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Abstract—In this paper, energy efficient power adaptation is
considered in sensing-based spectrum sharing cognitive da
systems in which secondary users first perform channel semgj and
then initiate data transmission with two power levels basedn the
sensing decisions (e.g., idle or busy). It is assumed thatesgrum
sensing is performed by the cognitive secondary users, alibavith
possible errors. In this setting, the optimization problemof max-
imizing the energy efficiency (EE) subject to peak/averagerans-
mission power constraints and average interference consints is
considered. The circuit power is taken into account for totd power
consumption. By exploiting the quasiconcave property of th EE
maximization problem, the original problem is transformed into
an equivalent parameterized concave problem and Dinkelbdts
method-based iterative power adaptation algorithm is promsed.
The impact of sensing performance, peak/average transmitgwer
constraints and average interference constraint on the emgy
efficiency of cognitive radio systems is analyzed.

Index Terms—Channel sensing, energy efficiency, interference

power constraints, power adaptation, probability of detetion,
probability of false alarm, transmit power constraints.

I. INTRODUCTION

communications. The authors inl[5] design energy efficient
optimal sensing strategy and optimal sequential sensideran
multichannel cognitive radio networks. In addition, thesiag
time and transmission duration are jointly optimized [in. [6]
In the EE analysis of the aforementioned works, secondary
users are assumed to transmit only when the channel is sensed
as idle. The recent work in_[7] mainly focuses on optimal
power allocation to achieve the maximum energy efficiency in
OFDM-based cognitive radio networks. Also, energy effitien
optimal power allocation in cognitive MIMO broadcast chalmn

is studied in[[8]. In these works, secondary users alwaysesha
the spectrum with primary users without performing channel
sensing.

In order to further increase secondary users’ transmission
opportunities, unlike above works, in this study we conside
the transmission strategy of sensing-based spectrumnghari
and assume that the secondary users can coexist with the
primary users in the presence of both idle and busy sensing
decisions while adapting their transmission power acogrdi

The significant surge in demand for high data rate wireless the sensing result. For such a model, we first formulate
applications and the unprecedented growth in the numberEiE maximization problem subject to peak/average transmit
wireless users have led to larger amount of bandwidth beipgwer constraints and average interference constraintlen
required for wireless transmissions and increased theggnepresence of imperfect sensing results. We explicitly adersi
consumption levels. On the other hand, high energy pricescuit power consumption in the total power expenditure. |
limited battery power, increasing greenhouse gas emissi@udition, due to imperfect sensing results, we model thétiaed
have led to the emerging trend of addressing the optimal adidturbance as Gaussian mixture distributed and formukete
intelligent usage of energy resources. Hence, energyieftic achievable rates of the cognitive radio systems accorglifigle
operation is a major consideration in wireless systems. HE maximization problem is transformed into an equivalent
addition, bandwidth is generally a scarce resource in @$sl concave form and Dinkelbach's method-based power alloca-

communications. Although the available radio-frequerRiF)

tion algorithm is proposed. We provide numerical results to

spectrum has already been allocated/licensed to variquieap illustrate the effects of imperfect sensing decisions andst

tions and services, the allocated spectrum is underutilizest

mit/interference power constraints on the energy effigienc

of the time according to the Federal Communication Com-

mission (FCC)’s report |1]. This inefficiency in the speairu

Il. SYSTEM MODEL

usage has led to the consideration of the new communicationwe assume that the secondary users initially perform channe

paradigm of cognitive radia [2]L [3]. In cognitive radio $gms,

sensing in the first symbols of the frame duration & sym-

the unlicensed users (cognitive or secondary users) ae ahdls. Hence, data transmission is performed in the remginin
to opportunistically access the frequency bands allocated 7 — + symbols.

the licensed users (primary users) as long as the intederen

inflicted on the primary users’ transmissions is limited.

|4 Channel Sensing

this regard, cognitive radio enables better and more eficie Spectrum sensing can be formulated as a hypothesis testing

utilization of the spectrum.

