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Shortest Paths in Networks with
Correlated Link Weights

Song Yang, Stojan Trajanovski and Fernando A. Kuipers

Delft University of Technology, The Netherlands

{S.Yang, S.Trajanovski, F.A.Kuipers}@tudelft.nl

Abstract—Solving the shortest path problem is important in
achieving high performance or to efficiently utilize resources in
various kinds of networks, e.g., data communication networks
and transportation networks. Fortunately, under independent
additive link weights, this problem is solvable in polynomial time.
However, in many real-life networks, the link weights (e.g., delay,
bandwidth, failure probability) are often correlated due to spatial
or temporal dependencies. These correlated link weights together
might behave in a different manner and are not always additive.

In this paper, we first propose two correlated link-weight
models, namely (i) the deterministic correlated model and (ii) the
(log-concave) stochastic correlated model. Subsequently, we study
the shortest path problem under these two correlated models.
We prove that the shortest path problem is NP-hard under the
deterministic correlated model, and even cannot be approximated
to arbitrary degree in polynomial time. On the other hand, we
show that the shortest path problem is polynomial-time solvable
under a nodal deterministic correlated model. Finally, we show
that the shortest path problem under the (log-concave) stochastic
correlated model can be solved by convex optimization.

I. INTRODUCTION

The shortest path problem is undoubtedly one of the most

fundamental and important problems in the network research

community, since it plays a crucial role in achieving high

performance or efficient resource/cost utilization in networks.

For instance, a shortest path algorithm can return the minimum

delay route in vehicle networks, the most energy-efficient path

in energy networks, etc. In networks where the link weights are

independent and additive, the shortest path problem is solvable

in polynomial time, e.g., see [1]. However, often correlations

or (inter-)dependencies exist among link weights. For example,

in overlay [2] or multilayer networks [3], the abstract links

in the logical layer are mapped to different physical links

in the physical layer. In this context, two or more abstract

links that contain the same underlying physical links may

have correlated latencies, bandwidth usage or geographical

failures. Another example is interdependent networks [4],

where for instance the electricity network and Internet network

are coupled and inter-connected, and a node or link failure

in one network may cause failures of nodes or links in the

other network. A similar case is reflected by optical Shared-

Risk Link Group (SRLG) networks [5], where fiber links in

the same duct will fail simultaneously in case their duct fails.

The dependencies in interdependent and SRLG networks can

also be seen as correlations, so we use the term correlation

throughout this paper. Our key contributions are as follows:

• In Section II, we propose two correlated link weight

models, namely a deterministic correlated model and a

stochastic correlated model.
• In Section III, we study the shortest path problem under

the deterministic correlated model and we prove that it

cannot be approximated in polynomial time. We further

show that this problem is polynomial-time solvable under

a nodal deterministic correlated model.

• In Section IV, we propose a convex optimization for-

mulation to solve the shortest path problem under the

stochastic correlated model.

Related work is presented in Section V and we conclude in

Section VI. In [6] we present additional results.

II. CORRELATED LINK WEIGHT MODELS

A network having node and link weights can be transformed

to a directed network with only link weights, as done in [7].

Therefore, we assume nodes are unweighted and only consider

correlated link weights. Throughout this paper, we use the

term “correlated model” to represent “correlated link weight

model”.

A. Deterministic Correlated Model

Without loss of generality, we use w(l) to represent the

weight of link l. For simplicity, in this paper we call w(l) the

cost of l, although it could also reflect other metrics such as

delay, energy, etc. In the deterministic correlated model, for

any two links li and lj , their joint total cost is represented by

w(li) ⊕ w(lj), where the operator ⊕ indicates the joint total

cost of the links, which may be unequal to the + operator

when they are correlated. In this model, the use of one link

may influence the cost of another. For example, in Fig. 1

where the cost is shown above each link, it is assumed that

only link (s, a) and (b, t) are correlated with joint cost of 11
for simplicity, and all the other links have uncorrelated costs.

We can see that in path s-b-t, the cost of link (b, t) is 10
since another link (s, b) in this path is not correlated with it.

