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Abstract—The power grid and the communication network
are highly interdependent on each other for their well being.
In recent times the research community has shown significant
interest in modeling such interdependent networks and studying
the impact of failures on these networks. Although a number
of models have been proposed, many of them are simplistic in
nature and fail to capture the complex interdependencies that
exist between the entities of these networks. To overcome the
limitations, recently an Implicative Interdependency Model that
utilizes Boolean Logic, was proposed and a number of problems
were studied. In this paper we study the “entity hardening”
problem, where by “entity hardening” we imply the ability of the
network operator to ensure that an adversary (be it Nature or
human) cannot take a network entity from operative to inoperative
state. Given that the network operator with a limited budget
can only harden k entities, the goal of the entity hardening
problem is to identify the set of k entities whose hardening will
ensure maximum benefit for the operator, i.e. maximally reduce
the ability of the adversary to degrade the network. We show
that the problem is solvable in polynomial time for some cases,
whereas for others it is NP-complete. We provide the optimal
solution using ILP, and propose a heuristic approach to solve the
problem. We evaluate the efficacy of our heuristic using power
and communication network data of Maricopa County, Arizona.
The experiments show that our heuristic almost always produces
near optimal results.

I. I NTRODUCTION

The critical infrastructures of a nation form a complex sym-
biotic ecosystem where individual infrastructures are heavily
interdependent on each other for being fully functional. Two
such critical systems that rely heavily on each other for their
well being are the power and communication network infras-
tructures. For instance, power grid entities such as SCADA
systems, that are used to remotely operate power generation
units, receive their control commands over the communication
network infrastructure, while communication network entities
such as routers and base stations are inoperable without electric
power. Thus, failure introduced in the system either by Nature
(hurricanes), or man (terrorist attacks), can trigger further
failures in the system due to interdependencies between the
entities of the two infrastructures.

Although a number of models have been proposed for mod-
eling and analysis of interdependent multi-layered networks
[1], [2], [3], [4], [5], [6], [7], [8], many of these models are sim-
plistic in nature and fail to capture the complex interdependen-
cies that exists between the entities of these networks. As noted
in [9], these models fail to model complex interdependencies

that may exist between network entities, such as when entityai
is operational, if entities (i)bj andbk andbl are operational,or
(ii) bm andbn are operational,or (iii) bp is operational. Graph
based interdependency models proposed in the literature such
as [3], [4], [5], [10], [6], [7] including [1], [2] cannot capture
such complex interdependency involving both conjunctive and
disjunctive terms between entities of multi-layer networks. To
overcome these limitations, anImplicative Interdependency
Model that utilizes Boolean Logic, was recently proposed in
[9], and a number of problems includingcomputation ofK
most vulnerable nodes[9], root cause of failure analysis[11],
andprogressive recovery from failures[12], were studied using
this model.

In this paper we study the “entity hardening” problem in
the interdependent power-communication network using the
Implicative Interdependency Model(IIM). By “ entity harden-
ing”, we imply the ability of the network operator to ensure
that an adversary (be it Nature or human), cannot take a net-
work entity from anoperative(operational) to aninoperative
(failed) state. We assume that the adversary is clever and
is capable of identifying the most vulnerable entities in the
network that causes maximum damage to the interdependent
system. However, the adversary does not have an unlimited
budget and has the resources to destroy at mostK entities
of the interdependent network. The network operator is also
aware of adversary’s target entities for destruction. Since we
assume that once an entity is “hardened” by the network
operator it cannot be destroyed by the adversary, if allK
targets of the adversary are hardened by the network operator,
then the adversary cannot induce any failure in the network.
However, if due to resource limitations the network operator
is able to strengthen onlyk entities, wherek < K, thesek
entities have to be carefully chosen. The goal of the entity
hardening problem is to identify the set ofk entities whose
hardening will ensure maximum benefit for the operator, i.e.
maximally reduce the ability of the adversary to degrade the
network.

We classify the entity hardening problem into four different
cases depending on the nature of the interdependency relation-
ships. We show that the first case can be solved in polynomial
time, and all other cases are shown to be NP-complete. We
provide an inapproximability result for the second case, an
approximation algorithmfor the third case, and a heuristic
for the fourth (general) case. We evaluate the efficacy of our
heuristic using power and communication network data of
Maricopa County, Arizona. The experiments show that our
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heuristic almost always produces near optimal results.

