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Abstract—Captures of IP traffic contain much information however, authors assume that merging all the events ongurri
on very different kinds of activities like file transfers, users  at a same time is appropriate.

interacting with remote systems, automatic backups, or dis . ) )
tributed computations. Identifying such activities is crucial for an On the countrary, we argue that there are interactions in IP

appropriate analysis, modeling and monitoring of the traffic. We  traffic that occur concurently but at different time scalasg
propose here a notion of density that captures both temporaind  that they should not be merged. For instance, users iniegact
structural features of interactions, that generalizes theclassical ~ with a system will have a faster dynamics than a backup
notion of clustering coefficient. We use it to point out impotant  service that automatically saves data every 24 hours, and a
differences between distinct parts of the traffic, and to idetify slower dynamics than a P2P system or a large file transfer
interesting nodes and groups of nodes in terms of roles in the between two machines. Likewise, attacks may have dynamics
network. that distinguish them from legitimate traffic [19]. This nmsa
that different parts of the traffic may have different appiate
. INTRODUCTION values ofA, even though they occur at the same time (or in
the same time window). These interactions are different in
Measurement, analysis and modeling network traffic at Imature; they reflect different roles for involved nodesedn
level has now become a classical field in computer networkingnd-user machine, or a backup server) that should be studied
research[[10],[[17][14]. It relies on captures of traffiades  separately to accurately reflect the actual activity odagrin
on actual networks, leading to huge series of packets sefifte network.
by machines (identified by their IP adress) to others. It is o . )
therefore natural to see such data as graphs where nodes We propose in this paper an approach for doing so. It relies

are IP adresses and links indicate that a packet exchan @ notion ofA-density that captures up to what point links
was observed between the two corresponding machines. Of@Peaell the timeand/or all possible links between considered
obtains this way large graphs which encode much informatiofiodes occuall the time(Sectior(1)). To this regard, it may be

on the structure of observed exchanges, and network scien€8€N @s a generalization of classical graph density anocis |
is the natural framework for studying them [13]] [8]. version, clustering coefficient. We show how this notion may

be used to identify one or several appropriate time scales fo

One key feature of network traffic is its intense dynamics.various parts of the traffic, and how mixing time and struetur
It plays a crucial role for network optimization, fault@tk  makes it possible to identify (groups of) machines playing
detection and fighting, and many other applications. As &pecific roles in a network (Sectignllll). All along this pape
consequence, much work is devoted to the analysis of thige illustrate and validate our approach using two real-svorl
dynamics [[1], [[9], [11], [F]. In network science, studying captures of traffic on a firewall between a local network and
such dynamics means that one studies the dynamics of ththe internet. It consists of packets that were observed en th
associated graphs|[5]. The most common graph approach relifirewall in a time period of one month.
on series of snapshots: for a givén one considers the graph
G: induced by exchanges that occured in a time window from II. NOTION OF A-DENSITY
t to t + A, then the graph&si 1A, Gi1aa, and so on[[16]. ] ) )
Many variants exist, but the baseline remains that onessplit ~We first present the framework and notations we use in the

time into (possibly overlapping) slices of given (but pbssi  Whole paper. Then we define the-density of one link and
evolving) lengthA [3]. finally we extend it to sets of links and nodes.

Obviously, a key problem with this approach is that onea  Framework
must choose appropriate values Af too small ones lead to
trivial snapshots, while too large ones lead to importassés We model a trace of IP traffic as a link streain =
of information on the dynamics. In addition, appropriateiea  (l;)i—1... Wherel; = (t;,u;,v;) means that we observed at
of A may vary over time, for instance because of day-nightime ¢; a packet fromu; to v;. Such a stream comes from
changes in activity. As a consequence, much work has beem capture started at time and stopped at times, and so
done to design methods for choosing and assessing choicesdn< ¢; < w for all <. We assume in addition that the stream is
the value ofA [4], [6], [2]. In [B], [2], [L2], the authors even temporally ordered: for ali andj, i < j impliest; <t;. We
propose methods to choose values/ofthat vary over time, call n the sizeof L and denote it byL|. We callL = w — «
or to consider non-contiguous time windows. In all situasip  its duration
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A link stream S is a substream of if there exists a A A A A A A
function o such that for alli = 1..|S|, s; = l,(;, and for < A A A
all ¢ = 1..|S] — 1, o(i) < o(i + 1). In other words, all the B
links in S also appear irl. and they are in the same order. We L
o