Therefore this path’s cost is equal to 18. However, in path

s-a-b-t, the cost of link (b, t) should be calculated together

with another link (s, a) with a joint cost of 11, since they are

correlated and both appear in this path. Therefore, this path’s

total cost is equal to 11 + 4 = 15, which is not equal to the

sum of the individual link costs (6 + 4 + 10 = 20).

Equivalently, we could formulate w(li) ⊕ w(lj) = ρi,j ·
(w(li)+w(lj)), where ρi,j stands for the correlation coefficient
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Fig. 1: An example of the deterministic correlated model.

between links li and lj , and its value varies in the range (0,∞),
since we do not consider negative costs. When ρi,j is equal

to 1, it indicates that li and lj are uncorrelated, when ρi,j is

greater than 1, it indicates that li and lj have an increasing

correlation, otherwise we say li and lj have a decreasing

correlation.

Analogously, for given m > 1 links l1, l2, ..., lm in the

deterministic correlated model, their joint total cost can be

expressed as follows:

w(l1)⊕w(l2)···⊕w(lm) = ρ1,2,...,m·(w(l1)+w(l2)+···+w(lm))
(2.1)

Similarly, if the link l’s weight is multiplicative (e.g., failure

probability), then by using −log(w(l)) to represent its weight

value, Eq. (2.1) also applies. The decreasing correlation case

can also reflect SRLG networks. For instance, in SRLG net-

works, each link is associated with several SRLG events with

their respective failure occurring probabilities. Hence, the total

failure occurring probabilities (represented by PSRLG) of two

correlated links that have at least one SRLG in common will

be equal to the product of the failure occurring probabilities

of all the distinct SRLG events that belong to these two links.

Let us denote Pl1 = Ps1 · Ps and Pl2 = Ps2 · Ps as the

failure probability of these two links, respectively, where Ps
denotes the overlapping SRLGs’ failure occurring probability

between l1 and l2, and Ps1 (Ps2 ) is the non-overlapping

SRLGs’ failure probability of l1 (l2). Then we can have

Pl1 · Pl2 < PSRLG = Ps1 · Ps2 · Ps < min(Pl1 , Pl2). By

taking the −log on this inequality, we have:

max(−log(P1),−log(P2)) < −log(PSRLG) < (−log(Pl1
)) + (−log(Pl2

))

Or equivalently,

−log(PSRLG) = ρ · (−log(Pl1)) + (−log(Pl2))
where ρ < 1 denotes their correlation coefficient.

In probability theory, given two random variables X and

Y with respective expected values μX and μY , and respec-

tive standard deviations σX and σY , their linear correlation

coefficient ρ(X,Y ) is defined as:

ρ(X,Y ) =
Cov[X,Y ]

σXσY
=
E[(X − μX)(Y − μY )]

σXσY
(2.2)

where Cov[X,Y ] represents the covariance of X and Y .

However, the linear correlation coefficient in probability

theory is different from and cannot be transformed to the

one defined in the deterministic correlated model because: the

variances of X and Y in Eq. (2.2) must be nonzero and finite.

However, in the deterministic correlated model, for any link

l, when none of its correlated links simultaneously belong to

a path, the cost of l is fixed/deterministic with variance of 0.

B. Stochastic Correlated Model

In many real-life networks, the link weights are uncertain

because of inaccurate Network State Information (NSI) [8],

[9]. For instance, Papagiannaki et al. [10] showed that the

queuing delay distribution can be approximated by a Weibull

distribution. Since the Cumulative Density Function (CDF) of

a Weibull distribution is log-concave and the CDFs of many

common distributions (e.g., Exponential distribution, Uniform

distribution, etc.) are log-concave [11], [12], we make, as in

[8], [13], a mild (general) assumption that the link l’s weight

follows a log-concave distribution.

We first define the Correlated Group (CG):

Definition 1: Given is a network G(N ,L) where N rep-

resents a set of N links and L denotes a set of L links. A

Correlated Group (CG) is a subset of links LCG ⊆ L, and

∀l ∈ LCG, ∃l′ ∈ LCG\{l}, such that l and l′ are correlated

(ρl,l′ �= 1).

