Towards a Middlebox Policy Taxonomy:
Path Impairments

Korian Edeline, Benoit Donnet
Université de Liege — Belgium

Abstract— Recent years have seen the rise of middleboxes, such
as firewalls, NATs, proxies, or Deep Packet Inspectors. Those
middleboxes play an important role in today’s Internet, including
enterprise networks and cellular networks. However, despite
their huge success in modern network architecture, they have a
negative impact on the Internet evolution as they can slow down
the TCP protocol evolution and its extensions. Making available
a summary of the potential middlebox network interferences
is of the highest importance as it could allow researchers to
confront their new transport protocol to potential issues caused
by middleboxes. And, consequently, allowing again innovation in
the Internet.

This is exactly what we tackle in this paper. We propose
a path impairment oriented middlebox taxonomy that aims at
categorizing the initial purpose of a middlebox policy as well as
its potential unexpected complications. Based on a measurement
campaign on IPv4 and IPv6 networks, we confront our taxonomy
to the real world. Our dataset is freely available.

I. INTRODUCTION

Nowadays, the standard and well-known description of the
TCP/IP architecture (i.e., the end-to-end principle) is not
anymore applicable in a wide range of network situations.
Indeed, enterprise networks, WiFi hotspots, and cellular net-
works usually see the presence of middleboxes being part of
the network architecture in addition to traditional network
hardware [1]. A middlebox is a network device inspecting,
filtering, or even modifying packets that traverse it. It performs
actions on a packet that are different from standard functions
of an IP router.

Recent papers have shed the light on the deployment of
those middleboxes. For instance, Sherry et al. [1] obtained
configurations from 57 enterprise networks and revealed that
they can contain as many middleboxes as routers. Wang
et al. [2] surveyed 107 cellular networks and found that
82 of them used NATs. D’Acunto et al. [3] analyzed P2P
applications and found that 88% of the participants in the
studied P2P network were behind NATs. Middleboxes may
be deployed for several reasons, typically security (e.g., IDS,
NATs, firewalls) and network performance (e.g., load balancer,
WAN optimizer).

However, if there is a widespread usage of middleboxes,
they come with important drawbacks. Indeed, it has been
shown that middleboxes have a negative impact on the TCP
protocol (and its extensions) evolution [4], [S]. Middleboxes
may modify, filter, or drop packets that do not conform to
expected behaviors. As a consequence, the Internet faces a
kind of ossification due to the difficulties of proposing new
transport protocols.

Researchers, when designing a new protocol, have thus to
cope with a middlebox-full Internet. Each new mechanism
has to be certified as middlebox-proof [5], [6]. For those
researchers, a summary of the potential middlebox network
interferences would be a valuable asset as they could easily
confront their new protocol with potential issues caused by
middleboxes.

This is exactly what we want to tackle here. In this paper,
we propose a path-impairment oriented middlebox policy
taxonomy, that aims at categorizing the initial purpose of a
middlebox policy as well as its potential unexpected compli-
cations. We choose to classify middlebox policies rather than
middleboxes themselves because the latter often combine mul-
tiple policies. Our taxonomy describes and catalogues policies
under three different points of view: Intended Function (i.e.,
the policy purpose), Action (i.e., the fate of a packet crossing a
middlebox implementing this policy), and Complication (i.e.,
the potential path connectivity deterioration).

Based on a tracebox [7] (a traceroute extension that
is able to reveal the presence of middleboxes along a path)
measurement campaign on IPv4 and IPv6 networks', we con-
front our taxonomy to the reality on the ground. We establish
a dual-stack survey of middleboxes that implement rewrite,
drop, and proxy policies that may harm the performance of
regular traffic and affect protocol deployability. Then, we
discuss our results in light of our taxonomy.

The remainder of this paper is organized as follows: Sec. II
discusses several practical cases in which middleboxes are the
source of problems; Sec. III presents our middlebox taxonomy;
Sec. IV explains the measurement and data processing method-
ology we followed; Sec. V discusses the results we obtained,
with respect to our middlebox taxonomy; Sec. VI positions this
paper regarding the state of the art; finally, Sec. VII concludes
this paper by summarizing its main achievements.