AN

denote byS C L the fact thatS is a substream of.. w
Given a pair of nodes andv, we denote byL(u,v) the
substream of induced by, v), namely the largest substream 23, & C0 e e o Pair of nodes. Each crosssems
(t;, ui, v;) such that for alk, v; = v andv; = v. By extension, : 21 nodes.
given any set of pairs of nodes we define the substréaﬁ') an occurrence of the pairs of nodes on the time line.
induced byS as L(S) = U, vesL(u,v). For any given set
of nodesS we defineL(S) the substream induced by as
L(S)=L(S x 5).
The graph=(L) induced by streani is defined byG (L) =
(V(L), E(L)), where V(L) = {’U,i, 3’1}1‘7 ti, (ui, Vi, ti) S L}

andE(L) = {(u;,v;), 3t;, (ui, vi, ;) € L} Inour caseV (L) . A-density of streams and sets of nodes
is the set of observed IP adresses, and there is a(link)

interactions between pairs of nodesSroccur (at least) every
A time.

in E(L) if and only if we observed a packet fromto v. As In a classical (undirected, simple) gragh= (V, E), the
discussed in the introduction, IP traffic and other link @atns  density captures the extent at which every node is connected
are often studied through this induced graph. to all others:¥(G) = 7™ wheren = |V is the number of
nodes andn = |E| is the number of links. In other words, it
B. A-density of links measures the extent to which all possible links exist.
Suppose a\ betweer) and L is given. We first define the In a link streamS, we mix this structural point of view

A-density of a pair of nodes andv, that we denotéa (v, v).  wijth the temporal aspects captured above as follows:
If there is no link involving them irL, i.e. |L(u,v)| = 0, then

we state that thei\-density is zeroda (u,v) = 0. Now let

2- on(u,v
us assume that at least one link involvingand v occurs. oA(S) = Zujevxv Ot v)

VI-(VI-1)

3)
There is no significant structure in just one link, and so

the A-density of (u,v) is only defined with respect to time. whereV is the set of nodes involved if. In other words,

It captures up to what pointu,v) appears in every time the A-density of a link stream captures the extent at which all

interval of sizeA in L. To do so, we compute the fraction possible links occur (at least) every time in the stream. It

of non-overlapping time intervals of siz& that contains no is the average of thé-density of all possible pairs of nodes,

occurrence of the link. More formally: including the ones which do not interact in the stream.
|Bxe| + [ ] - 143, [%W -1 _ Finally, just like one often studies the density of subgsaph
oa(u,v) =1- — induced by a given set of nodes, we definefieensity of any
[ez2] -1 setS of nodes a$A (L(S)), which capture the both structural

(1) . X ; . ;
. . _ and temporal intensity of interactions among nodes in this s
wheret; denotes the time at whicfu,v) occured for thei- It is equal tol only if all nodes interact with each another,

th time. The numerator counts the number of non-overlappingnd do so at least ever time. It decreases whenever two

intervals of sizeA that contain no occurrence ¢fi, v): the |, ,4aq'in the set do not interact or a time interval between two
number of such intervals between the beginning of the strear..urrences of a link is greater than

and the first occurrence (&t), plus the number between the
last occurrence (at,) and the end of the stream, plus the  we call this a A-clique just like cliques are graphs
number between any pair of consecutive occurrences. Thigith maximal density in classical graph theory;cliques are
IS |”Ustrated n F|gurd]1. The den0m|nat0r counts the totagtreams W|th maxim%_density_ Notice that thé_c"ques Of

number of non-overlapping intervals of siZg thus ensuring 3 stream necessarily induce cliques in the graph induced by
that the A-density is always betwee® and 1. It reachesl  the stream.

if and only if a link betweeru andv appears at least every
A time, and it is closer and closer tb as more and more
intervals of sizeA contain no such link. As stated above, it is m

A . | DENTIFYING ROLES
exactly0 when no link involvingu andv occurs.

