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Abstract—Low-power wireless, such as IEEE 802.15.4, is en-
visioned as one key technology for wireless control and com-
munication. In the context of the Advanced Metering Infras-
tructure (AMI), it serves as an energy-efficient communication
technology for both communications at building-scale networks
and city-scale networks. Understanding real-world challenges
and key properties of 802.15.4 based networks is an essential
requirement for both the research community and practitioners:
When deploying and operating low-power wireless networks
at metropolitan-scale, a deep knowledge is essential to ensure
network availability and performance at production-level quality.
Similarly, researchers require realistic network models when
developing new algorithms and protocols.

In this paper, we present new and real-world insights from a
deployed metropolitan-scale low-power wireless network: It in-
cludes 300,000 individual wireless connected meters and covers a
city with roughly 600,000 inhabitants. Our findings, for example,
help to estimate real-world parameters such as the typical size
of routing trees, their balance, and their dynamics over time.
Moreover, these insights facilitate the understanding and the
realistic calibration of simulation models in key properties such
as reliability and throughput.

I. INTRODUCTION

A key vision in Wireless Sensor Network (WSN) research
has always been large-scale deployment: tens of thousands
of sensor nodes potentially covering large metropolitan areas
shall sense and interact with the environment to enable new
applications. With the recent trends towards Machine-To-
Machine Communication (M2M) and Internet of Things (IoT)
we gradually see these visions enfolding [3], [9], [11], [14].

In this paper, we present our insights from a metropolitan-
scale network of 300,000 wireless nodes, i.e. smart meters,
covering a city with roughly 600,000 inhabitants. Meters
employ IEEE 802.15.4 [7] and ZigBee [1] for wireless com-
munication and provide the Advanced Metering Infrastructure
(AMI) of the city. The deployment began in 2008 and the
network has been operating at production level since 2009.

To our best knowledge, this paper is the first work to present
insights into such a large scale low-power wireless network.
We present common metrics for this network to characterize
topological properties. In addition, we introduce new metrics,
useful to describe the network dynamics. Our findings will (1)
help researchers in developing topology models for simulation
studies and (2) guide engineers when deploying large-scale
networks to achieve high performance and ease network main-
tenance. In the following, we summarize our contributions.
• Realistic Topology Characteristics: We conduct holistic

studies including 300,000 wireless nodes and present com-
mon topology characteristics such as distances, paths, etc. We

argue that based on our findings, detailed network models of
low-power wireless networks can be derived. Such models
enable the generation of synthetic network topologies with
realistic properties and, as a result, ease protocol evaluation
in controlled environments when real network data, especially
on a large scale, is unavailable.
• Network Dynamics: Wireless link-dynamics impact the
link quality between two devices and potentially lead to con-
nectivity and topology changes. Such link dynamics are espe-
cially common in low-power wireless communication, e.g.,
IEEE 802.15.4, as their low transmission power makes its
signals susceptible to interference and noise. We investigate
such topological dynamics and study correlations between
these dynamics and selected deployment factors, such as
received signal strength indication (RSSI), and geographical
deployment density. We believe that the network dynamics
characterized in this paper can guide engineers when deploy-
ing and maintaining low-power wireless networks and ease
their management.
• Routing Trees: In low-power networks, multi-hop routing is
a crucial building block: it ensures that packets from a source
are forwarded to the sink where processing takes place. In
this setting, connectivity and load-balancing are crucial to
ensure network reliability and performance. We investigate
how packet forwarding tasks are distributed among the nodes
in order to identify the hotspots, i.e., the critical points, in the
network. Our findings shed light on how to choose network
parameters when deploying low-power wireless networks and
they provide insights for developing new routing protocols
with further improved network reliability, reduced delay and
increased energy efficiency.

The remainder of this paper is organized as follows: In Sec-
tion II, we introduce the studied metropolitan-scale network
and our data traces. In Section III, we begin by presenting
basic characteristics of the network topology. Next, we conduct
a deeper analysis and describe topology dynamics and load
balancing in Section IV and Section V, respectively. We dis-
cuss related work in Section VI and conclude in Section VII.

II. DEPLOYED LOW-POWER WIRELESS NETWORK

The low-power wireless network discussed in this paper
contains around 300,000 wireless nodes. These nodes are
smart electricity meters belonging to the Advanced Metering
Infrastructure (AMI) [6] of a city. The network covers a
metropolitan area with roughly 600,000 inhabitants and about
450 km2 in size. Its main task is to collect metering data from
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Notation Meaning
Ti routing tree of coordinator i
tdi the dth snapshot of Ti, d ∈

{1, · · · ,Di}, where Di is the
number of snapshots of Ti

mj meter j
li tree level i (li, i ∈ Z+). In a

ZigBee tree, nodes in li are the
nodes which are i hops away
from the coordinator.

