
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
iDNS: Enabling Information Centric Networking through the DNS

Permalink
https://escholarship.org/uc/item/9x98d7sc

Authors
Garcia-Luna-Aceves, J.J.
Sevilla, Spencer
Mahadevan, Priya

Publication Date
2014-12-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x98d7sc
https://escholarship.org
http://www.cdlib.org/


iDNS: Enabling Information Centric Networking
Through The DNS

Spencer Sevilla∗

spencer@soe.ucsc.edu
∗ UC Santa Cruz
Santa Cruz, CA

Priya Mahadevan†

priya.mahadevan@parc.com
† Palo Alto Research Center

Palo Alto, CA

J.J. Garcia-Luna-Aceves∗†

jj@soe.ucsc.edu

Abstract—Information centric networking (ICN) architectures
represent a conceptual shift from naming end-hosts in the Internet
to naming content directly, and require either significant changes
to the existing IP infrastructure or replacing it entirely. We
present iDNS (information-centric DNS), an evolutionary path
towards deploying ICN at Internet scale based on modifications to
the DNS that leave the current routing infrastructure unmodified.
We build and evaluate an iDNS prototype, and use it to show
that iDNS achieves the benefits associated with ICN (i.e. location-
independent naming, nearest-replica-routing) in a manner that
both leverages current infrastructure, including content delivery
protocols and caches, and supports future evolution towards
other network-layer ICN architectures.

I. MOTIVATION AND INTRODUCTION

Internet communication has shifted primarily to content
distribution. Internet content continues to grow exponentially,
and a large portion of this content is user-generated, to be
shared with other users. This shift has prompted a substantial
research effort directed towards Information-Centric Network-
ing (ICN). This body of work [1], [2], [3], [4] proposes a
“clean slate” redesign of the Internet architecture, shifting the
focus from addressing hosts to denoting content in the form of
named-data objects (NDOs). Although this shift to addressing
content directly can provide many performance benefits in the
future, the need to replace today’s TCP/IP stack and routing
infrastructure constitutes a significant obstacle to the adoption
and deployment of ICN, given the ubiquity of IP routers and
switches. Moreover, many open questions remain regarding
naming, caching, routing, security, discovery, and scalability
that must be solved before any one proposal is mature enough
to be deployed at Internet scale.

Independently of the ICN clean-slate research thrust, sig-
nificant changes and improvements have been made to Web
technologies over the last decade in order to better support
content distribution. These technologies (e.g., Content Deliv-
ery Networks (CDNs), caches, and proxies) were designed
to alleviate some of the problems associated with content
distribution and dissemination; however, they have evolved in
a very ad-hoc, disjointed manner.

We believe that the Domain Name System (DNS) is the
right place to develop and deploy Internet-scale ICN without
requiring changes to the current routing infrastructure. On
the one hand, the DNS is a primary barrier towards a more
information-centric Internet because the current approach of

mapping domain names to host addresses implicitly encodes
location information. On the other hand, the DNS is one of
the few core components of today’s Internet suite that can
be extended without any impact to the underlying routing
infrastructure, and without significant difficulty, given that
intermediate DNS servers must forward record queries and
responses even if they do not recognize the record type.

This paper describes how to achieve information-centricity
in the Internet by extending the DNS to store content names in
addition to hostnames, and adapting existing content-delivery
protocols or developing new applications to take advantage
of these new records. Extending the DNS and accompanying
protocols in this manner takes full advantage of the existing
Internet routing infrastructure and core DNS servers, and can
be easily deployed from the edge in an “opt-in” fashion.

This paper is organized as follows: Section II provides
an overview of related work in ICN and Web technologies.
Section III describes our proposed changes to the DNS,
which we call information-centric DNS (iDNS). Section IV
describes proposed changes to content-delivery protocols to
take advantage of iDNS. Section V provides a qualitative
analysis of iDNS compared to other ICN systems while Sec-
tion VI analyzes the scalability of iDNS. Section VII provides
experimental results obtained with a prototype implementation
of iDNS, and Section VIII concludes the paper.

II. RELATED WORK

A. Information Centric Networking

The various ICN proposals generally share a common set
of benefits, namely: persistent and unique naming of data,
efficient content-distribution, secure content provenance and
authentication, and better support for network mobility, disrup-
tion, and multihoming. By the same token, ICN proposals also
share a number of characteristics, including: routing based on
content names, divorcing content names from location, ubiq-
uitous content-caching at intermediate routers, and nearest-
replica-routing [5], [6].