problem in which there are two hypotheses based on whether

The energy efficiency (EE) of cognitive radio systems hasimary users are active or inactive over the channel, éehioy

been recently studied. For instance, the authorslin [4]liglgh

‘H, andH,, respectively. Many spectrum sensing methods have

the benefits of cognitive radio systems for green wirelesgen studied in the literature (see e.gl, [9]/[10] and exfees
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therein), including matched filter detection, energy diétec distribution with the same corresponding variance, thiefdhg
and cyclostationary feature detection. Each method hamits achievable rate (in bits per second) is obtairied [11]
advantages and disadvantages. However all sensing metheds 1 )

L : - . T—1 . Py |h|

inevitably subject to errors in the form of false alarms aridsm  R(Py, P)==——> "Pr(Hx)Eqlog(1+ .

detections due to low signal-to-noise ratio (SNR) of priynar = No+Pr(Ha|H)o?

users, noise uncertainty, multipath fading and shadowihg o

wireless channels. Hence, we consider that spectrum ggnsin (6)

is performed with possible errors. The sensing reliabil8y \yhere£{.} denotes expectation operation with respect to the
characterized via only detection and false alarm prokasli fading coefficienth.

Therefore, any sensing method is applicable in the restef th 1,4 energy efficiency (EE) metric we adopt is the ratio of

analysis. Lett; and?{, denote the sensing decisions that thg,s achievable rate to the total power consumption (in béts p
channe! is busy (i.e., is occupl_ed .by the primary users) dled i joule) defined more explicitly as follows:
respectively. Hence, by conditioning on the true hypothethe

detection and false-alarm probabilities are defined, sty . (p p) — R(Po, Pr) R, )
as follows: Pot(Po, P1)  Pr{Ho}Py+Pr{H,}P, + P.
(7

Py = Pr{#;[H1}, 1) ) .
P — Pr{fli M 2 Above, the total consumed power consists of average traasmi
t = Pr{#1[Ho}- @ sion power and circuit power, denoted B}. Circuit power
The rest of the conditional probabilities of idle sensingigien represents the average power consumption of the transmitte

given the true hypotheses can be obtained as circuitry (i.e., mixers, filters, and digital-to-analogro@rters,
N etc.), which is independent of the transmission power. Also
Pr{Ho[H.} =1 - Py, () Pr{#,} andPr{#{,} denote the probabilities of channel being
Pr{?—lomo} =1-F. (4) detected as busy and idle, respectively, which can furtker b

expressed as

Pr{#,} =P P +P P,
After performing channel sensing, the secondary useiatait r{7:l1} r{Mo} P+ Pr{#1}Fa, (8)
data transmission. The channel is considered to be block flat Pr{Ho} = Pr{Ho}(1 — P¢) + Pr{H1}(1 — Fa).

fading in which the fading coefficients stay the same during aThe achievable EE expression [ (7) can serve as an lower
frame duration and vary independently in _the following f_Eam bound since the lower bound on achievable r&té, ;) in
Secondary users are assumed to transmit under both idle g@ds employed. The usefulness of this EE expression is due t

busy sensing decisions. Therefore, as a combination oftige tits being an explicit function of the sensing performance.
nature of primary user activity and channel sensing detssio

the four possible channel input-output relations betwesn t
secondary transmitter-receiver pair can be expressedlag$o

B. Cognitive Radio Channel Model

T T T
Lower bound, perfect sensing
— — — Monte Carlo simulation, perfect sensing |
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and received signals, respectively alds the channel fading

coefficient between the secondary transmitter and the sacgn

receiver distributed according to a Gaussian distributioti

mean zero and varianat%. In addition,n; and s; denote the

additive noise and the primary users’ received faded siddath . : 5 .