II. UNDERSTANDING THE PROBLEMS

Middleboxes are causing various malfunctions, especially
with end-to-end protocols, by dropping packets that contain
certain options or by stripping those options from TCP SYN
segments to prevent them from being negotiated [4]. However,
middlebox-related problems are not limited to this and can be
much more subtle. In this section, we describe three different
problems that middleboxes may cause.

'Our dataset is freely available. See
montefiore.ulg.ac.be/~edeline/

http://queen.run.

Client Middlebox Server
TCP(SYN.ECE.CWR) |
TCP(SYN.ECE.CWR)
< TCP(SYN.ACK.ECE)
TCP(SYN.ACK.ECE) .
"""" .7 7 7 ECN-Capablé [Transport” = =~ ~ 7.7 7 T 7 7 77
IP(ECT=1,CE=0)/TCP .
IP(ECT=0,CE=0)/TCP
| (P (ECT=1.CE=1)'TCP, [PECT-1,CE=0)/ TCP)
IP(ECT=0,CE=0)/TCP Router sets CE
M (Congestion
Experienced) to 1.
Fig. 1: Clearing IP ECN bits.
Client Middlebox Server
TCP(SeqNum=B) W TCP(SeqNum=A)
» eqNum=
20 Bytes of Data 20 Bytes of Data
TCP(SeqNum=A+20)
Drop <€+— b 20 Bytes of Data
=A+
» TCP(SeqNum=B+40) < TCP(ScqNum=A+40)

20B f Dat:
20 Bytes of Data ytes of Data

TCP(ACK, AckNum=B+20)
SACK=[B+40.B+60]

> TCP(ACK,AckNum=A+20) ol
SACK=[B+40,B+60]

Fig. 2: TCP Initial Sequence Number re-shuffling middlebox
and Selective ACKnowledgement.

A. Explicit Congestion Notification

In this setup, shown in Fig. 1, the middlebox is allowing
both ends to negotiate the use of explicit congestion notifica-
tion (ECN — a TCP/IP extension allowing to signal network
congestion before packet losses occur) but is clearing the
ECN bits in the IP header, rendering it unable to report any
congestion.

The client tries to establish an ECN-Capable connection
with a remote server by sending a TCP ECN-setup SYN
segment (ECN Echo — ECE — and Congestion Window Re-
duced — CWR — flags set). The server sends back a TCP
SYN+ACK segment with the ECE flag set. Both packets are
forwarded unmodified by the middlebox. Following packets
are marked as ECN-Capable Transport (ECT) by both ends
but the middlebox is systematically clearing both the ECT
and CE (Congestion Experienced) bits in the IP header. If an
intermediate router sets the CE bit (Congestion Encountered)
of a packet, it will be cleared by the middlebox afterward [8].

B. TCP Sequence Number

Fig. 2 illustrates a situation where a middlebox is applying
modifications to TCP segments that leads them to be discarded
by the server.

The server is sending three TCP segments with 20 bytes
of data each through an already established TCP connection
within which both ends agreed on the use of the SACK option.
In the path between the client and the server, there is a middle-
box rewriting the Sequence Number and ACKnowledgement
Number of any packet of this connection as it has re-shuffled
the Initial Sequence Number to counter prediction attacks.
When the second packet with Sequence Number A + 20
is dropped, the receiving side is notifying the sending side

Middlebox A
TCP(SYN,ECE=1JCWR=1)

Client Middlebox B Server

A

TCP(SYN,ECE=1,CWR=1)
TCP[SYN,ACK,ECE=1)

TCP(SYN.ACK.ECE=0)[*

Fig. 3: State announcement and asymmetric paths/load balanc-
ing.

by acknowledging the first and the third data segment using
the ACK number and the SACK option. The middlebox is
modifying the sequence and ACK number of this packet,
but not the sequence numbers of the SACK block. If those
unmodified sequence numbers are out of window, Linux’s TCP
stack discards the whole packet [5].