Distinguishing between the common benefits of ICN pro-
posals and their common characteristics is crucial to our
work, because the architecture we propose is a departure
from prior ICN proposals. Some of our design decisions, such
as preserving IP routing, conflict with the characteristics of
prior work. However, we argue that this is acceptable because



2

the goals of information-centricity lie in the set of benefits
attained, not in the methods by which they are attained.
Thus, for the remainder of this document we focus on the
aforementioned set of ICN benefits, rather than characteristics.

B. Efficient Content Distribution in the Web

Several Web technologies today (e.g., CDNs and caches)
have evolved to help scale content distribution. Though these
technologies are not information-centric, they implicitly sup-
port location-independent naming in that they serve the same
data object from several locations. In this vein, HTTP itself
can be considered to be information-centric in that URLs name
a piece of content [8]. However, the host-name component
of a URL is bound to a location in the network. Using the
host name in a URL literally inhibits true location-independent
naming, and is a significant obstacle in adapting these tech-
nologies to be more fully information-centric.

Directing clients to other hosts (such as CDNs or mirrors)
requires DNS redirection accomplished by changing the host-
name (and by extension the URL), thereby fragmenting the
namespace and encoding location-dependence into a content
name. Fragmenting the namespace in this manner reduces the
effectiveness of content caches, because a cache has no way
of identifying that a particular piece of content is duplicated
across multiple URLs. Additionally, given that HTTP requests
are sent directly to the IP address of a host, local caches must
be placed directly along the network path and sniff all HTTP
headers to provide any benefit. Qualitatively, this design forces
a fundamental tradeoff between persistent content-naming and
efficient content distribution. Moreover, Web technologies
focus almost exclusively on these two points, and provide
no mechanisms for content security (aside from securing the
connection between two hosts) or support for client mobility.

III. IDNS AND THE CONTENT RECORD

Our approach, which we call the Information-Centric DNS
(iDNS), extends the DNS to denote content in addition to
hosts, and adapts content delivery protocols to reflect this
change. Such a shift clearly achieves location-independent
content naming and resolves the core of the problem described
in Section II-B. However, we show that this shift also achieves
the other ICN benefits detailed in Section II-A.

At the core of iDNS is a Content Record (CR), which is
a new type of DNS resource record that refers to a particular
NDO or name prefix. Clients desiring an NDO or name prefix
must first resolve the corresponding CR through the DNS,
which contains the address of one or more servers hosting
the content along with protocol-specific metadata necessary to
fetch the content and verify its authenticity.

The CR format is illustrated in Figure 1 and contains, in
addition to the standard DNS resource record fields, a field
stating whether the content can be cached, fields for object and
record security, a field identifying the content delivery protocol
and any protocol-specific values, and a list of one or more
addresses where the content can be found. The addresses are
included in the response as individual DNS A{AAA} Records.

These addresses are not necessarily those of the publisher or
origin, but could potentially be a CDN node, alternate mirrors,
or even a nearby cache.

A. Object and Record Security

The object security field in a CR can take several forms. One
example is a hash value calculated over the content. Another
is the public-key of the publisher, used by the client to verify
a signature provided with the content object. The CR object
security field enables the content record to secure the content
object. However, for such a scheme to work, the CR itself
must be secured. Given that the CR is just another type of
DNS record, the CR may be secured through any one of
several existing security approaches proposed to date, such
as DNSSEC [9].

The process of creating a new CR must also be secured, and
potentially on a much finer-grain basis than the DNS is today.
For example, only Spencer should be allowed to publish CRs
under the prefix /parc/videos/spencer, and only Priya under
the prefix /parc/videos/priya. This fine-grained security can be
accomplished through any of the current access-control tech-
niques used by content servers supporting multiple publishers
today, such as HTTP and FTP servers. These servers can
provide each registered user with their own directory, typically
protected by a username and password, which corresponds to
a particular prefix or subtree. Given that a particular DNS zone
manages the records under the zone, different domains may
handle security, registration, and scalability differently without
heavily impacting the DNS itself.