Accordingly, the Maximum Correlated Group (MCG) is de-

fined as a CG with the maximum number of correlated links.

If a link l is uncorrelated/independent with all the other links,

then we say {l} is a single element MCG. Suppose there

are Ω Maximum Correlated Groups (MCGs), and there are

mi > 0 links (denoted as li1, li2,...,limi
) in the i-th MCG, where

1 ≤ i ≤ Ω. Each link l has an upper bound of allocating cost

wmax
l . In the i-th MCG, a multivariate mi dimensional log-

concave Cumulative Density Function CDFi(x1, x2, ..., xmi
)

is given to allocate cost x1, x2,..., xmi
for links li1, li2,..., limi

,

respectively.

Therefore, if the possible cost of link l ranges from

0 to wmax
l (0 < wmax

l ), then the probability of allocat-

ing a cost value out of this range is 0. Hence, we have

CDFi(w
max
l ) = 1 for a single element MCG i, and

CDFj(w
max
lj1

, wmax
lj2

, ..., wmax
ljmj

) = 1 for a multi-element MCG

j.

For example, Fig. 2 shows a 2-dimensional multivariate

Normal distribution, where both variables are in the range

[0, 4] with mean 2, and the corresponding covariance ma-

trix is

[
0.9 0.4
0.4 0.3

]
. Similarly to Eq. (2.2), the correlation

matrix (composed of linear correlation coefficients) can be

derived from the covariance matrix and the variables’ standard

variances in the multivariate Normal distribution. However,

we do not explicitly use the linear correlation coefficient

in the stochastic correlated model, since we will later prove

that via the log-concave property of this model, the shortest

path problem under this model can be solved by convex

optimization.
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Fig. 2: A 2-dimensional multivariate Normal distribution.

III. SHORTEST PATH UNDER THE DETERMINISTIC

CORRELATED MODEL

A. Problem Definition and Complexity Analysis

Definition 2: Given is a directed network G(N ,L), and

each link l ∈ L has a cost w(l) following the deterministic

correlated model. The Shortest Path under the Deterministic

Correlated Model (SPDCM) problem is to find a path from

the source s to the destination t with minimum cost.

In conventional deterministic networks, a subpath of a

shortest path is also the shortest. We refer to this property of

the shortest path as the dominance of the subpath. However,

this is not the case in networks with deterministic correlated

link weights, which means a dominated path may also lead

to an optimal solution. For instance, in the example of Fig.

1, we can see that although subpath s-b has a smaller cost

than subpath s-a-b, path s-a-b-t (instead of path s-b-t) has the

minimum cost. In the following, we will study the complexity

of the SPDCM problem.

Theorem 1: The SPDCM problem is NP-hard.

Proof: When the correlation coefficient is equal to 1, the

SPDCM problem can be solved by a conventional shortest

path algorithm in polynomial time. We therefore prove in the

following that the SPDCM problem is NP-hard for “increasing

correlation”> 1 as well as “decreasing correlation”< 1.

Increasing Correlation:

When the correlation coefficient is greater than 1, we make

a reduction to the forbidden pairs shortest path problem, which

is known to be NP-hard [14]. In a given network and for given

set of node pairs ζ, the forbidden pairs shortest path problem

looks for the shortest path between s and t such that at most

one node from each pair in the set ζ lies on this path. Let us

consider a network with deterministic correlated link weights,

where two nodes i and j form a forbidden pair, their costs

are correlated such that w(i, .) ⊕ w(j, .) = +∞, where (i, .)
and (j, .) represent any link that contains an end node of i
and j, respectively. In all the other cases, the link costs are

uncorrelated and finite. Since w(i, .) ⊕ w(j, .) = +∞, if the

two forbidden nodes appear in the same path then the cost of

this path will be +∞, so it will never be the minimum cost

path. Now, the SPDCM problem is equivalent to the forbidden

pairs shortest path problem.

