gains are non-negative and satisfy the following

condition for all t: E{A2
i (t)} ≤ σ2 ∀i,E{M2

ij(t)} ≤
σ2 for any i, j,E{E2

ij(t)} ≤ σ2 for any i, j, and

E{Γ2
lm(t)}} ≤ σ2 for all valid indices l,m where σ < ∞.

C. Scheduling and Offloading

In each time slot, node 0 selects either the BS or neighbour

node i and chooses a feasible power to transmit packets from

its packet queue Q0(t) to node i. The selection of neighbour

node i by node 0 is indicated by Ii(t) = 1 and Ii(t) = 0
otherwise. Similarly, the decision of direct transmission to

BS by node 0 is indicated by Ic(t) = 1. At most one of

the neighbour nodes or the BS can be selected in each time
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slot, i.e., the vector I(t) = (Ic(t), I1(t), . . . , IN (t)) ∈ e,

where e is a set of N + 1 dimensional vectors which have

at most one non-zero element equal to 1. At node 0, let

P0(t) ∈ [0, P0,max] be the choice of transmission power

and μ̂0(t) be the maximum number of packets that can be

transmitted. Then, μ̂0(t) = Ic(t)μ̂0c(t) +
∑N

i=1 Ii(t)μ̂0i(t),
where μ̂0i(t), i �= 0 is the maximum number of packets that

can be transmitted to node i using power P0(t), given that

node i is selected in slot t. Similarly, μ̂0c(t) is the maximum

number of packets that can be transmitted to the BS using

power P0(t), given that the BS is selected in slot t.

At neighbour node i, the packets received from node 0
are enqueued in Qi(t). Let Bi(t) ⊆ Ti(t) be the set of

indices of the tasks that node i offloads. Then MBi(t) =∑
j∈Bi(t)

Mij(t) represents the total number of packets and

EBi(t) =
∑

j∈Bi(t)
Eij(t) represents the computational energy

offloaded. All the MBi(t) packets are enqueued in Qi(t). Also,

at node i, let Pi(t) ∈ [0, Pi,max] be the choice of transmission

power and μ̂i(t) is the maximum number of packets that can

be transmitted to the BS using power Pi(t) in slot t.

The stacked vector ω(t) = [Γ(t),X (t)] represents a ran-

dom network outcome in the system. It can be observed

that ω(t) is i.i.d. over slots. The control actions to be

taken in the system is represented by the vector α(t) =
(I(t); (B1(t), . . . ,BN (t)); (P0(t), . . . , PN (t))). In time slot t,
we denote the set of all possible control actions by Aω(t)

which is given by:

Aω(t) = {I(t) ∈ e, {Pi(t) ∈ [0, Pi,max],Bi(t) ⊆ Ti(t), ∀i}}

Let Q(t) = (Q0(t), . . . , QN (t)) denote the queue backlog

vector. The queue update equations are as follows:

Q0(t+ 1) =max(Q0(t)− μ̂0(t), 0) +M0(t)

Qi(t+ 1) =max(Qi(t)− μ̂i(t), 0) +MBi(t)

+ Ii(t)min(Q0(t), μ̂0i(t)) ∀i �= 0

(2)

where M0(t) = MT0(t) (all tasks at source node are offloaded)

and Ii(t)min(Q0(t), μ̂0i(t)) is the number of packets that are

transmitted from node 0 to neighbour node i in time slot t.

D. Formulation of Optimization Problem

At the neighbour node we want to maintain no energy loss

on average while minimizing the average cost incurred by the

source node at it’s cloud due to the tasks offloaded by the

neighbour nodes. We also want to guarantee the stability of

queues at all nodes.

We assume that the cloud cost is proportional to the compu-

tational energy of the tasks offloaded. Therefore, we formulate

the function y0(t) =
∑N

i=1 EBi(t), which represents the total

computational energy of the tasks offloaded by all neighbour

nodes in time slot t. Now, the number of packets transmitted

by node i in time slot t is given by μi(t) = min(Qi(t), μ̂i(t)).
Using Pi(t), the time required to transmit μi(t) is given by

T min(Qi(t),μ̂i(t))
μ̃i(t)

, where μ̃i(t) = W2T
2l log2(1 + Pi(t)Γi(t)).