The paper is organized as follows, the IIM model is
presented in Section II, in Sections III and IV we formally
state the entity hardening problem and analyze its computa-
tional complexity, Section V outlines the optimal and heuristic
solutions to the problem, Section VI shows the experimental
results, and finally Section VII concludes this paper.

II. I NTERDEPENDENCYMODEL

We now present an overview of the underlying IIM in-
terdependency model [9]. IIM uses Boolean Logic to model
the interdependencies between network entities, these inter-
dependent relationships are termed asImplicative Interde-
pendency Relations(IDRs). We represent this interdepen-
dent network setting asI(A,B,F(A,B)), where setsA
and B are the power and communication network entities
respectively, andF(A,B) is the set of dependency relations,
or IDRs. Table I represents a sample interdependent net-
work I(A,B,F(A,B)), whereA = {a1, a2, a3, a4}, B =
{b1, b2, b3} and F(A,B) is the set of IDRs (dependency
relations) between the entities ofA andB. In this example,
the IDR b1 ← a1a3 + a2 implies that entityb1 is operational
when both the entitiesa1 and a3 are operational,or entity a2
is operational. The conjunction of entities, such asa1a3, is
also referred to as aminterm.

Power Network Comm. Network
a1 ← b1b2 b1 ← a1a3 + a2

a2 ← b1 + b2 b2 ← a1a2a3

a3 ← b1 + b2 + b3 b3 ← a1 + a2 + a3

a4 ← b1 + b3 −−

TABLE I: Implicative Interdependency Relations of a samplenetwork

Given a set of inoperable (failed) entities, a time stepped
failure cascade can be derived from the dependency relation-
ships outlined in the IDR set. For example, for the interdepen-
dent network outlined in Table I, Table II shows the failure
propagation when entities{a2, b3} fail at the initial time step
(t = 0). It may be noted that the model assumes that dependent
entities fail immediately in the next time step, for example,
when{a2, b3} fail at t = 0, b2 fails att = 1 asb2 is dependent
on a2 for its survival. The system reaches asteady statewhen
the failure propagation process stops. In this example, when
{a2, b3} fail at t = 0, the steady state is reached at time step
t = 4.

Entities Time Steps (t)
0 1 2 3 4 5 6

a1 0 0 1 1 1 1 1
a2 1 1 1 1 1 1 1
a3 0 0 0 0 1 1 1
a4 0 0 0 0 1 1 1
b1 0 0 0 1 1 1 1
b2 0 1 1 1 1 1 1
b3 1 1 1 1 1 1 1

TABLE II: Failure cascade propagation when entities{a2, b3} fail at
time stept = 0. A value of1 denotes entity failure, and0 otherwise

A primary consideration for using this model is the accurate
formulation of the IDRs that is representative of the underlying
physical power and communication network infrastructures.
This can either be done by careful analysis as done in [8], or
by consultation with experts of these infrastructures. We utilize
IIM to model the interdependency between the two networks
and analyze the entity hardening problem in this setting.

III. PROBLEM FORMULATION

Before we make a formal statement of the entity hardening
problem in the IIM setting, we explain it with the help of an
example. Consider an interdependent system as outlined in the
IDR set shown in Table I. It may be easily checked that when
the adversary budget isK= 2, the most vulnerable entities
of this system are{a2, b3}. If the network operator doesn’t
harden any one of the entitiesa2 or b3, then in this example
all the network entities eventually fail, as seen from the fault
propagation in Table II. When the network operator chooses
to harden botha2 and b3 then none of the entities in the
network fail if the adversary restricts the attack only to the two
most vulnerable entities of the network, which in this example
happens to be{a2, b3}. If the network operator has resources
to harden only one entity and the operator chooses to harden
a2, the destruction ofb3 by the adversary will eventually lead
to the failure of no other entities of the network, as shown in
Table III(a). If on the other hand, the network operator chooses
to hardenb3, destruction by the adversary ofa2 will eventually
lead to the failure of the entities{a2, b2, a1, b1} as shown in
Table III(b). Clearly in this scenario the operator should harden
a2 instead ofb3.

Definition: Kill Set of a set of Entities(S): The kill set of a
set of entitiesS, is the set of all entities that will eventually
fail due to failure ofS and the interdependencies between the
entities of the network as given by the set of IDR’s. The kill
set of a set of entitiesS is denoted byKillSet(S).

It may be noted that the search fork entities to be hardened
is restricted to theKillSet(S), where S is the set ofK
most vulnerable entities in the network, because hardeningany
entity not inKillSet(S) does not provide any benefit to the
network operator. In this study we also assume that the set of
K most vulnerable entities in the network isunique.