B. Address Record Selection

When a client successfully resolves an iDNS query for an
NDO, it receives the CR and one or more address records.
In the event that the client receives several address records,
it must assume that the records have been ranked by the
DNS for locality, availability, or some other metric, and thus
should request the NDO from the first address first. Policies
may arise and be standardized for address record ranking and
ordering, similar to the rules specified in [10] for host IP
address selection. However, the logic or complexity of such a
ranking is beyond the scope of this paper, except to specify
that the ranking should be assumed by the client.

A crucial part of ICN is directing clients to nearby copies
of NDOs. For iDNS to support this functionality, the address
of a local content server must be included in the address set,
and the address set must be properly ranked to reflect this
locality by the time the response reaches the client. Thus, in
iDNS we allow any node along the DNS response path to
add address records or reorder the records in the set, with the
understanding that DNS servers closer to the client have a
better understanding of the client’s environment.

Though there could be several DNS servers along the return
path, in practice there are typically only two: the authoritative
DNS server for the CR, and the local DNS server for the client.
Thus, in iDNS we expect that the local DNS server will be
largely responsible for directing clients to nearby caches. This



3

Fig. 1: Content Record vs Host Record Fig. 2: Dynamic Record Generation Fig. 3: Local Record Generation

approach has the added benefit that the local DNS server sees
the address of the client itself, and is therefore able to perform
finer-grained localization than the authoritative DNS servers
that see only the address of the local DNS server. Multiple
studies [11], [12] have shown that this address is only useful
for coarse-grained localization, and this limits the effectiveness
of CDNs powered by DNS redirection.

IV. CONTENT REPLICATION

Once a client receives a CR, it uses the information in the
record to fetch the NDO from the most convenient site where
the NDO is cached or replicated. We divide content replicas
into two forms, long-lived and cached, with the difference
being that long-lived replicas can generally be relied upon to
provide the content, whereas caches make no such guarantees.
Caches typically provide “best-effort” reliability, given that the
requested content may be available, may have been evicted,
or may never have been cached before.

A. Long-Lived Content Replication

A publisher may add servers, use mirroring sites, or deploy
a CDN to replicate content. In contrast to the ad-hoc methods
employed by content delivery protocols today, iDNS provides
integrated support for such long-lived replication of content:
the publisher simply contacts the authoritative DNS server for
the CR and adds an address record referring to the new server
hosting that content.

The authoritative DNS server for the CR may order the
addresses in a certain way, or only return a subset of the
addresses, based on the address of the local DNS server
issuing the request. This process is illustrated in Figure 2,
where the publisher registers the CR (step one), and then
two clients using different local DNS servers query the same
authoritative DNS server (step two) and receive different
address-set orderings. Accordingly, they then request the same
NDO from two different content servers (step three).

Distinguishing between publishing content (creating new
CRs) and mirroring or serving content is important from a
security standpoint. Only the owner of a prefix should be
allowed to create a new CR under that prefix. However, this
same restriction need not apply to parties wishing to mirror or
re-host a piece of content. Content mirrors often arise out of
immediate necessity [13], and sometimes the content publisher
is either unaware, cannot be contacted, or does not have the
necessary resources to scale up content delivery. Thus, other
parties may be allowed to append their address to an existing
CR without the explicit permission of the publisher. However,

as long as these parties are not allowed to change the metadata
in the CR, including the object security field, clients can easily
identify malicious or illegitimate content. Such a restriction
can be enacted through the access-control policies mentioned
in Section III-A.

B. Content Caching

Caching is an equally important part of scalable content
distribution. Any DNS server on the return path may be aware
of a nearby content-cache, and can direct the client to this
cache by simply adding the address of the cache to the address
set. This process has the potential to be most effective when
performed at the local DNS server, since the local DNS server
knows the address of the client itself. Figure 3 illustrates this
process, where after a content cache receives an NDO (step
one), the local DNS server directs the client (step two) to
request the NDO from this cache (step three).

V. COMPARING IDNS WITH PRIOR ICN PROPOSALS

Having provided a technical overview of iDNS, we return
to the previously stated goals and benefits of ICN with the
intent of showing that iDNS achieves all of the benefits of
prior ICN proposals.