C. State Announcement

In this example, shown in Fig. 3, a middlebox tries to
conceal attempts of state announcement, but with the presence
of asymmetric paths, it leads to inconsistencies.

Both ends are trying to share state related data (i.e., ECE
bit). The path between them is asymmetrical and ingress
and egress traffic are crossing different middleboxes, A and
B respectively. Middlebox A is clearing the ECE bit and
middlebox B is not. The result of the state share is inconsistent
because the server has sent ECE = 1 and the client has received
ECE = 0. The client thinks that the connection is not ECN-
Capable while the server does. Solutions to fix this issue (i.e.,
a fallback mechanism) have been proposed [9], but not widely
deployed [10].

In the next section, we present a characterization guideline
to examine those problems under different points of view and
we extract root causes that we believe are common to all
middlebox-related path impairments.

III. TAXONOMY

In this section, we propose a path-impairment oriented
middlebox policy taxonomy, that aims at categorizing the
initial purpose of a middlebox policy as well as its potential
unexpected complications.

We chose to classify middlebox policies rather than mid-
dleboxes themselves because the latter often combine multiple
policies. Our taxonomy focuses on packet mangling middle-
boxes aspects, the initial purpose of such an action, and the
network interferences that may result.

We describe each policy implemented in a single (not
multi-hop) middlebox in three ways (i.e., meta-categories),
each one including several taxa (i.e., categories); (¢) Intended
Function, what the policy expects to achieve, its purpose; (i)
Action, how the policy is trying to achieve its goals, the fate
of a packet crossing a middlebox that implements this policy;
(i77) Complication, the possible resulting path connectivity
deterioration. Fig. 4 illustrates our path-impairment oriented
middleboxes policy taxonomy. Each middlebox policy has to
fall in at least one taxon for each of the three point of view
in order to be consistent with the taxonomy.

Security
Performance

Cross-protocol
Interoperability

Traffic Disruption

INTENDED

FUNCTIONS Over-Normalization

Uncomplete
Modifications

Blocked Traffic

(COMPLICATIONS

External

Packet Marking

Negotiation
Disruption

ACTIONS

Eagy
=

HIBIE
HIBIE

Fig. 4: A path-impairment oriented middlebox policy taxon-
omy.

As we aim at characterizing middlebox-related network
interferences rather than establishing an exhaustive middlebox
taxonomy [11], we focus on single-hop modifications and
ignore other aspects.

While examining the possible complications involved by
middlebox policies, we deliberately narrow our horizon to
performance worsening and feature’s inability of use, omitting
the multiple and various reported security flaws created by
middlebox policy implementations (see, for instance, Qian and
Mao [12]).

Fig. 4 displays the taxonomy and shows its three facets:
Intended Functions, Actions, and Complications. These meta-
categories are described in the subsequent sections. We apply
this classification to the dataset we collected in Sec. V. This
taxonomy is distinct from the middlebox taxonomy presented
in RFC3234 [11] as we aim at empirically classifying middle-
box policies to regroup causes of performance worsening and
to take common design decision afterwards, as an up-to-date
path-impairment oriented extension of RFC3234.

A. Intended Functions

The Intended Function meta-category describes the purpose
of a middlebox policy (e.g., what it is intending to achieve).
As we already noticed earlier in this section, a policy can
be classified differently if we consider the policy in itself
or the middlebox set it is part of (e.g., a tunnel endpoint
with respect to the whole tunnel). We consider five kinds
of Intended Functions: Security, Performance, Cross-Protocol
Interoperability, External, and Packet Marking.

Security-motivated middlebox policies are implemented in
Security-oriented middleboxes, dedicated hardware deployed
in enterprise, and home network for improving network secu-
rity such as firewalls and IDS/IPSes. They may serve purposes
like providing an authentication mechanism (e.g., application-
level gateways), defending against attacks such as DDoS,
attacks on protocols (e.g., IP, TCP), providing access control,
normalizing the TCP features to prevent the use of features
considered unknown and/or unsafe, or separating similar net-
works into different security zones.