Therefore, in time slot t the energy loss at neighbour node i

is given by the following function:

yi(t) = Pi(t)T
min(Qi(t), μ̂i(t))

μ̃i(t)
− EBi(t)

We are interested in the long term time average expectation

of function y0(t) defined as ȳ0 � limt→∞
1
t

∑t−1
τ=0 E{y0(τ)}.

Let ȳi represent the corresponding time average expectation

of yi(t). We consider the following optimization problem P:

minimize
{α(t)}

ȳ0

subject to

ȳi ≤ 0, for i ∈ {1, . . . , N}
Queues are mean rate stable

α(t) ∈ Aω(t) ∀t
When the problem is feasible, we use ȳopt to denote its

optimum value. Note that ȳopt ≥ 0.

We note that the function yi(t) involves the queue length

Qi(t), and hence P cannot be solved using standard Lyapunov

optimization, i.e., the Min-Drift-Plus-Penalty algorithm for

solving P may not guarantee O( 1
V ) asymptotic optimality [3].

However, we formulate a problem P ′ below that can be

solved using standard Lyapunov optimization. We show that

the optimal objective value for P ′ is equal to ȳopt.

IV. ENERGY COMPENSATED CLOUD ASSISTANCE

In this section we present Energy Compensated Cloud

Assistance (ECCA) algorithm for solving P .

A. Problem Reformulation

Let us define a modified energy loss function y′i(t) =
Pi(t)T − EBi(t). Note that in y′i(t) the accounting of trans-

mission energy assumes that Pi(t) is used for the entire

time slot duration T . Problem P ′ is similar to P except

for the energy compensation constraint. Namely, we use the

constraints ȳ′i ≤ 0, ∀i �= 0 for P ′ instead of ȳi ≤ 0, ∀i �= 0.

Let ȳ′opt be the optimal value for problem P ′.

Lemma 1. ȳ′opt = ȳopt

Proof. For any given pair of choices (Pi(t), EBi(t)) we have

yi(t) ≤ y′i(t). Hence, any control policy that satisfies ȳ′i ≤ 0
also satisfies ȳi ≤ 0. Therefore, ȳ′opt ≥ ȳopt.

Let us consider an optimal control policy π∗ that achieves

ȳopt for problem P . Under this policy let α∗(t) denote the

control action in time slot t. We design a policy π′ with control

action α′(t) in time slot t as follows: I′(t) = I∗(t), B′
i(t) =

B∗
i (t), ∀i, P ′

0(t) = P ∗
0 (t) and,

P ′
i (t) = 1{Q∗

i (t)≤μ̂∗
i (t)}

(22lQ
∗
i (t)/WT − 1)

Γi(t)

+ 1{Q∗
i (t)≥μ̂∗

i (t)}
(22lμ̂

∗
i (t)/WT − 1)

Γi(t)
, ∀i �= 0

In time slot t the control action α′(t) and α∗(t) only differ

in the transmission power choices at the neighbour nodes.

Therefore, the objective values achieved under π∗ and π′
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should be same. Also, at each node i �= 0 the choice of

power P ′
i (t) at the neighbour node is designed such that the

realizations of the queues Qi(t), ∀i under π∗ and π′ are the

same. Since π∗ meets the constraint of mean rate stability of

the queues, so does π′.
Let yi(π

∗, t) be yi(t) induced by policy π∗ and y′i(π
′, t) be

y′i(t) induced by policy π′. We claim that ȳ′i(π
′) ≤ 0, ∀i �= 0

is satisfied. To prove this claim we first show that for any given

realization of ω(t) we have yi(π
∗, t) ≥ y′i(π

′, t), ∀t. Consider

the time slots where Q∗
i (t) ≤ μ̂∗

i (t). We have

yi(π
∗, t) = P ∗

i (t)T
Q∗

i (t)

μ̃∗
i (t)

− EB∗
i (t)

=
(22lμ̃

∗
i (t)/WT − 1)

Γi(t)
T
Q∗

i (t)

μ̃∗
i (t)

− EB∗
i (t)

≥ (22lQ
∗
i (t)/WT − 1)

Γi(t)
T − EB∗

i (t)

= P ′
i (t)T − EB∗

i (t)
= y′i(π

′, t)

where the inequality above is based on the fact that 2ak−1
k is

an increasing function in k for all a, k > 0. Similar argument

can be used for the time slots where Q∗
i (t) ≥ μ̂∗

i (t). Noting

that the realization of Qi(t) is the same under π∗ and π′, it

can be shown that ȳ′i(π
′) ≤ ȳi(π

∗) ≤ 0, ∀i �= 0.