A. Location-Independent Persistent Naming

iDNS ensures that content names are persistent and unique
through the hierarchical nature of the DNS. It also decouples
names from locations by separating the CR from its set of
addresses, and maintains a namespace that is not fragmented,
even when content is moved or mirrored across different
content servers.

There is an ongoing debate [14], [15] on whether content
names should be drawn from hierarchical or flat name spaces.
Works advocating flat names propose using a peripheral name
resolution service (NRS) to translate between user-readable
names and routable ones, and various proposals argue whether
this NRS should be flat or hierarchical.

In this debate, iDNS does not advocate a particular approach
over another: the CR provides a natural point of convergence
for either approach. Though the DNS itself is hierarchical,
flat name-resolution protocols exist [7], [16], [17] and other
protocols can be designed as necessary: they must simply map
a name to a CR. Moreover, the DNS itself can be adapted to
a flat naming scheme, as is proposed by NetInf [4].



4

B. Efficient Content Distribution

A major motivation for ICN is to relieve congestion and
improve content distribution through a combination of caching
and nearest-replica-routing. iDNS accomplishes this goal by
enabling servers along the DNS response path to change the
cached address-set via the guidelines in Section III-B.

Another ongoing debate in the ICN community [5], [18],
[19], [20] is the effectiveness of different caching policies,
such as ubiquitous caching compared to edge caching. iDNS
can enable any caching policy based on the topology of
intermediate DNS servers appending cache addresses.

C. Object Level Security Model

An ICN design primitive is the concept that content can
come from any location in the network. Thus, the traditional
security model, which focuses on securing and authenticating
hosts, must be changed to authenticate and secure content in-
stead. iDNS preserves the concept that content may come from
anywhere, and accomplishes object-level security through the
security field in the CR.

Compared to other ICN proposals, an advantage of iDNS
is that its trust model depends only on the DNS. As long
as the base CR is secured, via DNSSEC or some other
protocol, then the client can easily verify that the content
received is legitimate. Furthermore, iDNS does not require any
intermediate routers to verify the authenticity of the content.
This technique avoids an open problem in the ICN community,
where many questions exist regarding the trust and feasibility
of a universal PKI (or other such security protocol) deployed
at intermediate routers, as well as the feasibility and scalability
of performing content verification at each router.

D. Mobility And Disruption

iDNS provides natural support for client mobility by focus-
ing the content-localization logic into the local DNS resolver.
When nodes leave and rejoin the network, DHCP already
provides them with the address of a local DNS server, and
this information is all that is necessary to localize the client.
The client then sends subsequent CR requests to the new local
DNS server, which directs the client to nearby caches if they
exist.

E. Differences With Prior ICN Work

Architecturally, iDNS differs from other ICN proposals in
one key fashion: it uses two request-response pairs, one to
locate the content and the other to fetch it. This approach
contrasts with other ICN proposals, which typically employ
a single request-response pairing. Conceptually, this separates
the act of locating content from the act of distributing it, and
this split enables two separate topologies to coexist: one for
content-location and the other for content-distribution. This
design is a key strength of iDNS, because it effectively sup-
ports “near-replica routing” without relying on large content
tables or a content-routing protocol. DNS names are simply
routed swiftly without any localization or fragmentation, and
then the content-request itself is routed over IP.

This split has another important ramification, in that it
enables both steps in the system (content location and dis-
tribution) to evolve independently of each other, bridged only
by the format of the CR. Hence, iDNS can support multiple
different approaches to naming and caching, as well as a large
suite of alternative content delivery protocols, including HTTP,
DNS, BitTorrent, and Gnutella.

VI. ANALYSIS OF SCALABILITY

Supporting NDO resolution through the DNS increases the
number of records in the DNS by several orders of magnitude,
roughly from 106 to at least 109 [21], [22]. Though the DNS
is known to be a highly scalable distributed system, such a
significant increase in scale merits further examination. In
particular, we examine the scalability of two key parts of the
system: the authoritative DNS servers in charge of storing and
serving the records; and the local DNS servers in charge of
forwarding queries, caching entries, and returning records to
clients.

A. Scalability of the Authoritative DNS

By increasing the number of records served by the DNS, we
implicitly increase the amount of (a) storage and (b) processing
power necessary to serve these records. Additionally, if we
increase the average name length (a likely assumption), we
potentially incur additional DNS referrals.