In order to extend the notion ak-density to any set' of We show in this section how our notion df-density may
the elements ob: typically aim at identifying backup servers, user machjnes
or distributed applications. We first present the dataseis w
2 (uwes 9a(u,v) f i i h lain h
Sa(S) = (u,v) (2)  use forour experimentations, then explain how to compute a
|S| characteristic time for links and groups of links, and explo

a notion of clustering coefficient that combines time and
This notion still captures no notion of structure and only structure. We finally discuss how obtained results may bd use
focuses on temporal aspects: it measures up to what poifdr identifying roles in the network.



A. Our datasets Figure[2 presents the evolution of the-density of link

) _ streamsA and B presented above, as grows.
We rely for our experimentations on two datasets collected

in 2012. Both datasets consist of a one-month capture of th-
headers of all IP packets managed by a firewall between

large local network and the internet. They are however quite ~ *** ‘ ‘ ‘ ‘ ‘ ‘ 00008
different in their key features, which makes it interestiog 0.00007
consider them jointly. 0.020}

10.00006

The first dataset, which we model by the link stream-
(a;), contains 6 million timestamped links. They involve 183
distinct pairs of nodes, between 129 distinct nodes. Thersbc
dataset, which we model by the link stred@n= (b;) contains F
140299 timestamped links. They involve 60 330 distinctpair 0.010f
of nodes, between 38571 distinct nodes. It therefore appeal
clearly that, although more exchanges occudirthan in B,
these exchanges are between a much smaller number of nod %09
than the ones irB.
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B. Identifying relevantA a
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Our approach relies on the identification of relevant valuesig. 2. A-density of streamst (blue circles) and3 (red triangles) (vertical
of A that may reveal the dynamics of links, nodes, and largeaxis) as a function ofA (horizontal axis, log scale). The horizontal lines
parts of the stream. To identify such values, we compute thidicate the maximal reachabla-density, i.e. the density of the induced
A-density for various values ak and observe the variations of 92PNSG(4) andG(B5).
the A-density as a function oA. More precisely, we consider . .

A = 1.01° for all i such thatA is between 1 second and the  1he plots show clearly that tha-density of A increases

duration of the whole capture (namely— a = 2808927s). sharply atA ~ 10% and A ~ 10°, indicating that these
durations play an important role in this dataset. The plot fo

The exponential growth in the considered values/of B instead, grows smoothly towards its maximum. It increases
deserve explanations. Indeed, we want to be able to idgntify much faster by the end of the plot, indicating that one must
teresting values which are orders of magnitudes of difiegen take all the time-span of the stream to see most of its links.
like one second and one day. In addition, there is a significan
difference betweem\ = 1s and A = 30s, while we make
no significant distinction betweeA = 24h = 86400s and

In order to gain more insight on these behaviors, we now
study the A-density of each single link. We plot the same
guantities, namely the value of the-density as a function of

A = 24h+30s = 86430s. This is exactly what an exponential . : ; .
growth of A captures. We chosk01 to have a large enough A, for each link(u, v). Figurel3 displays two typical examples,
one from A and the other fronB.

number of points in our plots to allow accurate observation,
while remaining reasonable (we obtain here 1118 points).

Notice that theA-density of a given pair of node@, v) 10 ‘ ‘ ‘ ‘ ‘ 10
necessarily grows té when A grows, as long as it occurs at
least once in the stream (otherwise it is equaDtindepen-
dently of A). Indeed, for smallA it is close to0, as almost
no time interval of sizeA contains an occurrence of the link.
When A grows, the number of intervals with no such link
decreases, and so the-density grows. Whem\ reaches its
maximal valuej.e.the duration of the whole stream, then there
is clearly no interval at all that contains no occurrencehef t < 0.l {o4
link, and so theA-density reaches.