Entities Time Steps (t)
0 1 2 3 4

a1 0 0 0 0 0
a2 ∗ ∗ ∗ ∗ ∗

a3 0 0 0 0 0
a4 0 0 0 0 0
b1 0 0 0 0 0
b2 0 0 0 0 0
b3 1 1 1 1 0

(a) Entity a2 is hardened

Entities Time Steps (t)
0 1 2 3 4

a1 0 0 1 1 1
a2 1 1 1 1 1
a3 0 0 0 0 0
a4 0 0 0 0 0
b1 0 0 0 1 1
b2 0 1 1 1 1
b3 ∗ ∗ ∗ ∗ ∗

(b) Entity b3 is hardened

TABLE III: Failure cascade propagation with entity hardening. Enti-
ties {a2, b3} are attacked at time stept = 0. A value of 1 denotes
entity failure,0 otherwise.∗ denotes a hardened entity.

We now proceed to formulate the entity hardening
problem formally. Given an interdependent network system
I(A,B,F(A,B)), and the set ofK most vulnerable entities
of the systemA′ ∪B′, whereA′ ⊆ A andB′ ⊆ B:

The Entity Hardening (ENH) problem
INSTANCE: Given:
(i) An interdependent network systemI(A,B,F(A,B)),
where the setsA and B represent the entities of the two
networks, andF(A,B) is the set of IDRs.
(ii) The set of K most vulnerable entities of the system
A′ ∪B′, whereA′ ⊆ A andB′ ⊆ B
(iii) Two positive integersk, k < K andEF .
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QUESTION:Is there a set of entitiesH = A′′ ∪ B′′, A′′ ⊆
A,B′′ ⊆ B, |H| ≤ k, such that hardeningH entities results
in no more thanEF entities to fail after entitiesA′ ∪ B′ fail
at time stept = 0.

We note some of the assumptions for the ENH problem:
First, we assume that once an entity is hardened, it is always
operational and does not fail at any time step of the observa-
tion, even when the entity is part of theK most vulnerable
entities. Second, we assume thatk < K, as otherwise the
selection ofK entities for hardening ensures that no entities
fail at all. Finally, as noted earlier, we assume that the setof
K most vulnerable entities in the network isunique. We now
proceed to analyze the computational complexity of the ENH
problem.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

For an interdependent networkI(A,B,F(A,B)) the IDRs
can be represented in four different forms. We analyze the
computational complexity of the ENH problem for each of
these cases separately.

A. Case I: Problem Instance with One Minterm of Size One

The IDRs of Case I have a single minterm of size1. This
can be represented asxi ← yj , wherexi andyj are entities of
networkA(B) andB(A) respectively. We show that the ENH
problem for Case I can be solved optimally in polynomial time.

Algorithm 1: Entity Hardening Algorithm for systems
with Case I type interdependencies

Data: An interdependent networkI(A,B,F(A,B)), set of
K most vulnerable entitiesA′ ∪B′, A′ ⊆ A,B′ ⊆ B,
hardening budgetk and a setH = ∅.

Result: Set of hardened entitiesH.
1 begin
2 For each entityxi ∈ (A′ ∪B′) compute the set of kill sets

C = {Cx1 , Cx2 , ..., CxK
}, whereCxi

= KillSet(xi) ;
3 Create a copyD = {Dx1 , Dx2 , ..., DxK

} of setC ;
4 for (i=1; i ≤ K; i++) do
5 for (j=1, j 6= i; j ≤ K; j++) do
6 if Cxj

⊂ Cxi
then

7 Dxi
← Dxi

\Dxj
;

8 Choose the topk sets fromD with highest cardinality ;
9 For each of theDxi

⊆ D sets chosen in Step 8,
H ← H∪ xi ;

10 return H

Theorem 1. Algorithm 1 solves the Entity Hardening problem
for Case I optimally in polynomial time.

Proof: It is shown in [9] that the kill set for all entities in
the interdependent network can be computed inO(n3) where
n = |A|+ |B|, thus computing the kill sets forK entities takes
O(Kn2). Step 4-7 of the algorithm runs inO(K2). Choosing
thek highest cardinality sets can be found using any standard
sorting algorithm inO(Klog(K)). Hence Algorithm 1 runs in
O(Kn2).