From the above analysis it is clear that we found a control

policy π′ that solves the problem P ′ and achieves ȳopt for the

objective. Since ȳ′opt ≥ ȳopt, we have ȳ′opt = ȳopt.

We note that Lemma 1 holds as long as the rate-power

relation is concave and thus the analyses that follow holds for

such general rate-power relation. Furthermore, from the proof

of Lemma 1, we conclude that an optimal policy for P ′ is

also feasible and hence optimal for P . Therefore, we focus on

solving P ′ in the sections that follow.

B. Lyapunov Optimization on P ′

A standard Lyapunov optimization approach can be used to

solve P ′ [3]. We model the inequality constraint ȳ′i ≤ 0 as

a queue stability problem. Let Z(t) = (Z1(t), . . . , ZN (t)),
where Zi(t) represents a virtual queue. The update equa-

tion of Zi(t) is given by, Zi(t + 1) = max(Zi(t) +
y′i(t), 0) ∀ i ∈ {1, . . . , N}. Let Θ(t) = [Q(t),Z(t)] be

the vector of all actual and virtual queues. We define the

following weighted quadratic Lyapunov function: L(Θ(t)) �
w
2

∑N
i=0 Q

2
i (t) +

1
2

∑N
i=1 Z

2
i (t). where the weight factor w

indicates the relative importance of the virtual queues with

respect to the packet queues. The one-slot conditional Lya-

punov drift Δ(Θ(t)) is defined as follows: Δ(Θ(t)) �
E{L(Θ(t+1))−L(Θ(t))|Θ(t)}. Then, the drift-plus-penalty

expression is given by Δ(Θ(t)) + V E{y0(t)|Θ(t)}. We have

the following observation.

Lemma 2. With the assumption that ω(t) is i.i.d. over slots,
under any control algorithm, the drift-plus-penalty expression
has the following upper bound for all t, all possible values of

Θ(t), and all parameters V ≥ 0:

Δ(Θ(t)) + V E{y0(t)|Θ(t)} ≤ B + V E{y0(t)|Θ(t)}

+
N∑
i=1

wQi(t)E{MBi(t) − μ̂i(t) + Ii(t)μ̂0i(t)|Θ(t)}

+

N∑
i=1

Zi(t)E{Pi(t)T − EBi(t)|Θ(t)}

+ wQ0(t)E{M0(t)− μ̂0(t)|Θ(t)}

(3)

where B is a positive constant and its existence is guaranteed
by the assumption that ω(t) is i.i.d. and the boundedness
assumption.

Proof. The proof is similar to Lemma 4.6 in [3] and is omitted.

C. ECCA

In each slot t we observe the queue backlog vector Θ(t)
and the network event ω(t) and choose a control action α(t) ∈
Aω(t) that greedily minimizes the RHS of (3). For convenience

of exposition, define

ς(t) �
N∑
i=1

Ii(t)μ̂0i(t)[Qi(t)−Q0(t)]

− Ic(t)μ̂0c(t)Q0(t)

χi(t) �wQi(t)MBi(t) − (Zi(t)− V )EBi(t)

ϕi(t) �[Zi(t)Pi(t)T − wQi(t)μ̂i(t)]

(4)

Then, we aim to minimize Ψ(t) = wς(t) +
∑N

i=1 χi(t) +∑N
i=1 ϕi(t).

D. Algorithm Details

ECCA can be implemented in a distributed fashion because

the decision variables in the expression Ψ(t) are segregated

and can be solved independently. To be specific, it is sufficient

for node 0 to choose control actions that minimizes ς(t) and

for node i to choose control actions that minimizes χi(t) and

ϕi(t) subject to respective constraints.

1) Optimization Problem at Source Node: The problem to

be solved at the source node is

minimize
(I(t)∈e,P0(t)∈[0,P0,max])

ς(t) (5)

Problem (5) is easily solvable and the solution is presented

below. Let μ0i,max(t) =
⌊
W1T
2l log2(1 + P0,maxΓi(t))

⌋
. If

Q0(t) = 0, then I(t) = 0 and P0(t) = 0. Otherwise, set

P0(t) = P0,max, and if mini{μ0i,max(t)[Qi(t) − Q0(t)]} ≤
−μ0c,max(t)Q0(t), then k = argmini{μ0i,max(t)[Qi(t) −
Q0(t)]} and Ik(t) = 1 else Ic(t) = 1.