Decreasing Correlation:

When the correlation coefficient is less than 1, we make

a reduction to the Minimum Color Single-Path (MCSiP)

problem, which is NP-hard [15]. Given a network G(N ,L),
and given the set of colors C = {c1, c2, ..., cg} where g is

the total number of colors in G, and given the color set {cl}
associated to each link l ∈ L, the Minimum Color Single-Path

(MCSiP) problem is to find one path from source node s to

destination node t such that it uses the least amount of colors.

Assume each color ci is associated with cost 1, where 1 ≤
i ≤ z. We further assume that w(l1)⊕w(l2)⊕···⊕w(lm) = x,

where x is the total number of distinct colors belonging to

these m links. Hence, the SPDCM problem is equivalent to

the MCSiP problem.

Theorem 2: The SPDCM problem cannot be approximated

to arbitrary degree in polynomial time, unless P=NP.

Proof: We prove it by contradiction.

Increasing Correlation:
Assume a polynomial-time approximation algorithm exists

that can find a path with a cost at most α ·opt, where α > 1 is

an approximation ratio. For a pair of forbidden nodes i and j,
we further assume w(i, .)⊕w(j, .) > α ∗ opt. Therefore, if an

approximation algorithm can find a path ψ with cost at most

α ∗ opt from s to t, then i and j cannot be simultaneously

traversed by this path ψ, which means that the forbidden pairs

shortest path problem can be solved in polynomial time, which

results in a contradiction.

Decreasing Correlation:
We first introduce the Disjoint Connecting Path problem

[16]. Given a directed network G(N ,L), a collection of

disjoint node pairs (s1, t1), (s2, t2), ..., (sz , tz), does G
contain z mutually link-disjoint paths, one connecting si and

ti for each i, 1 ≤ i ≤ z. This problem is NP-hard when

z ≥ 2. Assume a polynomial-time approximation algorithm

exists that can find a path with a cost at most α · opt, where

α > 1 is an approximation ratio. Assuming all the links in

the network have weight 1, and link (u, v) and any m > 0
links in L\{(u, v)} are correlated, with a total cost of 1

β ·m.

Moreover, any two or more links in L\{(u, v)} are assumed

to be uncorrelated/independent.

According to this assumption, the minimum value of a

shortest path is 1 if link (u, v) is not traversed, i.e., it traverses

only one link from s to t. However, the optimal solution which

traverses link (u, v) has a total cost of opt = 1
β · c, where c

is the sum of minimum hops from s to u and from v to t.
For any given α, let β

c > α, then 1 > α · 1
β · c, which means

1 > α · opt. To find a path with cost at most α · opt, the

polynomial-time algorithm must find a path which traverses

link (u, v). In that case the algorithm can, in polynomial time,

find two link-disjoint paths from s to u, and from v to t, which

results in a contradiction.



To solve the SPDCM problem exactly, we can apply a

modified Dijkstra’s algorithm by letting each node store

as many subpaths as possible (at the cost of exponential

running time), which is similar to the exact algorithm for

multi-constrained routing [17]. We start with some notations

used in the algorithm:

sus[u][h]: the parent node of node u for its stored h-th

subpath from s to it.

dist[u][h]: the cost value stored at node u for its stored h-th

subpath from s to it.

counter[u]: the number of stored subpaths of node u.

u[m]: node u’s stored m-th subpath from s to it.

adj(u): the set of adjacent nodes of node u.

The pseudo-code of the exact algorithm is given in Algo-

rithm 1.

Algorithm 1 SPDCM(G, s, t)

1: Q ← s, P ← ∅, dist[s][1] ← 0, dist[i][h] ← +∞,

sus[i][h] ← i, counter[s] ← 1, counter[i] ← 0,

∀i ∈ N\{s}.

2: While Q �= ∅
3: u[m] ← Extract-min(Q)

4: If (u == t) do
5: Insert (P , u[m])
6: Else
7: Foreach v ∈ adj(u) do
8: counter(v) = counter(v) + 1
9: Calculate the total cost of subpath u[m] → v and

assign it to dist[v][counter(v)]
10: sus[v][counter(v)] ← u
11: Insert (Q, v, counter(v))
12: return min(P ).

Next, we study the performance of a conventional shortest

path algorithm running on a graph where each link has an

“uncorrelated” weight value.