It has been shown that such a type of middleboxes is be-
coming more and more popular [1]. This increasing popularity
raises concerns regarding overly restrictive middlebox policies
which may either block benign traffic matched as unsafe,
causing blackholes, or apply modifications to transport and
network header fields, precluding the use of protocol features
or hampering their proper functioning, indirectly reducing

network performance and/or functionalities (e.g., forbidding
ECN or MultiPath TCP [13]).

Performance-enhancing middlebox policies aim at improv-
ing the network performance regarding a link along the path,
a connection between both path’s ends, or the middlebox itself
(e.g., TCP performance enhancing proxies, caches, sched-
ulers). It may aim at improving pure effective bandwidth
performance through transport layer engineering as well as
solving box-relative performance issues.

This category of middlebox policies may apply semantically
wrong legacy modifications which may cause traffic disruption
and protocol inconsistencies. They might as well introduce
TCP errors and unforeseen changes in TCP adaptive behavior,
leading to various network interferences.

Cross-protocol interoperability middlebox policies are per-
forming protocol translation. They aim either at connecting
dissimilar networks (e.g., NAT 6to4) or at translating protocols
over the network layer (e.g., tunnel endpoints, transcoders).
The main problem with this kind of policies is to be consistent
with every protocol version and feature. Indeed, the input pro-
tocol language may evolve, and middleboxes may then apply
outdated translations to it or may fail to ensure completeness
of its modifications. This can lead either to the inability to use
certain features or to network performance degradation.

Packet marking middleboxes classify packets according to
policies and select or mark them for differentiated services
(via IP DSCP’s field). Their action is limited to network layer
modifications. They are packet classifiers, or ECN-capable
routers. Their policies are not likely to degrade network
performance.

External middlebox policies have purposes that are external
to the paths to which they belong (e.g., IPv4 address exhaus-
tion) or not related to Internet technical aspects (e.g., economic
purposes). External middlebox policies are heterogeneous and
have to be analyzed independently.

B. Actions

The Action meta-category describes the actual action of
a middlebox on a matched packet, defined by middlebox
policies, performed to achieve its intended functions. We
consider three basic kinds of middlebox policy actions: Drop,
Rewrite, and Proxy. This aspect is decisive because middlebox
policies that are applying different actions will more likely
cause different types of network dysfunctions.

Drop policies are common features whose purposes vary
from security to performance optimization concerns. Depend-
ing on how both ends react to this type of failure, the
outcome may also vary from minor traffic disruptions, such
as bandwidth reduction or the inability to use specific TCP
options, to the inability to establish a TCP connection.

Rewrite policies are also common among middleboxes.
Their initial purposes are covering the entire Sec. V-A. As
they break the TCP/IP end-to-end principles, they may cause
various problems to protocol end-to-end functions which as-
sume unmodified layers over the third.

Proxy policies middleboxes are relay agents between clients
and servers of an application. They vary from the Rewrite
policies middleboxes by not simply rewriting the forwarded
packets but rather by receiving client data from a connection,
then establishing a second connection to send data to the server
and vice versa.

C. Complications

We describe here the potential Complications caused by
middleboxes policies by examining them under two points
of view: (7), their technical causes, which are directly re-
lated to their initial purposes and, (i¢), the associated actions
(respectively Sec. V-A and Sec. V-B), and their unfortunate
consequences, i.e., causes and consequences.

1) Causes: The Causes of the network interferences created
by middleboxes aim at classifying the technical problems
origin. It regroups manufacturers and policy designers fun-
damental errors or deliberated choices leading, from a path-
impairment perspective, to network interferences.

Over-normalization refer to a middlebox policy that limits
protocol features and options, as a blacklist or whitelist filter,
to a restricted subset of the protocol. The problem of this
type of middlebox behavior constraining the design of new
extensions has already been addressed [4]. It may limit proto-
col performance as well by preventing the usage of the entire
protocols capabilities, or simply by taking drop decisions.