2) Optimization Problem at Neighbour Node i: Neighbour

node i needs to find P ∗
i (t) that minimizes ϕi(t) and choose

B∗
i (t) that minimizes χi(t). We solve the former problem first:

minimize
Pi(t)∈[0,Pi,max]

ϕi(t) (6)
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We note that problem (6) is non-convex. However, for a

given μ̂i(t), ϕi(t) increases with Pi(t). Therefore, to min-

imize ϕi(t) we need to choose Pi(t) such that μ̂i(t) =
W2T
2l log2(1 + Pi(t)Γi(t)). Using this property, a naive

method to solve the problem is to check the power val-

ues corresponding to μ̂i(t) ∈ {0, 1, . . . , μ̂i,max(t)} where

μ̂i,max(t) =
⌊
W2T
2l log2(1 + Pi,maxΓi(t))

⌋
. The time com-

plexity of this approach in any slot is O(μi,max), where

μi,max =
⌊
W2T
2l log2(1 + Pi,maxΓmax)

⌋
represents the max-

imum number of packets that can be transmitted in any

time slot and Γi,max ≥ Γi(t) ∀t. Note that μi,max can be

arbitrarily large. Instead, we propose the following approach

that solves problem (6) with a time complexity of O(1). The

key idea we use is that the problem (6) is convex if we choose

Pi(t) ∈ [0, Pi,max] and use μ̂i(t) =
W2T
2l log2(1+Pi(t)Γi(t)).

For the degenerate case Qi(t) = 0 or Γi(t) = 0, we have

P ∗
i (t) = 0. Otherwise, if Qi(t) > 0, Γi(t) > 0, and Zi(t) = 0

then find P ∗
i (t) such that μ̂i,max(t) packets are transmitted

using the entire time slot. Otherwise, we solve the problem (6)

as follows:

Lemma 3. For Qi(t) > 0, Γi(t) > 0, Zi(t) > 0, allowing
Pi(t) ∈ [0, Pi,max] and μ̂i(t) =

W2T
2l log2(1+Pi(t)Γi(t)), an

optimal solution P̂ ∗
i (t) that minimizes ϕi(t) is given by:

P̂ ∗
i (t) = min

{(
W2Qi(t)

2lZi(t) log 2
− 1

Γi(t)

)+

, Pi,max

}

Proof. Under the given conditions, it can be shown that the

function ϕi(t) is continuous and strictly convex. Therefore,

an optimal solution P̂ ∗
i (t) is found by solving the first-order

condition subject to P̂ ∗
i (t) ∈ [0, Pi,max].

Now, an optimal solution to problem (6) can be found

by appropriately choosing P ∗
i (t) using P̂ ∗

i (t). Let Pi,L(t)
and Pi,R(t) represent the immediate power values in

the left and right neighbourhood of P̂ ∗
i (t) which pro-

vide integer rates μi,L(t) and μi,R(t) respectively, where

μi,L(t) =
⌊
W2T
2l log2(1 + P̂ ∗

i (t)Γi(t))
⌋

and μi,R(t) =⌈
W2T
2l log2(1 + P̂ ∗

i (t)Γi(t))
⌉

. If Pi,R(t) > Pi,max then set

P ∗
i (t) = Pi,L(t). Otherwise, among the values Pi,L(t) and

Pi,R(t) choose the one which results in the minimum value

for ϕi(t) and assign it to P ∗
i (t).

For finding B∗
i (t), node i considers the problem

minimize
Bi(t)⊆Ti(t)

χi(t) (7)

which can be solved by simply selecting all those tasks for

which Qi(t)Mij(t)−(Zi(t)−V )Eij(t) is negative. Therefore,

B∗
i (t) = {j ∈ Ti(t) : Qi(t)Mij(t)− (Zi(t)− V )Eij(t) < 0}.
In any time slot t, the time complexity of ECCA at

neighbour node i is O(Ai,max), where Ai,max > Ai(t) ∀t.
At the source node its time complexity is O(N).

E. Performance Bound
In the following theorem we present the performance bound

for ECCA, which is a direct consequence of Theorems 4.5 and

4.8 in [3].