For two kill setsCxi
andCxj

it can be shown that either
Cxi
∩ Cxj

= ∅ or Cxi
∩ Cxj

= Cxi
or Cxi

∩ Cxj
= Cxj

[9]. So with two entities{xi, xj} ∈ A′ ∪B′ andCxi
∩Cxj

=
Cxj

i.e, Cxj
⊂ Cxi

, if xi is hardened it prevents the failure
of Cxi

− Cxj
entities (provided that none of the entities in

Cxi
− Cxj

− {xi} are in A′ ∪ B′). With this assertion, for
an entityxi ∈ A′ ∩ B′, steps 4-7 of Algorithm 1 finds the
actual entities for which failure is prevented by hardeningxi.
The setD = {Dx1, Dx2 , ..., DxK

} comprises of these set of
entities for each hardened entityxi.

To prove that Algorithm 1 finds the optimal solution we
make the following two assertions: First, consider any two sets
Dxi

andDxj
. It is implied from step 6 of Algorithm 1 that

Dxi
∩ Dxj

= ∅. Second, consider an entityxp /∈ A′ ∪ B′ is
hardened. Ifxp fails when entities inA′∪B′ fails initially then
it would belong to some setDxi

. Thus hardeningxp results
in preventing the failure of entities that is a proper subsetof
Dxi

. Hence the entities to be hardened must belong toA′∪B′

only. Owing to the two assertions it directly follows that with
a given budgetk, hardeningk highest cardinality sets from the
setD ensures prevention of failure for the maximum number
of entities.

B. Case II: Problem Instance with One Minterm of Arbitrary
Size

The IDRs of Case II have a single minterm of arbitrary
size. This can be represented asxi ←

∏p

j=1 yj , wherexi and
yj are entities of networkA(B) andB(A) respectively and the
size of the minterm isp. The Entity Hardening problem with
respect to Case II is NP-complete and is proved in Theorem
2. An inapproximability proof for this case of the problem is
given in Theorem 3

Theorem 2. The Entity Hardening problem for Case II is NP
Complete

Proof: The Entity Hardening problem for case II is proved
to be NP complete by giving a reduction from the Densestp-
Subhypergraph problem [13], a known NP-complete problem.
An instance of the Densestp-Subhypergraph problem includes
a hypergraphG = (V,E), a parameterp and a parameterM .
The problem asks the question whether there exists a set of
vertices|V ′| ⊆ V and|V ′| ≤ p such that the subgraph induced
with this set of vertices has at leastM hyperedges. From an
instance of the Densestp-Subhypergraph problem we create
an instance of the ENH problem in the following way. For
each vertexvi and each hyperedgeej an entitybi andaj are
added to the setB andA respectively. For each hyperedgeej
with ej = {vm, vn, vq} (say) an IDR of formaj ← bmbnbq is
created. It is assumed that the value ofK is set of |V |. The
values ofk andEF are set top and|V |+ |E|−p−M (where
|A| = |V | and |B| = |E|) respectively.

In the constructed instance only entities of setA are
dependent on entities of setB. Additionally the dependency
for an entityai consists of conjunction of entities in setB.
Hence for an entityai ∈ A to fail, either it itself has to fail
initially or all entities to whichai is dependent on has to fail.
It is to be noted that the entities in setB has no induced failure
i.e., there is no cascade. Following from this assertion, with
K = p, the solutionA′ = ∅ andB′ = B would fail all entities
in setA ∪ B. Moreover this is the single unique solution to
the problem instance. This is because by including one entity
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ai in the initial failure set would result in not failing at least
one entitybj for a given budgetK = p. Hence it won’t fail
the entire set of entities inA ∪B.

If an entity in setA is hardened then it would have no effect
in failure prevention of any other entities. Whereas hardening
an entitybm ∈ B might result in failure prevention of an entity
ai ∈ A with IDR aj ← bmbnbq provided that entitiesbn, bq
are also defended. Withk = p (andK ≤ |V | = |B|) it can be
ensured that entities to be defended are from setB′.

To prove the theorem consider that there is a solution to the
Densestp-Subhypergraph problem. Then there existp vertices
which induces a subgraph which has at leastM hyperedges.
Hardening the entitiesbi ∈ B′ for each vertexvi in the solution
of the Densestp-Subhypergraph problem would then ensure
that at leastM entities in setA are protected from failure.
This is because the entities in setA for which the failure
is prevented corresponds to the hyperedges in the induced
subgraph. Thus the number of entities that fail after hardening
p entities is at most|V | + |E| − p − M , solving the ENH
problem. Now consider that there is a solution to the ENH
problem. As previously stated, the entities to be hardened will
always be from setB′. So defendingp entities from setB′

would result in failure prevention of at leastM entities in set
A such thatEF ≤ |V | + |E| − p − M . Hence, the vertex
induced subgraph would have at leastM hyperedges when
vertices corresponding to the entities hardened are included
in the solution of the Densestp-Subhypergraph problem, thus
solving it.