1) Storage and Processing Power: Increasing the number
of records in the DNS correspondingly increases the work
necessary to store and serve these records. However, it can
be qualitatively argued that a comparable amount of work is
already performed today by HTTP servers. Given that today’s
DNS resolves nothing more than a hostname, an HTTP server
must manage an entire directory tree, parse the HTTP path
accordingly, and return the necessary piece of content. In
contrast, DNS servers must only return a corresponding CR,
not the content object itself. Even today, the performance of
TLD servers (e.g., com or org) shows that a particular DNS
zone can support thousands of entries.

Fortunately, the DNS is a well-designed, hierarchically
distributed system. This design ensures that if an organization
struggles to serve or update their CRs, this inadequacy is
contained to the CRs of this organization and does not slow
down or create problems elsewhere in the DNS. Thus, there
exists a powerful and natural motive for an organization
to successfully manage the publication of their content and
provision adequate resources to do so.

2) Latency and Referrals: DNS requests start at the root
and descend the hierarchy as necessary. For example, with
no cached information, DNS resolution for www.parc.com
consists of three requests: the first to the root name-server,
the second to the authoritative server for com, and the last
to the authoritative server for parc. Thus, as names contain
more components, they necessarily result in more requests and
referrals.

This design means that the behavior of DNS, in particular
referrals, depends on the structure of the content name: the



5

same set of records may result in different behavior, depending
on how their names are structured. Accordingly, to provide
a meaningful analysis, we had to make assumptions about
the distribution and structure of content names. In particular,
we assume that the structure of content names in a DNS-
based system mirrors the structure of HTTP names used
today: for example, the URL www.parc.com/index.html would
correspond to four iDNS zones, with the zone www being in
charge of the CR for index.html. Such an assumption is
safe and useful, because HTTP does not mandate the format
of the path component, and the assumption enables us to draw
conclusions from existing HTTP traffic.

Building on this assumption, we analyzed a large set of
HTTP GETs1. In our analysis, we stripped out the hostname
and then examined the rest of the HTTP path for the number
of components. For example, a GET for parc.com/index.html
would have a value of 1, whereas parc.com/videos/index.html
a value of 2. Our results are shown as a histogram in Figure 4,
with a mean value of 3.9 and standard deviation of 2.89.

Notably, prior analysis of DNS traffic has shown that DNS
requests and referrals are largely mitigated through local DNS
caching. Jung et al [23] observe that the average DNS query
results in 1.2 referrals and a latency of approximately 60ms,
despite the fact that the average DNS name has 3.3 compo-
nents. These results are encouraging, because they illustrate
the effectiveness of caching in improving DNS performance.

Based on the above results, we believe that caching and
other optimizations used for host-name resolution with the
DNS will be equally successful when extended to content
objects. When deployed at a large scale, we expect the average
name to consist of ∼ 6.8 components, and to result in ∼ 2.4
referrals and an average latency of ∼ 100ms, all of which are
acceptable values.

B. Scalability at the Local DNS Server

iDNS increases the work required by the local DNS server,
because it must direct clients to nearby content-caches. In
its simplest form, redirection is accomplished by appending
an address to the address set of each DNS response. This
operation, which must happen for each request/response pair,
constitutes less work than a transparent cache carries out today
when it inspects HTTP headers. More complex schemes for
cache load balancing may evolve, but such schemes represent
a fundamental tradeoff between additional complexity at the
local DNS server or decreased efficiency at the content cache.
This tradeoff is important to highlight, because such a tradeoff
can only be examined and optimized for a particular local
topology and set of hardware, yet we show that iDNS provides
support for such optimizations.

Given that local DNS servers often cache records to improve
DNS performance, increasing the number of DNS records can
have an adverse affect on the local cache. However, multiple
studies [23], [24] indicate that the DNS cache size is not a

1One day (2012-11-01 00:00∼23:59) of HTTP traffic initiated by hosts at
POSTECH University in South Korea, approximately 25 million requests

Fig. 4: Histogram of HTTP Path Components

Fig. 5: Prototype Deployment Topology

limiting factor on performance, because the distribution of
DNS objects is Zipf, and the individual record objects are
quite small. In fact, DNS objects are so small that the common
DNS caching utility dnscache provides a default cache size
of 1MB and a maximum cache size of 16MB! Thus, there is
ample room for DNS caching to expand by several orders of
magnitude before an impact on performance is felt.