Theorem 1. Assume E{L(Θ(0))} < ∞. For any V > 0,
ECCA ensures that the packet queues Q(t) are mean rate sta-
ble, all the required constraints are satisfied, and ȳ0 satisfies
the following inequality:

ȳ0 ≤ ȳopt +
B

V
.

V. SIMULATION RESULTS

In this section we present simulation results to study the

effect of various system parameters on the performance of

ECCA. We choose T = 1 sec and w = 0.005. The packet

size in the system is chosen to be 1280 bytes (minimum

datagram size of IPv6). We assume the communication be-

tween neighbour nodes and the cloud go through a cellular BS

and use parameters from the 3GPP standard. The maximum

power of neighbour nodes is set to Pi,max = 500 mW, which

is the maximum output from a UMTS/3G power class 2

mobile phone. The bandwidth is set to W2 = 3.84 MHz.

We choose the normalized channel gains from an exponential

distribution with mean 4. We assume node 0 communicates

with neighbour nodes using Bluetooth and hence choose the

following values [14]. The maximum power used by the source

node is set to P0,max = 100 mW. The bandwidth is set to

W1 = 1 MHz. We choose the normalized channel gains from

an exponential distribution with mean 80.

Task arrivals at each node i in any time slot is chosen

according to a Poisson distribution with parameter λi. The

data size of a task M in the system is chosen uniformly from

the set {M̄i − 20, M̄i − 10, M̄i, M̄i + 10, M̄i + 20} for all i.
Default value for the average data size per task is M̄i = 50
KB. The computational energy requirement of a task E is

chosen uniformly from an interval of length 1.6. Default value

for the average computational energy requirement per task

is Ēi = 1 joule, for all i. Our choice for the average data

size and average energy requirement of tasks is motivated

by the corresponding values of the tasks offloaded for the

face recognition application in MAUI [10]. We choose the

following set of default parameters to study the affect of

various parameters on the objective value achieved by ECCA.

λi = 2, V = 5000 and N = 2. Each simulation run spans

2x107 time slots.

Figure 2 shows that, under large V values, as the number

of neighbour nodes N increases, a better objective value is

achieved. This is as expected, since the overall cost should

be non-increasing in N under an optimal control policy.

Interestingly, for small V values this is not the case. The

reason is that, for small V values, more weight is given to

the constraints compared with the objective. From the utility-

delay trade-off, it can be seen that the objective value achieved

can be quite far from the optimal value. Since the number

of constraints increases with N , the value of B potentially

increases resulting in such a pattern.

Figure 3 shows an interesting phenomenon that the objec-

tive value decreases with the average computational energy

requirement per task at the neighbour nodes. Even though

offloading a task by a neighbour node provides it with an
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energy gain equal to the computational energy requirement

of the task, it has to compensate for the transmission energy

that will be spent for transmitting the data packets of that task.

For a fixed average data size per task, the relative transmission

energy cost is reduced when the average computational energy

per task in the system increases, and hence the required

compensation in the form of computational energy offload per

slot decreases. Another observation from Figure 3 is that the

objective value increases with the average data size per task.

In summary, it costs the source node less if the tasks being

offloaded by the neighbour nodes have higher computational

energy requirement and lower data size.

Figure 4 shows that the objective value increases with the

task arrival rate λ0 as well the average data size per task M̄0 at

the source node. An interesting observation is that the increase

is super-linear with respect to λ0. We explain this as follows.

An increase in data load at the source results in a higher

data load to be forwarded by neighbour nodes. This results

in higher transmission energy and hence higher computational

energy offload per slot. Therefore, the relation between the

objective and λ0 is similar to that of transmission power and

data rate, which is super-linear.

VI. CONCLUSION

In this work we have studied one scenario of cooperation in

MCC where nearby mobile devices cooperate with a source

mobile device to forward its computing tasks to the cloud.

Using a discrete time queuing model, we have formulated a

stochastic network optimization problem in which we aim to

minimize the cloud cost incurred by the source device due to
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Fig. 4. Average computational energy offload per slot vs. λ0, for different
values of M̄0

tasks offloaded from neighbour nodes subject to no energy loss

at the neighbour nodes and packet queue stability. Noting that

no performance guarantee can be obtained by using the stan-

dard Min-Drift-Plus-Penalty algorithm, we have formulated an

equivalent problem and proposed ECCA algorithm to solve it

for a distributed solution.
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