Theorem 3. For an interdependent networkI(A,B,F(A,B))
with n = |A ∪B| andF(A,B) having IDRs of form Case II,
it is hard to approximate the ENH problem within a factor of

1

2log(n)λ
for someλ > 0.

Proof: From Theorem 2, Densestp-Subhypergraph prob-
lem has been shown to be a special case of the ENH problem
with IDRs of form Case II. Densestp-Subhypergraph problem
is proved to be inapproximable within a factor of 1

2log(n)λ

(λ > 0) in [13]. Hence the theorem follows.

C. Case III: Problem Instance with an Arbitrary Number of
Minterm of Size One

The IDRs of Case III have arbitrary number of minterm of
size 1. This can be represented asxi ←

∑p

q=1 yq, wherexi

and yq are entities of networkA(B) andB(A) respectively
and the number of minterms arep. The ENH problem with
respect to Case III is NP-complete and is proved in Theorem
4.

Theorem 4. The ENH problem for Case III is NP Complete

Proof: The ENH problem for case III is proved to be NP
complete by giving a reduction from the Set Cover Problem,
a well known NP-complete problem. An instance of the Set
Cover problem includes a setS = {x1, x2, ..., xn}, a setS =
{S1, S2, ..., Sm} whereSi ⊆ S and a positive integerM . The
problem asks the question whether there exists at mostM
subsets from setS whose union would result in the setS. From
an instance of the set cover problem we create an instance of
the ENH problem in the following way. For each elementxi

in setS we add an entityai in setA. For each subsetSi in

setS we add an entitybi in setB. For all subsets inS, say
Sp, Sm, Sn, which has the elementxi there is an IDR of form
ai ← bm + bn + bl. The values of positive integersk andEF

are set toM andm−M respectively. It is assumed that the
value ofK = m.

With similar reasoning as that of Case II it can be shown
that for K = m the maximum number of node failures (i.e.
failure of all entities inA ∪ B) would occur if A′ = ∅ and
B′ = B. This is also the single unique solution to the problem
instance.

The constructed instance also ensures that the entities to
be hardened are from setB′ (A′ not considered as it is equal
to ∅). This is because protecting an entityai ∈ A would only
result in prevention of its own failure whereas protecting an
entity bj ∈ B would result in failure prevention of its own and
all other entities in setA for which it appears in its IDR.

To begin with the proof, consider that there is a solution
to the Set Cover problem. Then there existM subsets (or
elements in setS) whose union results in the setS. Hardening
the entities in setB corresponding to the subsets selected
would ensure that all entities in setA are prevented from
failure. This is because for the dependency of each entity
ai ∈ A there exist at least one entity (in setB) that is hardened.
Hence the number of entities that fails after hardening ism−M
which is equal toEF , thus solving the ENH problem. Now,
consider that there is a solution to the ENH problem. As
discussed above the entities to be hardened should be from
set B′. To achieveEF = m −M with k = M , no entities
in the setA must fail. Hence for each entityai ∈ A at least
one entity in setB that appears in its IDR has to be hardened.
Thus, it directly follows that the union of subsets in setS
corresponding to the entities hardened is equal to the setS,
solving the Set Cover Problem.

1) Approximation Scheme for Case 3:In this subsection we
provide an approximation algorithm for Case 3 of the problem.
For an interdependent networkI(A,B,F(A,B)) with the
initial failed set of entities asA′ ∪ B′ we defineProtection
Setof each entity as follows.

Definition: For an entityxi ∈ A ∪ B the Protection Set is
defined as the entities that would be prevented from failure
by hardening the entityxi when all entities inA′ ∪ B′ fails
initially. This is represented asP (xi|A′ ∪B′).

The Protection Set of each entity can be computed in
O((n +m)2) wheren andm are the number of entities and
number of minterms respectively in an interdependent network
I(A,B,F(A,B)) .

Theorem 5. For two entitiesxi, xj ∈ A∪B, P (xi|A′∪B′)∪
P (xj |A′ ∪ B′) = P (xi, xj |A′ ∪ B′) when IDRs are of form
Case III.