VII. EXPERIMENTAL DEPLOYMENT

To explore a common deployment scenario, we built a
prototype iDNS system that employs hierarchical CCN-style
naming, edge-caching through local DNS servers, and HTTP
for content delivery. We wrote a simple iDNS client, local
DNS resolver, and content cache in Java, and deployed the
code (approximately 2000 lines, of which only 200 are unique
to iDNS) across three servers and four clients at PARC
configured in the topology shown in Figure 5. Both subnets
use the same local DNS server, which directs clients to their
closest cache based on their address; the primary difference
between the two subnets is that the cache in Subnet 1 is
directly along the network-path from the clients to the Internet,
whereas this is not the case for Subnet 2. To avoid changing
the authoritative DNS server, we elected to encode CRs as a
TXT record starting with "CR:".

A. Name Format Translation

We start with a hierarchical content name (e.g., /parc/
csl/papers/idns.pdf), which is translated to a DNS-resolvable
name through a simple algorithm: First, reverse the order
of all names broken by the / character to create the string
idns.pdf/papers/csl/parc/. Next, swap each / character for a
., and each . for a /, to create the valid2 DNS name
idns/pdf.papers.csl.parc. This simple translation is one-to-one
and reversible, which allows the DNS name to later be
reconstructed into the original hierarchical content name.

To support HTTP, we define a hostname length number
(HLN) to be included with the CR. The HLN is used to trans-
late the content name from DNS to HTTP; this is necessary,
given that HTTP URLs contain two hierarchical components,

2DNS explicitly prohibits use of the “/” character in hostnames, but allows
it in other record types, such as TXT or our CR.



6

Cache Policy None Transparent iDNS

Client Latency µ = 45ms µ = 26ms µ = 29ms
σ = 5.03ms σ = 2.71ms σ = 3.45ms

Cache Latency N/A µ = 52ms µ = 61ms/32ms
σ = 4.47ms σ = 4.67ms/2.94ms

TABLE I: Results

the hostname and the path. Thus, the HLN is needed to
denote the number of components in the hostname, with the
assumption that the remainder of the name is the content
path. For example, when HLN = 2, the DNS name idns/pdf.
papers.csl.parc.com translates to parc.com/csl/papers/idns.pdf,
whereas HLN = 3 would create csl.parc.com/papers/idns.pdf.
Once translated, the client then issues an HTTP GET request
to the top address returned by the local DNS server.

B. Latency Results

We hosted a 456KB copy of this paper on a server at UCSC,
and created a CR naming it as edu/ucsc/soe/ccrg/idns.pdf. We
then had each client in our test topology request the file 10
times, using three different caching schemes: first without
caching, second only using transparent caching along the
network path, and third using iDNS cache location to explicitly
address the same cache.

The first row of Table I shows the average latency (µ) and
variance (σ) of the HTTP transfer, as perceived by the end
client. As expected, these results show that a cache-hit reduces
latency as compared to fetching the object from the origin;
however, they also show that there is minimal performance
difference between transparent in-line caching and our method,
which directly addresses the cache itself and includes the
origin addresses as an HTTP header option. This result is
important to our design because it enables clients to take
advantage of caches existing outside of the direct network-
layer path to the server.

The second row contains the average time needed to popu-
late the cache itself the first time the file is requested. When
requesting a file from the origin, iDNS exhibits slightly more
overhead compared to transparent caching (61ms to 52ms);
this overhead is the natural result of coordinating two separate
HTTP requests as opposed to simply sniffing and copying
data. However, the second entry under iDNS (32ms) shows
an interesting observed behavior: the first time an iDNS cache
requests the file, it must be served from the origin server at
UCSC, yet when the second cache requests the same file, it
can locate and request it directly from the first iDNS cache.
This behavior results in lower latency as well as distributing
the load off the origin server.

VIII. CONCLUSION

iDNS is an evolutionary step towards development and de-
ployment of ICN architectures. We show that iDNS maintains
compatibility with existing approaches to routing and content-
delivery, and requires only minor changes to end clients. This
compatibility means that iDNS can be deployed today, yet it
can be extended to support future developments (e.g., content
routing and content security) in other ICN architectures as they

mature. Our analysis of DNS and HTTP shows that iDNS can
be deployed at Internet scale, and our prototype deployment
shows that iDNS achieves the benefits of ICN without incur-
ring any significant processing or control overhead.