The middlebox clearing IP ECN bits that is displayed in
Fig. 1 falls within this category.

Incomplete modifications refers to middlebox policies that
fail to ensure completeness of their modification(s). This
type of network inconvenience is caused by middleboxes
modifying a specific protocol field and not modifying semanti-
cally related fields, allowing translated/modified data alongside
untranslated/unmodified data. They may fail to identify all
related fields for legacy reasons or simply neglecting them for
performance concerns (e.g., refusing to parse TCP options).

In Fig. 2, the middlebox translates TCP sequence numbers
of the header but not those of the options, the modification
being therefore incomplete.

A Paradigm shift (2-way to n-way) happens when both ends
running a protocol are assuming 2-way peering relationships.
Middleboxes, by applying modifications in the middle of the
path, are breaking the TCP/IP end-to-end principles, and thus,
are causing both ends to undergo a paradigm shift de facto
to n-way peering relationships [14]. As many mechanisms are
not designed to handle this new paradigm, errors may occur.
When both ends are trying to share state related data or to
negotiate capabilities, this phenomenon may, in certain scenar-
ios, put both ends in conflicting states or, combined with an
unfortunate load balancing, distort protocol negotiations [5].

An example of such inconsistencies is shown in Fig. 3. End
state announcement is in fact path state announcement, which
is incompatible with asymmetrical paths and/or load balancers.

2) Consequences: The Consequences are the network com-
plications final outcome, what both ends actually experience.

S

) ICMP Time exceeded
+ quoted packet b) Quoted packet

=
- 7

:
I
D [P [ree b) [ir [Tcp L]

TTL=2[$YN TTL=1[SYN

Compare packets

Fig. 5: Middlebox detection and localization with t racebox.

We focus exclusively on path performance related issues, leav-
ing aside security and processing performance considerations.

Traffic disruption policies produce unwanted consequences
such as interferences with control data rendering it useless,
bandwidth reductions or others path performance impairments.

Middlebox policies may cause Blocked traffic either ex-
plicitly (sending TCP RST packet) or implicitly (dropping
packets). It may not be the final outcome of a connection.
If a specific option/feature is blocked by a middlebox, the
client could be configured to retry establishing the connection
without the undesirable options/features, but if it is not, no
connection at all is possible.

Middlebox policies may aim at preventing the use of
features considered unknown and/or unsafe by modifying,
stripping them or by preventing them from being negotiated.
If it is achieve symmetrically, the consequences are limited
to the inability to use the restricted features; It is a Feature-
disabling policy. If the modifications are done asymmetrically
and the negotiation is not resilient enough, the policy may
fail to disable the feature and lead to inconsistent protocol
states [5]. Policies resulting in the latter consequences are
categorized as Negotiation disruption policies.

IV. MEASUREMENT METHODOLOGY

To reveal the presence of middleboxes along a path,
we use tracebox [7], an extension to the widely used
traceroute. tracebox mechanism is displayed in Fig. 5.
It relies on RFC1812 and RFC792 stating that the returned
ICMP time-exceeded message should quote the IP header
of the original packet and respectively the complete payload
or the first 64 bits. tracebox uses the same incremental
approach as traceroute, it sends packets with different IP,
UDP or TCP fields and options with increasing TTL values. By
comparing the quoted packet to the original, one can highlight
the modifications and the initial TTL value allows us to
localize the two or more hops between which the change took
place. Readers interested in details and extended evaluation of
tracebox should refer to Detal et al. [7].