{n;} and{s;} are assumed to be independent and identically Ravg (O1155)

distributed circularly-symmetric, zero-mean Gaussiajusaces

with variancesV, ando2, respectively. Moreover, the subscript$ig. 1: Achievable EE ngg(Fo, 1) vs. achievable rate

0 and1 denote the transmission power levels of the secondai( o, 1)

users. More specifically, the average power levePjsif the

channel is detected to be idle while it /3 if the channel is  In Fig. [1, we plot the achievable EE expression [ (7)

detected to be busy. (indicated as the lower bound) and the exact achievable EE as
Under these assumptions, the received signabnditionally a function of the achievable rate for both perfect sensiray, (i

given sensing decisions has a Gaussian mixture distriutio Py = 1 and P; = 0) and imperfect sensing (i.eby = 0.8 and

this setting, a closed-form capacity expression is notlavks. F; = 0.2). In order to evaluate the exact achievable EE with

By replacing the conditional distributions with a Gaussia@aussian input, we performed Monte Carlo simulations with

Achievable EE (bits/joule)
&

I I
4 5 6



2x 10% samples. In the case of perfect sensing, the lower bousubject to E{Pr{#o} Py(g,h) + Pr{#H1} Pi(g,h)} < Payg
and simulation result perfectly match as expected sincaim t (14)
case additive disturbance has Gaussian distribution maltiae E{(1 — P4) Py(g, h)|g|> + Pa Pi(g,1)|g]*} < Qavg (15)
a Gaussian mixture. In the case of imperfect sensing, therlow Prla ) >0 Pola.h)>0 16
bound is tight when the difference between noise variance an 0(9:h) 2 0, Pi(g, h) = (16)
variance of primary users’ is small, e.g., wh®g = 02 =1 or where« is a nonnegative parameter. At the optimal value of
No = 0.5, 0 = 1. When the difference in the variances is largey*, solving the EE maximization problem ifil (9) is equivalent
e.g., whenV, = 0.2, 02 = 1, the gap between the lower boundo solving the above parametrized concave problem if ang onl
and the exact EE increases. However, it is seen that actéevabthe following condition is satisfied

EE expressions i {7) is still a good lower bound. Since dircu_ . ) .
power is taken into consideration and we assuRie= 0.1, F(a”) = R(Po(g, h), Pr(g,h)) — (E;{PY{HO}PO(Q’}L)
achievable EE vs. achievable rate curve has a bell shape and +Pr{H1}Pi(g,h)}+P.) =0
also is quasiconcave. It is further observed that the maximu a7

EE is attained at nearly the same achievable rate for botbrlovxi-he detailed proof of the above condition is available[in]{12

bound and exact EE expressions. Since the problem if_(13) is concave, the optimal power \&lue

In the following section, we derive the power adaptatiofre optained by forming the Lagrangian function as follows
schemes that maximize EE of cognitive radio systems in the

presence of sensing errors subject to different combinatid L (£o, P1, A, v, a) = R(Po(g, h), Pi(g,h))

transmit power and interference power constraints. — Q(E{Pr{ﬂo}Po(% h) + pr{qfll}pl (g,h)}+Pe)

— ME{Pr{Ho} Po(g.h) + Pr{H1} Pi(g,h)} — Pavy)

— v(E{(1 — Pa) Py(g,h)|g|> + Pa P1(g,1)|g*} — Qavo)
A. Average Transmit Power Constraint and Average Interfer-  where) andv are nonnegative Lagrangian multipliers. Accord-

ence Power Constraint ing to the Karush-Kuhn-Tucker (KKT) conditions, the optima
alues ofP; (g, h) and Py (g, h) satisfy the following equations

(18)