TABLE I: Notations
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Fig. 1: Average heights of all routing trees.
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Fig. 2: Average path lengths of all routing
trees.

smart meters and forward it to the central server for processing
and billing. In addition, it handles monitoring of the meters,
including error-reporting and over-the-air configuration.

The 300,000 meters communicate with each other via IEEE
802.15.4 and a variant of ZigBee for routing. In addition,
7600 coordinator nodes are deployed throughout the city.
Coordinators serve as data sinks and employ a cellular radio,
commonly GPRS, next to the 802.15.4 radio. Meters connect
to these coordinators either directly or use other meters as
relays. Thus, throughout the city there are 7,600 routing trees,
each with a coordinator node as the root. Nodes can connect
and later change to any of these trees, but at any time point a
meter can belong to only one tree. Coordinators and electrical
meters have built-in power supplies. In addition, batteries are
used in the presence of power outages.

The results presented in this paper are based on a data trace
of nearly two months (56 days) during the year 2012. For
each day, it contains a snapshot of the complete topology of
all active nodes.1 Table I gives the notations used in this paper.

III. BASIC TOPOLOGY CHARACTERISTICS

In this section, we present standard graph-related parameters
of routing trees in the studied network, as these are useful
for (i) registering these characteristics as parameters that can
be used in simulation studies, (ii) getting implications for
network performances (such as latencies) that can be affected
by those parameters, (iii) using them in the analysis and study
of higher level properties and measures, such as dynamics
and balancing properties, as proposed and presented in the
subsequent sections.

More specifically, we study a) tree heights, b) path lengths
from nodes to the corresponding coordinators, and c) the
node distributions at different tree levels. Since each of these
measures depends on the number of nodes in the tree, we study
the measures relative to the sizes of the corresponding routing
trees.

A. Tree height and average path length
Tree height is an important topology characteristic indi-

cating the depth of a tree. It can be used in measuring the

1Note that due to ongoing network maintenance, some coordinators and
their child nodes are omitted for individual days.

tree balance [8], through the comparison to the tree size. If
it has logarithmic relation to the tree size, then the tree has a
good balancing property, which implies good message delivery
latencies from leaf nodes to the root. However, tree height can
be affected by changes of only a small part of the tree (i.e.
adding a child node to a node in the maximum tree level is
enough to make the tree height grow by 1), while average path
length of a tree can imply the network latencies on average
cases, which will not be affected by extreme values. Thus we
study both of them: The average height of Ti is computed as
1
Di

∑
1≤d≤Di

(
height of tdi

)
; the average path length of Ti is

computed as 1
Di

∑
1≤d≤Di

(
average path length of tdi

)
. Fig. 1

and Fig. 2 show the average tree heights and average path
lengths of all routing trees, respectively. Based on the figures,
we found the followings:
• In Fig. 1, we observe significant ”step” growth of tree
heights taking place at approximately network sizes 15, 50,
100, 200. This is an expected pattern in relatively balanced
tree topology, as each tree level has its capacity of containing
nodes and, the number of nodes at each level is a multiple
of those at the previous level, thus the minimum number
of tree levels (i.e. the lower bound of tree height) grows
approximately logarithmically with the tree size.
• The variance of tree heights can be large for similar tree
sizes. For example, in Fig. 1 when the average tree sizes are
around 100, the corresponding average tree heights vary from
3 to 10. This is because the maximum distance between a
node and the coordinator is highly depending on the physical
locations of the meters, which may have large variations in
real-world deployments.
• In Fig. 2, we observe that, in general, the average path
lengths grow logarithmically with the tree sizes. We plot
two lines: log10 x and log3 x, noting that most points are
bounded by these two lines. This observation implies good
performance of message delivery latencies for average cases.