We observed the following methodology: We started from
the top one million web sites from Alexa. We performed
A and AAAA DNS queries to obtain the corresponding IP
addresses. Out of the whole set of domains, 94.7% had an A
record and 4.5% had an AAAA record registered in the servers
we probed. We kept only the dual stacked domains in order
to conduct IPv4/IPv6 comparative analysis. The complete
address set contained 14,373 different address pairs. Second,
we deployed tracebox on CAIDA’s active measurement
infrastructure, Archipelago [15]. We made use of 20 monitors
with IPv6 connectivity scattered over four continents: eight

[
(=]
N

@ ?
e <
= I 1Pv4 T I [Pv4
281 2519
=g I IPv6 =3 I [Pv6
25 a4
g81 g 810
5= =
e &
<0 ° 5
X X
£ o g o
~ “Sec. Perf. X-P.I. Ext.P.Mark. ~ " Drop Rewrite Proxy

(a) Policies per purposes
Fig. 6: Middleboxes observed during our measurement cam-
paign with respect to our taxonomy.

(b) Policies per actions

Options Drop (%)

Field: IPv4 IPv6
ECN-setup SYN 0.37 0.35
MultiPathTCP 0.21 0.18

TABLE 1: Observed drop rates, in % of all tested paths.

monitors in Europe, seven in America, two in Asia, and
three in Oceania. Third, we performed our measurements
from each vantage points to each IPv4 and IPv6 address in
parallel. Each monitor of the Archipelago infrastructure probed
each IPv4 address and its corresponding IPv6 address (in the
DNS sense) at the same time. Fourth, each sent and received
packet during a tracebox run was saved and identified by
a (run #, saddr, daddr, key)-tuple where the key is used to
match concurrent IPv4 and IPv6 probing runs. Finally, we
analyzed the collected dataset to visualize how middleboxes
apply their policies in the middle of Internet paths and cause
traversal issues.

V. RESULTS

The main results are provided in Fig. 6. It displays the per-
centage of routers that were observed to implement different
types of policies. They are discussed in Sec. V-A and Sec. V-
B. Table 1 contains the observed drop rates for a few TCP
options. Table 2 shows the modification (Rewrite) rate of TCP
options and IP ECN bits over IPv4 and IPv6. We localized the
modification source using t racebox location ability and we
used normalized distance (in number of hops) to distinguish
three different locations; Close to the vantage point (from the
source to hop 3 included), in the Network core (from hop 4 to
hop 10 included) and close the to destination (after hop 10).

Note that the basic technique we used to detect middleboxes
modifications (e.g., tracebox) is not limited in IPv6 by
routers not quoting more than the first 64 bits of the transport
layer within ICMPv6 time-exceeded; 99.9% of all IPv6 routers
are quoting the entire packet, while 74% of all IPv4 paths
involve at least one of those routers.

A. Intended Functions/Purposes

Fig. 6(a) displays the middlebox policies inferred purposes.
TCP Initial Sequence Number re-shuffling middleboxes and
unknown TCP options dropping policies are counted as se-
curity purposes. Policies rewriting MSS (Maximum Segment
Size), WScale (Window Scale), and ECN (Explicit Congestion
Notification) are considered as performance-related policies.
Cross-protocol interoperability policies contains NATS policies
and we counted IP DSCP rewriting as a packet marking

purpose policy.

Options Modif. (%)

Field: Close to VP Network Core Close to Dest. Total
IP::ECN 35/0 0.90/ 10 0.70 / 1.2 5.10/11.2
TCP::ISN €/0 0.03 / 0.04 0.02 / 0.25 0.07 / 0.31
MSS(1460) 3.0/0 0.60 / 0.04 0.09 / 0.25 3.29/0.94
MSS(1600) 3.5/0 0.80 / 0.04 0.11/0.29 4.51/0.33
WScale(14) e/ € 0.05 / 0.07 0.11/0.12 0.16 / 0.19
© MPTCP 0/0 0.04 /0.1 0.09 / 0.22 0.13/0.32
NAT 0.01 /€ 0.01 /€ 0.02/ €
IP::DSCP 0.15/0.7 4.50/3.5 1.10/ 1 575752
IP::ID? 0/0 0.02/0 0.04/0 0.06 /0
Proxies - - 0.02/¢

TABLE 2: Observed modification rates, in % of all tested
paths. IPv4 rate / IPv6 rate. © means option was removed,
else it was modified. An € rate means the frequency of the
modification is negligible.