Proof: Assume that defending two entitiesxi and xj

would result in preventing failure ofP (xi, xj |A′∪B′) entities
with |P (xi|A′ ∪B′) ∪ P (xj |A′ ∪B′)| < |P (xi, xj |A′ ∪B′)|.
Then there exist at least one entityxp /∈ P (xi|A′ ∪ B′) ∪
P (xj |A′∪B′) such that it’s failure is prevented only ifxi and
xj is protected together. So two entitiesxm andxn (with xm ∈
P (xi|A′∪B′) andxn ∈ P (xj |A′∪B′) or vice versa) have to be
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present in the IDR ofxp. As the IDRs are of form Case III so if
any one ofxm or xn is protected thenxp is protected, hence
a contradiction. On the other way roundP (xi, xj |A′ ∪ B′)
contains all entities which would be prevented from failure
if xi or xj is defended alone. So it directly follows that
|P (xi|A′ ∪ B′) ∪ P (xj |A′ ∪ B′)| > |P (xi, xj |A′ ∪ B′)| is
not possible. Hence the theorem holds.

Theorem 6. There exists an1 − 1
e

approximation algorithm
that approximates the ENH problem for Case III.

Proof: The approximation algorithm is constructed by
modeling the problem as Maximum Coverage problem. An
instance of the maximum coverage problem consists of a
set S = {x1, x2, ..., xn}, a setS = {S1, S2, ..., Sm} where
Si ⊆ S and a positive integerM . The objective of the problem
is to find a setS′ ⊆ S and |S′| ≤ M such that∪Si∈SSi

is maximized. For a given initial failure setA′ ∪ B′ with
|A′|+|B′| ≤ K, letP (xi|A

′∪B′) denote the protection set for
each entityxi ∈ A∪B. We construct a setS = A∪B and for
each entityxi a setSxi

⊆ S such thatSxi
= P (xi|A′ ∪B′).

Each setSxi
is added as an element of a setS. The conversion

of the problem to Maximum Coverage problem can be done
in polynomial time. By Theorem 5 defending a set of entities
X ⊆ S would result in failure prevention of∪xi∈XSxi

entities.
Hence, with the constructed setsS andS and a positive integer
M (with M = k) finding the Maximum Coverage would
ensure the failure protection of maximum number of entitiesin
A∪B. This is same as the ENH problem of Case III. As there
exists an1 − 1

e
approximation algorithm for the Maximum

Coverage problem hence the theorem holds.

D. Case IV: Problem Instance with an Arbitrary Number of
Minterms of Arbitrary Size

The IDRs of Case IV have arbitrary number of minterm
of arbitrary size. This can be represented asxi ←
∑p

j1=1

∏qj1
j2=1 yj2 , wherexi and yj2 are entities of network

A(B) andB(A) respectively and there arep minterms each
of sizeqj1 .

Theorem 7. The Entity Hardening problem for Case IV is NP
Complete

Proof: Case II and Case III are special cases of Case
IV. Hence following from Theorem 2 and Theorem 4 the
computational complexity of the Entity Hardening problem is
NP-complete in Case IV.

V. SOLUTIONS TO THEENTITY HARDENING PROBLEM

A. Optimal Solution using Integer Linear Programming

We propose an Integer Linear Program (ILP) that solves
the Entity Hardening problem optimally. Let[G,H ] with
G = {g1, g2, ..., gn} and H = {h1, h2, ..., hm} denote the
entities in setA and B respectively withhi = 0 (gj = 0)
if entity ai (bj) is alive andhi = 1 (gj = 1) otherwise.
Given an integerk let [G,H ] be the solution (with value of1
corresponding to entities failed initially) that cause maximum
number of entity failure. Two variablesxid and yjd are used
in the ILP with xid = 1 (yjd = 1), when entityai ∈ A
(bj ∈ B) is in a failed state at time stepd, and0 otherwise.
The number of entities to be defended is considered to bek.

It is to be noted that the maximum number cascading steps is
upper bounded by|A|+ |B| − 1 = m+ n− 1. The objective
function can now be formulated as follows:

min
(

m
∑

i=1

xi(m+n−1) +

n
∑

j=1

yj(m+n−1)

)

(1)

The objective in (1) minimizes the number of entities failed
after the cascading failure with the respective constraints for
the Entity Hardening problem as follows:

Constraint Set 1:
n
∑

i=1

qxi
+

m
∑

j=1

qyj
= k , with qxi, qyj ∈ [0, 1].

If an entity xi (yj) is defended thenqxi
= 1 (qyj

= 1) and0
otherwise.