B. Tree-level densities

Next we study the tree-level densities, i.e., the node distribu-
tion upon different tree levels, which is an important topology
characteristic for generating synthetic topologies and can also
give an explanation from this aspect for what we observed
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coordinators plotted in log scale

in Fig. 1, and 2. The nodes distribution upon different tree
levels were studied for the different categories of tree sizes,
following the “step” pattern observed in Fig. 1. The results
are shown in Fig. 3. We observe that:
• When there are a small number of nodes in a routing

tree, then most of the nodes are connected directly to the
coordinator (i.e., reside in l1 in the tree).
• When the tree size is growing, the broadest tree level moves

down. In Fig. 3 we can see that the broadest tree level is l1
when the tree size is below 15; when the tree size grows, it
moves to l2; when tree size reaches 200, it is l3.
• The size of li does not always increase exponentially when i

increases. This explains why the heights of many trees are not
logarithmic to the tree sizes. Instead, the size of li increases
with i increasing until it reaches the broadest level; then
it decreases exponentially with i increasing. Therefore, the
proportion of nodes with a large distance to the root is quite
small, i.e. the trees are diamond-like in shape, thus explaining
why the average path lengths are logarithmic to the tree sizes.

IV. ANALYSIS OF TOPOLOGICAL DYNAMICS

The dynamic nature of wireless sensor networks influences
network management and communication reliability. In this
study, we try to capture such dynamics from the aspects
of inter-tree dynamics and intra-tree dynamics, indicating
changes of tree participations and changes of parent-child
relations among nodes, respectively.

A. Inter-tree dynamics

We propose the following measures to describe the inter-tree
dynamics features:

Definition 1: (Tree size dynamic ratio) The tree size
dynamic ratio of Ti is defined as the ratio of the standard
deviation of its tree size to its average tree size.

Definition 2: (Core-set and Core-set ratio ) The core-set
of Ti is defined as:

CoresetTi

def
==

{
mj :

∣∣∣{d : mj ∈ tdi

}∣∣∣ ≥ Φ
}

(1)

i.e. the set of nodes that have been part of this particular
routing tree in at least Φ snapshots. In our study, we choose

Φ as 50, meaning that if a meter belongs to more than 50 tree
snapshots of Ti, then this meter is counted in the core-set of
Ti.

The core-set ratio of Ti is defined as:

Core-set ratio of Ti
def
==

|CoresetTi |
average tree size of Ti

(2)

The tree size dynamic ratio describes how the nodes are
associated with the routing trees and how big the changes of
such associations can be. Fig. 4 shows tree size dynamic ratios
of all routing trees. We can see that most (95%) of routing trees
do not have big size dynamic ratios (less than 0.2), which lead
us to the following question:

Q 1: Can we induce that most of the nodes always stay in
the same routing trees?

To have deeper insight of inter-tree dynamics, the core-set
ratio can help us to see what is the proportion of nodes that
are “faithful”, i.e. that always stay in the same routing trees.
Whether a meter chooses to change its routing tree depends
on whether there are other routing trees nearby offering better
communication performance. Thus, the density of neighbor
coordinators of Ti can affect its core-set ratio. Taking this
into consideration, we study the core-set ratio based on dif-
ferent geographical deployment densities of coordinators. We
use a well-known density-based clustering algorithm, called
OPTICS [2], to find the variance of deployment densities
of the coordinators. In the OPTICS algorithm, the standard
way to identify clusters is to plot the reachability-distances
(RD) of all the points to their neighbor cluster cores in an
algorithm-specified order, which is called reachability-plots.
The reachability-distances describe how dense the points are
located: smaller reachability-distances indicate denser deploy-
ment, while bigger ones indicate sparser deployment. Figure 5
shows the reachability-plots of coordinators in the studied
network.

We identified three levels of reachability-distances based on
which we conducted the study on core-set ratios of the routing
trees. The results are shown in Fig. 6, from where we can see
the followings:
• When the tree sizes are small (smaller than 10), the core-set
ratios are usually high (above 0.8).



4

0 100 200 300
Average tree size

0.0

0.2

0.4

0.6

0.8

1.0
Co

re
-s

et
 ra

tio

0.000

0.026

(a)

0 100 200 300
Average tree size

0.0

0.2

0.4

0.6

0.8

1.0

Co
re

-s
et

 ra
tio

0.00

0.02

(b)

0 50 150 250
Average tree size

0.0

0.2

0.4

0.6

0.8

1.0

Co
re

-s
et

 ra
tio

0.000

0.016

(c)

Fig. 6: Probability density function of bivariate distribution of <average tree size, core-set ratio> under the three reachability-distances
levels of coordinators: (a) reachability-distances are smaller that 100m, (b) reachability-distances ∈ [100m, 300m], (c) reachability-distances
are bigger than 300m

• When the coordinators are deployed more sparsely, the
proportion of routing trees who has high core-set ratios
increases, e.g., in Fig. 6c, we see that most of the core-set
ratios are concentrated between 0.6 and 0.8.