The amount of paths crossing a middlebox with security-
related policies is higher over IPv6 than IPv4: 0.9% against
0.5%. According to Table 2, this difference is due to the TCP
Initial Sequence Number re-shuffling middleboxes.

We also found a few middleboxes that stripped the
MPCapable and MPJoin options (MultiPath TCP) from
their TCP segments. The numbers, as displayed in Table 2,
are quite low (0.21% of IPv4 and 0.18% of IPv6 paths) but
still significant as it may end up in a client blackhole.

Among the performance-related middlebox policies, we
highlight middleboxes that clear ECN bits. As shown in
Table 2, we find that 5.1% of IPv4 and 11.2% IPv6 paths
systematically cleared the ECN Congestion Experienced (CE)
bit of the IP layer. A previous study by Kiihlewind et al. found,
with a completely different methodology, that 8.2% of the
tested paths clear the CE bit as well [8]. This behavior
makes it impossible for the client to report to the server
that its incoming traffic experienced congestion, making ECN
unusable. The high CE clearing rate (11.2%) over IPv6 that
we found is to put in perspective with the increasing amount
of ECN-Capable IPv6 servers (47.52%) [8]. The first may
interfere with the latter, as ECN may be negotiated but unable
to report any congestion.

We also find a Europe-based IPv4 router that sets the
Congestion Experienced (CE) bit of packets regardless of the
ECN-Capable Transport (ECT) bit, probably a legacy router
that extendedly modified the DSCP (ToS) field.

B. Actions

Fig. 6(b) displays the middleboxes actions breakdown. A
middlebox is classified as a rewriting middlebox if it has at
least one policy that has been spotted rewriting a packet. For
this figure, we did not take into account routers IP DSCP
rewriting as this practice is not breaking TCP/IP end-to-end
assumptions, nor RFC recommendations.

We found that routers had rewriting policies enabled in 8.5%
of IPv4 paths and 12.3% of IPv6 paths. We also found a rather
small amount of paths comprising middleboxes with dropping
policies; 0.6% over IPv4 and 0.5% over IPv6. Then, we found
a few proxies: 51 in IPv4 and 3 in IPv6.

As shown in Table 1, the drop rates for ECN-setup SYN
packets are quite low; 0.37% over IPv4 and 0.35% over IPv6.

2IP::FlowLabel for IPv6 probes.

If the client that wants to establish an ECN-capable connection
is not configured to retry the connection without the TCP
ECN flags, it will have no connectivity. The number we found
are in-line with Langley that stated that less than 1% of
sites appeared to have connectivity problems due to the use
of ECN by clients [16]. We found a few middleboxes that
discarded MPCapable and MPJoin (MultiPath TCP [13])
TCP options.

We observed several servers located behind a unique IPv6-
to-IPv6 Network Prefix Translation middlebox (NPTv6).

VI. RELATED WORK

Medina et al. [17] report one of the first detailed analysis of
the interactions between transport protocols and middleboxes.
They rely on active probing with tbit and contact various
web servers to detect whether Explicit Congestion Notification
(ECN), IP options, and TCP options can be safely used. The
TCPExposure software developed by Honda et al. [4] is
closest to tracebox. It also uses specially crafted packets
to test for middlebox interference. Wang et al. [2] analyzed
the impact of middleboxes in hundreds of cellular networks.
This study revealed various types of packet modifications.
More recently, Craven et al. [18] proposed TCP HICCUPS
to reveal packet header manipulation to both endpoints of a
TCP connection. HICCUPS works by hashing a packet header
and by spreading the resulting hash into three fields (in case
one is changed).

These tools provide great results, but they are limited to
specific paths as both ends of the path must be under control
or must implement particular techniques in the TCP/IP stack.
Further, none of them measures the IPv6 network or provides
a path-impairment oriented middlebox policy taxonomy.