Constraint Set 2:xi0 ≥ gi − qxi
and yi0 ≥ hi − qyi

.
This constraint implies that only if an entity is not defended
andgi (hi) is 1 then the entity will fail at the initial time step.

Constraint Set 3: xid ≥ xi(d−1), ∀d, 1 ≤ d ≤ m+ n− 1, and
yid ≥ yi(d−1), ∀d, 1 ≤ d ≤ m + n − 1, in order to ensure
that for an entity which fails in a particular time step would
remain in failed state at all subsequent time steps.

Constraint Set 4: Modeling of the constraint to capture
the cascade propagation for IIM is similar to the constraints
established in [9]. A brief presentation of this constraintis
provided here. Consider an IDRai ← bjbpbl + bmbn + bq of
type Case IV. The following steps are enumerated to depict
the cascade propagation:

Step 1:Replace all minterms of size greater than one with a
variable. In the example provided we have the transformed
minterm asai ← c1 + c2 + bq with c1 ← bjbpbl and
c2 ← bmbn (c1, c2 ∈ {0, 1}) as the new IDRs. Note that after
transformation, the original IDR is in the form of Case III and
the introduced IDRs are in the form of Case II.

Step 2:For each variablec, a constraints is added to capture
the cascade propagation. LetN be the number of entities
in the minterm on whichc is dependent. In the example
for the variable c1 with IDR c1 ← bjbpbl, constraints
c1d ≥

yj(d−1)+yp(d−1)+yl(d−1)

N
and c1d ≤ yj(d−1) + yp(d−1) +

yl(d−1)∀d, 1 ≤ d ≤ m + n − 1 are introduced (with
N = 3 in this case). If IDR of an entity is already in
form of Case II, i.e.,ai ← bjbpbl then constraintsxid ≥
yj(d−1)+yp(d−1)+yl(d−1)

N
− qxi

and xid ≤ yj(d−1) + yp(d−1) +
yl(d−1)∀d, 1 ≤ d ≤ m + n − 1 are introduced (withN = 3).
These constraints satisfies that if the entityxi is hardened
initially then it is not dead at any time step.

Step 3: Let M be the number of minterms in the trans-
formed IDR as described in Step 1. In the given example
with IDR ai ← c1 + c2 + bq constraints of formxid ≥
c1(d−1) + c2(d−1) + yq(d−1) − (M − 1) − qxi

and xid ≤
c1(d−1)+c2(d−1)+yq(d−1)

M
∀d, 1 ≤ d ≤ m+ n− 1 are introduced.

These constraints ensures that even if all the minterms ofxi

has at least one entity in dead state then it will be alive if the
entity is hardened initially. For all IDRs of type Case I and
Case III, the constraint discussed in this step is used.
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B. Heuristic

In this subsection we provide a greedy heuristic solution to
the Entity Hardening problem. For an interdependent network
I(A,B,F(A,B)) with the initial failed set of entities as
A′ ∪ B′, Protection Setof each entity has been defined in
the approximation scheme of Case III. To design the heuristic
we defineMinterm Coverage Numberof each entity inA∪B
as follows:

Definition: For an entityxi ∈ A ∪ B the Minterm Coverage
Number is defined as the number of minterms that can be
removed fromF(A,B) without affecting the cascading process
by hardening the entityxi when all entities inA′ ∪ B′ fails
initially. This is represented asM(xi|A′ ∪B′).

Similar to the computation ofProtection Setthe Minterm
Coverage Numberof each entity can be computed inO((n+
m)2). With these definitions the heuristic is given in Algorithm
2. The algorithm takes in as input an interdependent network
I(A,B,F(A,B)) with S = A∪B. Step 4-5 is done to reduce
the search space as it directly follows that the set of entities
in Q wouldn’t effect the hardening process. In each iteration
of the while loop an entityxd is greedily selected which
when hardened would prevent failure of maximum number of
entities. This ensures that at each step the number of entities
failed is minimized. In case of a tie, among all entities involved
in the tie, the entity having the highest Minterm Coverage
Number is included in the solution. This gives a higher priority
to the entity which when hardened, has more impact on failure
minimization in subsequent iterations of the while loop. The
interdependent networkI(A,B,F(A,B)) is updated in steps
13-16 of the algorithm. This takes into account the effect of
hardening an entity in the current iteration on entities hardened
in the following iterations.