Lemma 1: When all the correlation coefficients are greater

than 1, a conventional shortest path ψ has a total cost at most
ρmax

ρopt
· opt, where ρmax and ρopt are the largest correlation

coefficient and optimal solution’s correlation coefficient, re-

spectively, and opt is the cost of the optimal solution.

Proof: Let U(ψ) =
∑
l∈ψ w(l) and let C(ψ) = ρu ·

U(ψ) = ρu · ∑l∈ψ w(l) reflect the total joint cost of path

ψ considering their correlation, where ρu indicates the cor-

relation coefficient of path ψ. On one hand, a conventional

shortest path ψ should satisfy U(ψ) ≤ opt
ρopt

. On the other hand,

C(ψ) ≤ ρmax · U(ψ) considering ρmax is the largest correla-

tion coefficient. Hence, C(ψ) ≤ ρmax · U(ψ) ≤ ρmax

ρopt
· opt.

Lemma 2: When all the correlation coefficients are less than

1, a conventional shortest path ψ has a cost at most 1
ρmin

·opt,
where ρmin is the smallest correlation coefficient among all

the correlation coefficients.

Proof: Let V (ψ) =
∑
l∈ψ w(l) and let C(ψ) = ρu ·∑

l∈ψ w(l) reflect the total joint cost of path ψ considering

their correlation. Since all the correlations are decreasing (ρ <
1), we have C(ψ) ≤ V (ψ). On the other hand, ρmin ·V (ψ) ≤
opt considering that ρmin is the smallest correlation coefficient.

Hence, C(ψ) ≤ V (ψ) ≤ 1
ρmin

· opt.
Via Lemmas 1 and 2, we obtain Theorem 3.

Theorem 3: In a network with links following the determin-

istic correlated model, a conventional shortest path can have

cost at most max(ρmax

ρopt
, 1
ρmin

) · opt.
Theorem 3 reveals that a conventional shortest path may

have arbitrary bad performance, since either ρmax

ρopt
can be

infinitely large or ρmin can be infinitely small.

B. Shortest Path under the Nodal Deterministic Correlated
Model

In some real-world networks (e.g., SRLG networks), the

links that are spatially (geographically) close to each other are

usually correlated whereas the links that are located spatially

far from each other are usually uncorrelated. We make an

additional assumption, which is that only the links sharing the

same node can be correlated. We name this kind of correlation

as nodal correlation.

Although the SPDCM problem is NP-hard, we will show

that, by transforming the original graph to an auxiliary graph,

the Shortest Path under the Nodal Deterministic Correlated

Model (SPNDCM) problem is polynomial-time solvable. For

any node a, there are generally two cases of nodal correlation,

namely (1) links in the form of (a, b) and (a, c), and (2) links

in the form of (a, b) and (b, c) are correlated. When (a, b) and

(a, c) are correlated, a simple path cannot traverse both of them

since looping is not allowed. In this sense, any simple path

only traverses at most one of them, which means that the links’

correlation will not affect the cost calculation of any simple

path. Therefore, we only need to consider the case when (a, b)
and (b, c) are correlated. We first define that if (a, b) and (b, c)
are correlated, then a and b are called correlated nodes, which

is represented by Cn, else they are uncorrelated nodes, which

is denoted by Un. Subsequently, based on the original graph

G(N ,L), the auxiliary graph GA(NA,LA) can be constructed

as follows:

1) For any two links (u, v) ∈ L and (v, w) ∈ L that are

correlated in G, create new nodes uv , vuw and vw in

GA if they do not exist.

2) For any node a ∈ N and if it is an uncorrelated node
(in Un), create node aa in GA.

3) For any two correlated links (u, v) and (v, w) in G,

create links (uv, v
uw), (vuw, vw) and (vw, ww) in GA.

Assign the links (uv, v
uw) and (vw, wr) with the weights

of w(u, v) and w(v, w), respectively, and the link

(vuw, vw) with the weight of (ρ(u,v)(v,w)−1)·(w(u, v)+
w(v, w)), where ρ(u,v)(v,w) is the correlation coefficient

of links (u, v) and (v, w).
4) For each link (a, b) ∈ L such that both node a and node

b are not correlated nodes, create the link (aa, bb) also

in GA with the link weight of w(a, b).