VII. CONCLUSION

Middleboxes are becoming more and more popular in
mostly every type of networks. Those middleboxes are sup-
posed to be transparent to users but it has been shown the
contrary. In particular, they impact the TCP protocol and its
extensions. In addition to this, there is no formal classification
of middleboxes according to their effects on packets, on traffic,
or on the network quality experienced by users.

This is what we have addressed in this paper. We pro-
posed a path-impairment oriented middlebox policy taxonomy,
that aims at categorizing the initial purpose of a middlebox
policy as well as its potential unexpected complications. We
also confronted our taxonomy to the reality on the ground
through an IPv4 and IPv6 measurement campaign based on
tracebox. We established a dual-stack survey of middle-
boxes that implement rewrite, drop, and proxy policies that
may harm the performance of regular traffic and protocol
deployability. Then, we discussed our results in light of our
taxonomy.

In the near future, we plan to gather data about home-NAT
devices and obtain client-side middlebox policies breakage,
to expand our view from the network core and server-side
middlebox policies that we analyzed in this paper. We also

want to include some security aspects to our taxonomy. Some
of them were briefly discussed in this paper, but we aim at
extending our middlebox policy taxonomy to include security
concerns and middlebox-related complications by performing
exhaustive custom made measurements.

ACKNOWLEDGMENTS

This work is funded by the European Commission funded
mPlane ICT-318627 project. Authors Iso thank ke claffy and
her team at CAIDA (in particular, Young Hyun) for letting
them using the Archipelago infrastructure.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, August 2012.

[2] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. ACM SIGCOMM, August
2011.

[3] L. D’Acunto, N. Chiluka, T. Vino, and H. J. Sips, “Bittorrent-like
P2P approaches for VoD: a comparative study,” Computer Networks
(COMNET), vol. 57, no. 5, pp. 1253-1276, April 2013.

[4] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP,” in Proc. ACM Internet
Measurement Conference (IMC), November 2011.

[5] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure, “Are
TCP extensions middlebox-proof?” in Proc. Workshop on Hot Topics
in Middleboxes and Network Function Virtualization (HotMiddlebox),
December 2013.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses,” Internet Engineering
Task Force, RFC 6824, January 2014.

[7]1 G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[8] M. Kiihlwind, S. Neuner, and B. Trammell, “On the state of ECN
and TCP options on the Internet,” in Proc. Passive and Activement
Measurement Conference (PAM), March 2013.

[9] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit

congestion notification (ECN) to IP,” Internet Engineering Task Force,

RFC 3168, September 2001.

B. Trammell, M. Kiihlewind, d. Boppart, I. Learmonth, G. Fairhurst,

and R. Scheffenegger, “Enabling Internet-wide deployment of explicit

congestion notification,” in Proc. Passive and Active Measurement

Conference (PAM), March 2015.

B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” Inter-

net Engineering Task Force, RFC 3234, February 2002.

Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference

attack - how firewall middleboxes reduce security,” in Proc. IEEE

Symposium on Security and Privacy (SP), May 2012.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extension

sfor multipath operation with multiple addresses,” Internet Engineering

Task Force, RFC 6824, January 2013.

M. A. Lemley and L. Lessig, “The end of end-to-end: Preserving

the architecture of the Internet in the broadband era,” University of

California at Los Angeles, Technical Report 2000-19, October 2000.

k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet

mapping: from art to science,” in Proc. IEEE Cybersecurity Applications

and Technologies Conference for Homeland Security (CATCH), March

2009.

A. Langley, “Probing the viability of TCP extensions,” 2008, see https:

/Iwww.imperialviolet.org/binary/ecntest.pdf.

A. Medina, M. Allman, and S. Floyd, “Measuring interactions between

transport protocols and middleboxes,” in Proc. ACM Internet Measure-

ment Conference (IMC), November 2004.

R. Craven, R. Beverly, and M. Allman, “Middlebox-cooperative TCP

for a non end-to-end Internet,” in Proc. ACM SIGCOMM, August 2014.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