0.8f 10.8

0.6 10.6

A(u,0) in A
v 9)
Oa(u,v) in B

When we consider thA-density of a set of links, the same 0.2} {o2
remarks hold. When we consider the case of a link stream o
the case of a set of nodes, though, the situation is different
Indeed, in these cases the pairs of nodes that never occur a e S R A
taken into account and lower the value of thedensity. Then, A
the A-density still grows whenA grows, but its maximal
value is the (classical) density of the induced graph and ifig. 3. A-density (vertical axis) as a function @k (horizontal axis, log
is reached whem\ equals the whole duration of the stream. scale), for two typical links (one ofi and one ofB).

Then, theA-density of each individual pair of nodes is either

0 (if it never occurs) orl (if it occurs at least once), and the Both plots display a sigmoid shape, indicating that the
formulae defining theA-density are reduced to the formula density remains very small until a specific valueafand then
for the density of the graphs, see Secfidn II. it rapidly reaches its maximal value IncreasingA further has




no significant impact. This indicates that this specific @alu of Figure[4, there is a non negligible number of links with
plays a key role for this pair of nodes: it is rare to have aa drastically different behaviour, evidenced by much semall
longer time interval without an occurence of a link involgin characteristic times. This shows that some links in theastre
them, while it is very frequent for shorter time intervals. have a specific role that distinguishes them from the vast

. majority of links.
For the example from datasdt, the sharp increase occurs jonty

betweenA = 10%*s and A = 10°s. For the example from
datasetB, the sharp increase is by the end of the plot only.
This indicates that one needs very large valueshofo be We focused above on links only. In order to gain insight
unable to find many intervals of siz& with no occurrence of on more subtle structures, we study here thalensity of

the link. In other words, all the occurrences of the link fit in nodes and their neighbors, and introduce a generalizafion o
a small time interval, and studying thk-density of this pair the classical notion of clustering coefficient.
of nodes has little meaning, if any.

C. Neighborhoods and clustering coefficient

Let us first denote by (v) the neighborhood of any node

In order to build a more global view of a dataset, weuv, i.e.the set nodes to which it is linked. Then the substream
apply the following protocol. For each pair of nodés, v), L({v} x N(v)) is the stream of all the links betweenand
we seek the largest variation in the value ®f(u,v) as a its neighbors, while the substreai(N(v)) is the stream
function of A (which corresponds to the sharpest increase irof links involving two neighbors ofv. The A-density of
the plots of Figur&I3). To ensure that this variation is digant  these two substreams contains important information about
enough, we discard the pairs for which it is lower thigi¥%.  §A(L({v} x N(v)) indicates up to what extent the interactions
We call the value ofA at which this largest variation occurs betweenv and its neighbors occurs at least evekytime;
the characteristic timeof (u,v), and we denote it by (u,v).  §o(L(N(v)) indicates up to what extent all possible pairs of

We plot in Figurd# the distribution of characteristic times neighbors ofv interact at least evenh time.

we obtain for each dataset. Notice thatda (L({v} x N(v)) captures theA-density of
v's interactions. We therefore call it thi®-density ofv, and we
200 - - - - - - denote it byda (v). Likewise,da (L(N(v)) is the A-density of
—ﬁ 1 60000 the stream induced by the neighborsspfust like the classical
clustering coefficient of a node in a graph is the density ef th
T el 24h 4 50000 @ subgraph induced by its neighbdrs|[18]. For this reason,alle ¢
é 18min A B ; it the A-clustering coefficient ob, we denote it byA-cc(v).
g 60350 v v v v 100 We now define for each nodeits characteristic time (v)
£ ol wouol ] | £ in a way similar to previous section: we compute the variatio
s 1300 5 of 5 (v) as a function ofA and select the value @k at which
g 80250 | 1 g this variation is maximal. Figurle 5 presents the distritntof
3 w0200 |- | { 20000 the characteristic times of all nodes.
E 50 } 3
2 60150 |- B (zoomed) 1 E z
2 < 10000
60100 . . . . 140 ‘ . ‘ . . 50000
500000 600000 700000 800000 900000 1e+06
0 1 1‘0 1;)0 1(;00 10:)00 10(;000 1e‘+06 1e+0(; 120
X < A {a0000
Fig. 4. Inverse cumulative distribution of the charactérisime of all pairs 'z 100 ﬁ &
of nodes in our two datasets: for each valuen the horizontal axis, we plot o o
the numbery of pairs having characteristic time larger than j’% 80 5 ’300‘]0%