REFERENCES

[1] T Koponen, M Chawla, B G Chun, A Ermolinskiy, K H Kim, S. Shenker,
and I Stoica. A data-oriented (and beyond) network architecture.
37(4):181–192, 2007.

[2] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,
and R.L. Braynard. Networking named content. Proceedings of the
5th international conference on Emerging networking experiments and
technologies, pages 1–12, 2009.

[3] N Fotiou, P. Nikander, D Trossen, and G C Polyzos. Developing
information networking further: From PSIRP to PURSUIT. Broadband
Communications, Networks, and Systems, pages 1–13, 2012.

[4] C Dannewitz. NetInf: An information-centric design for the future
internet. 2009.

[5] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,
Teemu Koponen, Bruce M Maggs, K C Ng, Vyas Sekar, and Scott
Shenker. Less Pain, Most of the Gain: Incrementally Deployable ICN.
In Proceedings of SIGCOMM 2013, page 1. ACM, 2013.

[6] B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, and B Ohlman. A
survey of information-centric networking. Communications Magazine,
IEEE, 50(7):26–36, 2012.

[7] K Katsaros, N Fotiou, X Vasilakos, C Ververidis, C Tsilopoulos,
G Xylomenos, and G Polyzos. On inter-domain name resolution for
information-centric networks. NETWORKING 2012, pages 13–26, 2012.

[8] L Popa, A Ghodsi, and I Stoica. HTTP as the Narrow Waist of the
Future Internet. page 6, 2010.

[9] S. Weiler and D. Blacka. RFC 6840: Clarifications and Implementation
Notes for DNS Security (DNSSEC). IETF Standard, 2013.

[10] Richard Draves. Default Address Selection for Internet Protocol version
6 (IPv6). 2003.

[11] Z.M. Mao, C.D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and
J. Wang. A precise and efficient evaluation of the proximity between
web clients and their local DNS servers. USENIX Annual Technical
Conference, pages 229–242, 2002.

[12] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the effectiveness
of dns-based server selection. In INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1801–1810. IEEE, 2001.

[13] The Slashdot Effect. http://en.wikipedia.org/wiki/Slashdot effect.
[14] A Ghodsi, T Koponen, J Rajahalme, P Sarolahti, and S. Shenker. Naming

in content-oriented architectures. pages 1–6, 2011.
[15] M F Bari and S Rahman Chowdhury. A survey of naming and routing

in information-centric networks. Communications . . . , 2012.
[16] V. Ramasubramanian and E.G. Sirer. The design and implementation

of a next generation name service for the Internet. ACM SIGCOMM
Computer Communication Review, 34(4):331–342, 2004.

[17] Tam Vu, Akash Baid, Yanyong Zhang, Thu D Nguyen, Junichiro
Fukuyama, Richard P Martin, and Dipankar Raychaudhuri. Dmap: A
shared hosting scheme for dynamic identifier to locator mappings in the
global internet. pages 698–707, 2012.

[18] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath
Raghavan, and James Wilcox. Information-centric networking: seeing
the forest for the trees. In Proceedings of the 10th ACM Workshop on
Hot Topics in Networks, page 1. ACM, 2011.

[19] G Xylomenos, X Vasilakos, C Tsilopoulos, V A Siris, and G C
Polyzos. Caching and mobility support in a publish-subscribe internet
architecture. Communications Magazine, IEEE, 50(7):52–58, 2012.

[20] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. Cache
“less for more” in information-centric networks. pages 27–40, 2012.

[21] Diego Perino and Matteo Varvello. A reality check for content centric
networking. pages 44–49, 2011.

[22] We Knew The Web Was Big... http://googleblog.blogspot.com/2008/07/
we-knew-web-was-big.html.

[23] J. Jung, E. Sit, H Balakrishnan, and R Morris. DNS Performance and
the Effectiveness of Caching. Networking, IEEE/ACM Transactions on,
10(5):589–603, 2002.

[24] Edith Cohen and Haim Kaplan. Proactive caching of DNS records:
addressing a performance bottleneck. Computer Networks, 41(6):707–
726, April 2003.