Ill. OPTIMAL POWERADAPTATION

The maximum EE under both average transmit power an
interference power constraints can be found by solving the

following optimization problem .
gop P L2 Pr{Ho}|h|* log, e

—(A+a) Pr{Ho} —vlg*(1-Pa) =0

max neE(Po, P1)= R(Po(g,h), Pi(g, 1)) No+Pr(HafHo)ot+Fi (g, h)IhI?
Po(g,h) ' E{Pr{#o}Po(g, h)+Pr{H1}Pi(g,h)}+P:
Pi(g,h) © (19)
. ~ ~ T—1 P » h 2 1 .
sublect 10 E(Pr{#o) Fulg.h) + Pr(Hs} Fi(0, 1)} < Pay (10) I g‘)}' | Bt — OV Pri) vl Pa=0
+ 24Py (g,
B = P Po(o, Wl + PuPr(g lofh < Qa0 (20)
Po(g,h) >0, Pi(g,h) >0 (12) MEPr{Ho} i (9. ) + Pr{#s)} Pi(g. 1)} ~ Paw) =0 (1)
, . v(E{(1 — Pa) Py (9, h)|g]” + Pa Pi' (9, h)[9]"} — Qavg) =0 (22)
where P,g denotes the maximum average transmission powek, , ,, ~ ¢ (23)

of the secondary transmitter aigh,g represents the maximum

average interference power at the primary receiver. Also,Hence, the optimal power valuey (g, k) and Py (g,h) can

denotes the channel fading coefficient between the secpnddg found, respectively as in_(24) arid](25) given at the top of

transmitter and the primary receiver and the expectatibose the next page, whergr]* denotesmax(z,0). The Lagrange

are taken with respect to bothand . multipliers A and v can be jointly obtained by inserting the
The above optimization problem is quasiconcave since tRBtimal power adaptation formulations ih {24) ardl1(25) into

achievable rateR(P,, P,) is concave in transmission powersthe constraints given iri{14) and {15). However, solvingséhe

and the total power consumptidfu( Py, P1) is both affine and equations does not result in closed form expressions fand

positive. Then, the level setS, = {Py, P\ : nge(Po, P1) > V- Therefore, subgradient method is employed, Aeandv are

a} = {aPo(Po, Pi) — R(Py, P,) < 0} are convex for any Updated iteratively according to the subgradient directiatil

o € R. We employ an iterative power adaptation algorithrionvergence as follows

based on Dinkelbach’s method [12] to solve the quasiconca\lrgl) o N ® . ® +
EE maximization problem by considering the equivalent para)‘ :{/\ —t(Pan—E{Pr{HO}PO ,h)+Pr{H.} Py (g,h)})}

eterized concave problem as follows: (26)
w w +
A V0 =[O t(Qaug—E{ (1= Pa) F§"g, ) + PaP (9, 1)) lgI*}
max {R(Po(g,h),P1(g,h)) —Oé(]E{PI'{HO}Po(g,h) 27
Folo.h) (27)
1.9,

wheren denotes the iteration index andlenotes the step size.

+Pr{H} P (g’h)}+P°)} (13) When the step size is chosen to be constant, it was shown that



T—r A ~ 9 +
P (g, 1) = ] 7 Pr{Ho} log, e L No + Pr(?—[21|7-[o)as (24)
APr{#o} + v|gl2(1 — Py) + (A + o) Pr{#,} |l
T—1 » 9 2 +
Pr(g.h) = 7 Pr{#,}log, e _ No + Pr(7-121|7-[1)as (25)
APr{H1} +v|g|2Ps + (A + o) Pr{H; } |h|

the subgradient method is guaranteed to converge to thealptiand SE maximization are considered, i.e.,js set to0, the
value within a small range [13]. power adaptation schemes become similar to that given in
For a given value ofy, the optimal power adaptations {n_{24)15]. However, the secondary users have two power adaptatio
and [25) are found untiF'(a) < ¢ is satisfied. Dinkelbach’s schemes depending on the presence or absence of the primary
method converges to the optimal solution at a superlineasers.
convergence rate. The detailed proof of convergence can é)e
found in [14]. In the case of'(«) = 0 in (@), the solution
is optimal. Otherwise, are-optimal solution is obtained. In ) ) )
the following table, Dinkelbach’s method-based iterapoaver Next, we consider peak transmit power constraint and aeerag

adaptation algorithm for energy efficiency maximizatiorden interference constraint for EE maximization in cognitilio
imperfect sensing is summarized. systems. In this case, energy-efficient power adaptatiorbea

obtained by solving the following problem:

Peak Transmit Power Constraint and Average Interference
Power Constraint

Algorithm 1 Dinkelbach’s method-based power adaptation that R(Po(g, 1), Pi (g, 1))
maximizes the EE of cognitive radio systems under both @eera max nee(Po, P1)= - 009, %), 7119,
transmit power and interference constraints R E{Pr{#o}Po(g, h)+Pr{H1}Pi(g, h)}+Pe

1: Initialization: Py = Pqinit: P& = Prinit, € > 0, ¢ > 0, ) (28)
a0 — it A0) — Ainit, L(0) — Vini subject to Po(g, h) < Ppko (29)
22n+0 Pi(g,h) < Pk (30)
3: repeat E{(1 - Pa) Po(g,h)lgl* + Pa Pr(g,1)|9|"} < Qavg (31)
4. calculate Py(g,h) and Py (g,h) using [24) and[(25), Po(g,h) >0, Pi(g,h) >0 (32)
respectively; . -

5. updatel andv using subgradient method as follows; where Fy.o and By, denote the peak transmit power limits
6 k0 when the channel is detected as |QIe_or pusy, respectwely.

7. repeat By tlransformmg Fhedabove op;lmlzatmc;]fplrlobllem |hnto an

- ® equivalent parametrized concave form and following theesam

8 AEFD = [)‘(k) — t(Pavg — E{PY{HO}PO()(Q’h) T steps as in Section II[4A, the power adaptation schemes are

. + : . : :
Pr{’Hl}Pl(k) (g,h)})} :)hb;ar:réi(tj paasglen[(E3) and(B4), respectively, given at the tbp o
. :
o ) = {’/(k) —t(Qavg— E{(1=Pa) P (g, )g[*+ Remark 2: The power adaptation schemes [n1(33) and (34)
Pdpl(k) (gvh)|g|2})r has t_he sagleis;c)ructure as thoselin [15] in the case of perfect
0 kektl Algorithm 1 can be modified to maximize the EE subject to peak
. orithm 1 can be modified to maximize the EE subject to pea
w:ountil S (Qag — E{(1 - Pd)PO(k)(g’h)lglz + o%ver constraint and average interference constrajintcth i
B (g,h)|g[? < d D) (Pag— it : o
FaPr (9, )|(9k)| HEo< R E(k) and | avg way that P (g, h) and Pj (g, h) are calculated using (83) and
E{Pr{Ho}Fy (gah}%:;f(f{}z;l;}ﬁh)()gah)})| <e (34), respectively, and only the Lagrange multiplieis updated
. (n+1) _ A 0 (9,0),Pr (g, ;
1z« E{Pr{Ho} Pg (9,0 Pr{Fs} Py (g, 1) TP according to[(207).
132 n+n+1
14: until |F(a™)| <€

IV. NUMERICAL RESULTS

In this section, we present numerical results to illusttage
performance of the proposed EE-maximizing power adaptatio
Note that in the case af = 0, EE maximization problem is methods. Unless mentioned explicitly, it is assumed thateno
equivalent to spectral efficiency (SE) maximization. variance isNy = 0.2, the variance of primary user signal
Remark 1. The power adaptation schemes [[n(24) and (2% o2 = 1. Also, the prior probabilitiePr{H,} = 0.4 and

depend on the channel quality between the secondary trensr{#;} = 0.6. The frame duratioril’ and sensing duration
ter and secondary receiver, denoted |by?, the interference = are set to100 and 10, respectively. The circuit power is
channel quality between the secondary transmitter and tRe= 0.1. The step sized andv are set td).1 and tolerance
primary receiver,|g|?, and the sensing performance througis chosen a$.0001.

detection and false alarm probabiliti€; and P, respectively.  In Fig.[2, we display achievable maximum EE as a function
When both perfect sensing, i..e.,Ps4 = 1 and P = 0, of the constraints on peak/average transmit power for perfe
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Fig. 3: (a2) Maximum achievable EEer(Po, P1) vs. probability of detectionPy; (b) optimal achievable rate maximizing ER( Py, P1) vs.
Pq; (c) optimal total transmission poweF;,: and Py, P; VSs. Py.