It appears clearly that a large fraction of the links 4n ? 60 _20000_3
have specific but distinct characteristic times: many have ¢ & .
characteristic time close tt03s, many around 0°s and most £ 0 £
others between0®s and10%s. This indicates three classes of  * {10000 %
links (i.e. computer communications), which we will discuss 20
in Sectiof1II-D0. Notice however that large characterisitices
mean that all occurences of the corresponding links appear i o0 100 107 10° 10 10 10° o7
very short period of time. This typically reveals pairs oflies a

that exchange packets during a connection that lasts only a

few seconds or minutes, but that do not exchange data on Fdg. 5. Inverse cumulative distribution of the charactarisme 7(v) of each
regu|ar basis nodew of both our datasets: for each valuewe plot the number of nodes

such thatr(v) is larger thanz.
The situation for dataset B is quite different: a huge
majority of all characteristic time are close to the maximal For both datasets, we observe a significant number of nodes
possible value, indicating that the occurrences of mostslin with non-trivial (.e. much smaller than the whole duration
appear in a very short period of time, and do not appeaof the trace)A-density. This means that these nodes have
outside this time interval. However, as displayed in thestins specific roles in the network, as we will discuss in next secti



We also observe that some values of characteristic times afers of nodes and links in our datasets. We now turn to an
overrepresented, which is revealed by sharp decrease in tmterpretation of these results in terms of the applicaticen,
plots. This indicates classes of nodes with similar betravio and in particular regarding the identification of links, esd
(at least regarding\-density). or groups of elements playing specific roles in the network.

When we turn to the computation ak-clustering coef- We first identified in SectionTIl-B three characteristic &m
ficient, we face a problem related to the way our data isplaying a key role in dataset: around 1000 seconds (approxi-
collected. Indeed, it consists in traffic managed by firesyall mately 16 minutes), around 90000 seconds (approximately 24
and so they mostly consist in packets exchanged between dours), and around 500000 seconds (approximately 5 days).
internal network and the rest of the internet. As a consecpien Manual inspection of the data and discussion with network
the graph they induce between IP addresses is close to aperators revealed the presence of a backup server in the
bipartite graph: nodes are separated into two distinct Bgts local network, used by external machines, responsiblelfer t
and V5 and links exist mostly between nodes in both sets24h characteristic times. We also found, without being able to
This implies that there is only very rarely a link between twoidentify their cause, regular communications every 15 n&gau
neighbors of a same node. In our case, this happens for onfyom a subset of nodes. Finally, the largest charactertiistie
33 nodes in dataset, and this never happens in dataget is probably due to links appearing only a few times, and is too
large compared to the duration of the whole measurement to

As the A-clustering coefficient of a node & whenever be significant.

there is no link between its neighbors (like the classical
clustering coefficient in graphs), we focus here on @3 In datasetB, many pairs of nodes have a high characteristic
nodes ofA for which the clustering coefficient is nét We  value which, as already said, has little significance. Harev
compute for these nodes theiiclustering coefficienti.e. for ~ a few pairs of nodes have a more interesting behaviour, as
each node its\-clustering coefficient when the value &fis ~ seen on the inset of Figufé 4. By inspecting the dataset, we
the characteristic time of the node. These values are dgrongcould identify from this a few servers with a regular pattern
influenced by the degree of the nodes, and so we plot if action: local backup servers and mail servers mostly.
Figure[® for each node a point indicating its degree and its

. . The study of clustering coefficients revealed that some
T-clustering coefficient.

nodes forms groups which are densely connected: most of
all possible links among them appear, and do so on a regular
basis. This holds for a dozen groups of more thamodes, and

x ‘ ‘ even for a few groups of more thar nodes. This probably
reveals nodes involved in a common task distributed among
them, like a complex web service, a distributed computation
or a distributed database.