The observations above are what we expected: When the
coordinators are deployed sparsely, meters do not find many
routing trees nearby, it is more likely that they always stay at
the same routing trees. For most of the small routing trees,
coordinators and meters are physically located very closely
(e.g., in the same room), to get the optimal routing service,
the best choice for those meters is to stay in the routing trees
of the coordinators co-located with them.

From Fig. 6, we know that it is not true that most of
the meters always stay in the same routing trees (answer for
question 1). And combined with the observation from Fig. 4,
it is interesting to observe that even though the node sets of
routing trees vary a lot, the relative sizes among routing trees
are quite stable.

B. Intra-tree dynamics

After studying the inter-tree dynamics, we focus on the
dynamics within routing trees. In particular, we study the
parent-child associations among meters and give the following
measure:

Definition 3: (Parent-dynamics) The parent-dynamics of
meter mi is defined as the number of different parent nodes
that mi has in the data trace.

Important factors which may affect the parent-dynamics
are the coordinators deployment density, the received signal
strength indication (RSSI) and the tree levels that meters
belong to. Fig. 7 shows the probability density functions
(PDFs) of parent-dynamics affected by the three factors. Based
on that, we found the followings:
• Coordinator-deployment density does not have big influ-

ence to the parent-dynamics. It is observed from Fig. 7a
that the three PDFs corresponding to different coordinator-
deployment densities are quite similar.
• Higher RSSI does not necessarily lead to less parent-

dynamics. Based on Fig. 7b, it is not possible to conclude

that higher RSSI2 (higher than −30dBm) implies higher
probability of small parent-dynamics than lower RSSI, e.g.,
within (−70dBm,−30dBm).
• Meters which are close to the coordinator do not have less
parent-dynamics. From Fig. 7c we observe that for a meter
within 3 hops away from the coordinator, the probability that
it has more than 15 parents is higher than the corresponding
probability for a meter further (e.g. more than 3 hops) away
from the coordinator.

C. Implications

Network dynamics may imply difficulties for network main-
tenance. For example, in the AMI system, communications
between the control server and the meters are done through
coordinators. If a meter changes its routing tree frequently,
then it is difficult for the control server to track it when
the server needs to communicate with the meter, which may
impair the two-way communication ability of AMI [6]. In the
meanwhile, within a routing tree, high parent-dynamics may
cause Orphan problems[12]. For instance, a node may attract
many nodes to connect to it due to the good signal strength,
which can make it reach the limit of the number of children it
can have. So the node cannot accept new connections anymore
which may lead some nodes cannot join the network since that
node is the only parent node that they can find.

Our findings suggest that sparser deployment of coordina-
tors may ease the work of tracking meters. However, deploying
less coordinators can increase the sizes of routing trees, thus
affecting the network latencies (observed in Section III). This
motivates further investigation on the optimal deployment of
coordinators. Parent-dynamics seems to be inherent to the
routing trees. Our findings provide insights of its behavior with
different deployment factors. To control such dynamics, it can
be also helpful to use some static routing strategies or parent-
child associations with the combination of dynamic strategies,
which was also suggested in [9] for large-scale WSNs.

2In our network, the maximum value of RSSI is 0dBm.
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V. ANALYSIS OF LOAD-BALANCING PROPERTIES

A. Measure the task load

A node acting as a router in a routing tree carries re-
sponsibility for forwarding the messages for the nodes in the
subtree rooted at it. The sizes of these subtrees have therefore
implications on the robustness of the network, as large subtrees
place large task loads to the routers. Therefore, we propose the
following measure for analyzing the load-balancing properties
of routing trees.

Definition 4: (Average biggest subtree proportion
(ABSP)) The ABSP of Ti is defined as

ABSPTi

def
==

1

|Di|
∑

1≤d≤Di

the biggest subtree size of tdi
size of tdi

(3)

This measure describes the average biggest task load for
routers in a routing tree. It is important, since usually a router
in a tree is just an ordinary node who acts in the full function
mode without having more computation power. Its perfor-
mance is crucial for the message deliveries, especially when all
the nodes in its subtree try to send messages simultaneously.
Fig. 8 shows the ABSP with the average tree size for each
routing tree. We observed the following:
• “Hot spots” do exist in many routing trees: Although there

is a big proportion of routing trees having their ABSPs less
than 0.4, there are still around 15% of routing trees with their
ABSPs greater than 0.6. This means that in such a routing
tree, there exists a node that has to forward messages for
more than %60 of the nodes in the tree.