Run Time Analysis of Algorithm 2: For this analysis we
considern to be the total number of entities andm to be
the total number of minterms. Updates in step 4 can be done
in O(m) and step 5 inO(n). The while loop iterates fork
times. In each iteration of the while loop step 7 and step 8 takes
at mostO((n +m)2) andO(nlog(n)) time respectively. On
branching in step 9, step 10 and step 11 takesO((n +m)2)
andO(nlog(n)) time respectively. Updates in step 13 takes
O(n) time and in step 14 takesO(n + m) time. Step 12,
16 and 17 runs in constant time. Hence Algorithm 2 runs in
O(k(n+m)2) time.

VI. EXPERIMENTAL RESULTS

In this section we present the experimental results of the
Entity Hardening problem by comparing the optimal solution
computed using an ILP, and the proposed heuristic algorithm.
The experiments were conducted on real world power grid data
obtained from Platts (www.platts.com), and communication
network data obtained from GeoTel (www.geo-tel.com) of
Maricopa County, Arizona. The data consisted of70 power
plants and470 transmission lines in the power network, and
2, 690 cell towers,7, 100 fiber-lit buildings and42, 723 fiber
links in the communication network. We identified five non-
intersecting geographical regions from the data set and labeled
them from regions 1 through 5. For each of the regions, the
entities of the power and communication network that were

Algorithm 2: Heuristic Solution to the ENH Problem
Data: An interdependent networkI(A,B,F(A,B)) (with

S = A ∪B), set of entitiesA′ ∪ B′ failed initially
causing maximum failure in the interdependent network
with |A′|+ |B′| = K and hardening budgetk.

Result: Set of hardened entitiesH.
1 begin
2 Initialize S′ ← A′ ∪B′ ;
3 Initialize H = ∅;
4 UpdateF(A,B) as follows — (a) letQ be the set of

entities that does not fail on failingK entities, (b) remove
IDRs corresponding to entities in setQ, (c) remove from
minterm of entities not in setQ all entities which are in
setQ ;

5 UpdateS = S \Q ;
6 while (k entities are not hardened)do
7 For each entityxi ∈ S compute the Protection Set

P (xi|S
′);

8 Choose the entityxd with highest cardinality of the
set |P (xd|S

′)|;
9 if (more than one entity has the same highest

cardinality value)then
10 For each such entityxj compute the Minterm

Coverage NumberM(xj |S
′) ;

11 Choose the entityxd with highest Minterm
Coverage Number. ;

12 In case of a tie choose arbitrarily;

13 UpdateS ← S − P (xd|S
′);

14 UpdateF(A,B) by removing (i) IDRs corresponding
to all entities inP (xd|S

′), and (ii) occurrence of
these entities in IDRs of entities not inP (xd|S

′);
15 if (xd ∈ S′) then
16 UpdateS′ ← S′ − {xd};

17 UpdateH = H∪ xd ;

18 return H ;

located within the geographic region formed the setA andB
respectively. Each region was represented by an interdependent
networkI(A,B,F(A,B)). We use the IDR construction rules
as defined in [9] to generateF(A,B).

In all of our simulations IBM CPLEX Optimizer 12.5 to
solve ILPs and Python 3 for heuristic is used. To analyze
the Entity Hardening problem the value ofK was set to8.
The ILP in [9] was used to compute theK most vulnerable
nodes in the network, and the set of failed entities due to
the failure of theK entities was also computed. For the five
regions, when theK = 8 most vulnerable nodes failed, the
total number of failed entities in the network were 28, 23, 28,
28 and 27 respectively. With theK most vulnerable nodes and
final set of failed nodes as input, the ILP and heuristic of the
Entity Hardening problem are compared withk = 1, 3, 5, 7.
The results of these simulations are shown in Figure 1. It is
observed that the heuristic solution differs more from optimal
at higher values ofk (factor of 0.5 and 0.67 for Regions 1
and 3 respectively withk = 7). This is primarily because of
the greedy nature of Algorithm 2. However on an average the
heuristic solution differs by a factor of0.13 from the optimal.
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Fig. 1: Comparison chart of the optimal solution (ILP) with the heuristic by varying number of entities hardened for eachidentified region

VII. C ONCLUSION

In this paper we studied the entity hardening problem
in multi-layer networks. We modeled the interdependencies
shared between the networks using IIM, and formulated the
the Entity Hardening problem in this setting. We showed that
the problem is solvable in polynomial time for some cases,
whereas for others it is NP-complete. We evaluated the efficacy
of our heuristic using power and communication network data
of Maricopa County, Arizona. Our experiments showed that
our heuristic almost always produces near optimal results.
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