1.0

0.8

We also noticed a node with high degree, abaoe, but

x ] very low clustering coefficient. This means that this maehin
has many connections, but its neighbors are almost notdinke
at all: we therefore have a star structure for this machine.
This information, added to the fact that this substructuae h

0.6

0.41

Clustering coefficient of neighborhood of node «

< a characteristic time close to 24 hours, makes it ident#iabl
0.2} S 1 as a backup server, periodically contacted by the same set of
. x nodes to save their data.
005 0! ot 0 IV. CONCLUSION
Degree of u

In this paper, we have introduced the notion/ofdensity,
Fig. 6. For each node with nontrivial clustering coefficiewe plot its 7- which captures up .'[O what point IInk§ appealf the time
clustering coefficient (vertical axis) as a function of itegiee (horizontal ~a@nd/or all possible links between considered nodes oattur
axis). the time We illustrated the use of this notion on two real-
world captures of network traffic, and we have shown that
This plot shows that most considered nodes have a signifit allows to determine the characteristic times of partshef t
cantr-clustering coefficient, much larger thareven for nodes traffic in a simple manner. We have shown that many different
with large degree. This means that these nodes belong to vegharacteristic times coexist in such traffic, and we usedhthe
structured substreams: many links exist among their neighb to distinguish between nodes or set of nodes playing specific
and that these links are often observed at least once in a timeoles in the network. This includes for instance backupeserv
interval of sizer. An exception is visible on the plot: a node or distributed applications. Such information is usefulio
has degree over00 but ar-clustering coefficient close t0, means: to an attacker, who could identify relevant targetd,
meaning that this node belongs to a star-like structureqsim to network operators, who could optimize services, improve

none of its neighbors are linked together). security, etc. It is also a contribution to our understagdif
real-world traffic, with applications to improved modeliagd
D. Interpretation simulation.

In the previous sections, we have computed and observed Our work may be extended in several ways. In particular,
several statistics describing the temporal and struchehlv-  we proposed one approach for quantifying the intuition behi



A-density but variants may also be relevant. For instance, on [6]
may slice the stream into pieces of duratidnand count the
fraction of slices containing the considered link. One miapa  [7]
compute the probability that a randomly chosen interval of
size A contains an occurrence of the link. Although all these
definitions are very similar, they have small differencest th

. (8]
should be studied.

Our initial goal was to be able to identify distinct charac-

teristic times in a link stream, whereas most studies aggeeg o
information over a given time interval. There is still rooor f
significant progress in this direction. In particular, onaym
identify several characteristic times for a same substrdgm
detecting several sharp increases inshvdensity as a function (10

of A instead of only one. This may reflect for instance the
fact that users typically have daily, weekly and yearly\atti
patterns. Going further, a node may have a characterigtie ti
that varies during time, like the characteristic times hpatw
two connections during week days and during week-ends, or
characteristic times before and after an intrusion. Wekthiat ~ [12]
A-density may easily be extended to study such phenomena,
and this is one of the main directions of our future work.

[11]

In the context of IP traffic analysis and in other areas, a3l
important direction also is to extend our definitions to thee
of bipartite graphs, in particular the ones regarding eltisg
coefficient. This may help in capturing more complex phe-
nomena and behaviors, and the notions defined_in [15] could 4]
certainly be useful for doing so.

Last but not least, the notions d8f-density andr-clustering
coefficient defined in this paper are very general, and may bgs]
used to study any link stream like email exchanges, financial
transactions, and others. In all these cases, questiornigrsim
to the ones addressed here arise (in particular the coserist
of different characteristic times that one should distisgu

[16]
[17]
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