B. Connectivity responsibility

For fine-grained information of load-balancing, we investi-
gate the connectivity responsibility of routers, which can be
implied by the following question:

Q 2: Is there a small set of routers in li that always connect
most of the nodes in li+1, or do all routers in li connect similar
number of nodes in li+1?

To capture such balance-related property, we compute the
degree distribution of nodes in different tree levels. From the
study in section III, we know that most of the nodes reside
in the top 4 tree levels, so most of the routers reside in the
top 3 levels. Therefore, we focus on the degree distribution

of nodes in l1,2,3. Since the tree sizes may also affect the
nodes distribution of different tree levels which may also affect
the degree distribution, we conduct our study for each of the
tree size categories3: (16, 50], (50, 100], (100, 200], (201,+∞].
Figure 9 shows the results. We found that:
• In all cases, the proportion of nodes have degree x decreases
exponentially with the growth of x.
• In each tree level, most of the nodes are leaf nodes (having
degree of 1)
• Answer to question 2: most of the nodes in li+1 are
connected to routers in li that have small degrees (e.g.,
between 2 and 5).

C. Implications
The energy consumption of a wireless node depends on

its subtree size, as the wireless radio chip consumes by far
the most power on a sensor node. We showed that nodes
can have big subtrees with non-negligible probabilities. If
such critical nodes run out of battery, then big part of nodes
may be temporally disconnected from the network. This is
not acceptable for AMI in smart grid, especially when time-
critical messages needed to be delivered to the server. Based
on our study, it is observed that the routing trees usually
have good balance properties; however, critical nodes with
big subtrees and degrees do exist. Therefore, our findings
give the insights for controlling the sizes of routing trees and
nodes deployment [5]. It also implies the need for rules to
choose parent nodes and ensure tree-balancing when a new
node is joining into the network. Moreover, besides the basic
topological parameters given in Section III, the distributions
of ABSP and nodes degrees can be used as parameters of
topology models for WSN simulation studies.

VI. RELATED WORK

Large-scale deployments of wireless sensor nodes can be
classified into two groups: (1) commercial, production-level
deployments, (2) deployments for research purpose.

Commercial deployments often contain tens of thousands
of nodes. For example, the City Center Hotel in Las Vegas

3We do not consider routing trees who have less than 15 nodes, since in
such cases, most of the nodes are leaf nodes and are directly connected to
the coordinators. Study the node-degree distribution for them is trivial.
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Fig. 9: Degree distribution of nodes in different tree levels. Trees are categorized according to their sizes

has 4,200 wireless automated rooms and contains a total of
136,000 wireless ZigBee nodes [10]. The Jackson Memorial
Hospital at the University of Florida has 14,000 Zigbee-based
tags helping to track assets [4]. While these and many others
are large-scale deployments, to our best knowledge, none of
them have been analyzed from a research point of view as we
do in this paper.

Next to these production-level deployments, there exist a
large body of research deployments. While many of their
network properties are discussed in scientific publications,
these deployments are commonly limited to some thousands
of nodes. For example, the Smart Santander deployment in
Spanish city of Santander contains about 5000 wireless nodes
[14]. Similarly, GreenOrbs [9] contains about 2000 nodes,
CitySee about 1200 [11], and ExScal about 1000 [3]. In
contrast to these, we present insights into a metropolitan-scale
network, containing 300,000 nodes and covering a city of
about 600,000 inhabitants. Furthermore, our study focuses on
topological properties and dynamics which were not mainly
considered in the previous work.

VII. CONCLUSION

In this paper, we presented a detailed study analyzing
key properties of a metropolitan-scale low-power wireless
network. It contains 300,000 wireless nodes (meters) and
comprises several thousands of routing trees to which the
wireless nodes connect. In particular, with our study we can
characterize (i) the shape of the trees, (ii) proportions of the
nodes that ”migrate” among trees relative to the deployment
density (inter-tree dynamics) and proportions of nodes that
change parents within the same tree (intra-tree dynamics), and
(iii) contention and balancing properties through distributions
of node degrees and biggest subtree sizes. Analyzing those
key properties and building corresponding models can ease
network operation and management for practitioners and sim-
ulation projects for researchers. These new models are required
as low-power networks differ in key aspects from other large-
scale deployments such as the Internet itself [15] or cellular
networks [13].
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