sensing (i.e.Ps = 1 and P = 0) and imperfect sensing with as a function of the detection probabilitfy. We consider
Py = 08 and P; = 0.1. Qayg is set to—1 dB. It is seen different peak and average transmit power constraints, e.g
that higher energy efficiency is achieved with perfect sensi P o = Pok1 = Pavg = —4 dB and Py 0 = Pok1 = Payg =
compared to that attained with imperfect sensing. In the cas10 dB. Average interference constrai@ay is set to —8
of perfect sensing, the probabiliti®s(#|#H,) andPr(#Ho|H1) dB. It is assumed that probability of false alarmis = 0.1.
are zero. Therefore, the secondary users in idle-sensenhelsa We only displayR(P,, P1) and optimal powersPq, Py and
do not experience additive disturbance from the primarysyseP;, under the best performance, i.e., whéqy = —4 dB
which results in higher achievable rates, hence higheesable since the same trends are observed for other transmit power
EE compared to that in the imperfect-sensing case. It is alsonstraints. As?; increases, secondary users have more reliable
observed that maximum achievable EE initially increaseth@s sensing performance. Hence, secondary users experieisse mi
peak/average transmit power constraints relax. Howevieenw detection events less frequently, which results in inedas
the peak/average transmit power constraints become suttigi achievable rates. The transmission powgrunder idle sensing
looser compared t@ayg, the maximum achievable EE becomesecision increases with increasiiy while transmission power
fixed since the transmission power is now determined by the & under busy sensing decision decreases with increaking
erage interference constraidlayg rather than the peak/averageSince the achievable rate increases and the total trariemiss
transmit power constraints. Moreover, higher achievatitei€ power decreases, maximum achievable EE increases asgensin
achieved under the average transmit power constraint $irece performance improves.
power allocation under the average transmit power comstii  In Fig.[4, we display the maximum achievable EE, optimal
more flexible than that under the peak transmit power coinstra achievable rateR(P,, P;), and optimal powersPq, P, and

In Fig.[3, maximum achievable EE, optimal achievable rat#;, as a function of the false alarm probabili#;. We again
R(Py, P1), and optimal powersPo, Py and P, are plotted assumeP,i o = Pox1 = Pavg = —4 dB and Py o = Pox1 =
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Dinkelbach’s method-based algorithm is proposed to itexiyt
= solve the power allocation that maximizes the achievable EE
Numerically, we have several observations. For instartcs, i
shown that maximum achievable EE increases with increasing
B Py and decreases with increasing. Moreover, under the
| same average interference constraint, secondary useiaioge
subject to peak transmit constraints have smaller achle\&b
than that attained under average transmit power consraint
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Payg = —10 dB. Since the optimal achievable rate and optimajg
powers, which maximize EE, show similar trends as a function
of P subject to different peak and average transmit power
constraints, we only consider the best performance acthievey
with Payg = —4 in Fig.[4(b) and Fig[14(c). Average interference
constraint isQavg = —8 dB and the probability of detection, g
Py, is set t00.8. As P; increases, channel sensing performancg
deteriorates. Secondary users detect the idle channelasys b
more frequently. Since the available channel is not utlize (o]
efficiently, secondary users have smaller achievable.ratss,

the total transmission power maximizing the EE increasds wil0]
increasingP;, which leads to lower achievable EE.

V. CONCLUSION [
In this paper, we consider energy-efficient power adap‘(atiﬂ2
for cognitive radio systems subject to peak/average trénsm
power constraints and average interference power conttrail3l
in the presence of sensing errors. EE maximization probletm]
is transformed into an equivalent parameterized concana fo
and the optimal power adaptation schemes are derived. It{%3
shown that power adaptation schemes depend on the sensing
performance through detection and false alarm probadsliti
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