5) For each link (a, b) ∈ L such that a ∈ Un and b ∈ Cn,

draw links (aa, br) in GA, where r ∈ N and br ∈ GA.

6) For each link (a, b) ∈ L such that a ∈ Cn and b ∈ Un,

draw links (arp, bb) in GA, where r, p ∈ N and arp ∈
NA.

Fig. 3: An example network with dotted links following the

nodal deterministic correlated model.
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Fig. 4: Auxiliary graph of Fig. 3 for the SPDCM problem

under the nodal deterministic correlated model.

The idea of the auxiliary graph is that if two links (u, v) and

(v, w) are correlated, we create four corresponding nodes uv ,

vuw, vw, ww and then draw three links (uv, v
uw),(vuw, vw)

and (vw, ww). We use (uv, v
uw) and (vw, ww) to indicate

their uncorrelated value, respectively, if only one of these two

links is traversed, and (vuw, vw) to represent the correlated

loss (decreasing correlation)/gain (increasing correlation), re-

spectively, if they are traversed simultaneously. For instance,

in Fig. 3 where the link weight is labeled above each link,

assuming links (a, b), (b, c), (c, t) and (b, d) are nodal cor-

related, then Fig. 4 is its corresponding auxiliary graph with

the assigned weight shown on each link. In particular, since

(a, b), (b, c) and (a, b), (b, d) may have different correlation

coefficients, in Fig. 4 we use (bac, bc) and (bad, bd) to represent

their correlation value, respectively. Meanwhile, when there is

a link from an uncorrelated node to a correlated node in the

original graph, e.g., (e, b) in Fig. 3, we draw links (ee, bc)
and (ee, bd) to reflect it (Step 5); When there is a link from a

correlated node to an uncorrelated node in the original graph,

e.g., (c, d) in Fig. 3, we draw link (cbt, dd) to represent it

(Step 6). Considering that there are at most N(N − 1) nodal

links in a graph, the original graph can be transferred to the

auxiliary graph in polynomial time.

Consequently, running a shortest path algorithm on the

auxiliary graph can return a minimum cost path under the

nodal deterministic correlated model. Our auxiliary graph can

deal with both decreasing and increasing correlation cases.

Considering that (ρ(u,v)(v,w) − 1) · (w(u, v) + w(v, w)) < 0
in the auxiliary graph under the decreasing correlation case,

and Dijkstra’s algorithm cannot handle negative link weights,

we could for instance run Bellman-Ford’s algorithm on the

auxiliary graph.

IV. SHORTEST PATH UNDER THE STOCHASTIC

CORRELATED MODEL

The Shortest Path under the Stochastic Correlated Model

(SPSCM) problem is defined as follows:

Definition 3: The Shortest Path under the Stochastic Cor-

related Model (SPSCM) problem: In a given directed graph

G(N ,L) where the link costs follow the stochastic correlated

model, it is assumed that there are in total Ω Maximum

Correlated Groups (MCGs). The SPSCM problem is to find a

path from the source s to the destination t such that its total

cost is minimized and the probability to realize this value is

no less than Ps.
We present a convex optimization formulation to solve the

SPSCM problem. Convex optimization problems can usually

be solved quickly and accurately with convex optimization

solvers [18]. Let us first introduce how to develop a Linear

Programming (LP) formulation to solve the shortest path

problem in deterministic networks:

Objective:
max dt (4.1)

Constraints:

ds = 0 (4.2)

dv − du ≤ w(u, v) ∀(u, v) ∈ L (4.3)

where du is a value between 0 and 1. Similarly, the SPSCM

problem can be solved by the following convex formulation:

Objective:
max dt (4.4)

Constraints:

ds = 0 (4.5)

dv − du ≤ f(u, v) ∀(u, v) ∈ L (4.6)

∑
i∈Ω

− log
(
CDFi(f(l

i
1), f(l

i
2), ..., f(l

i
mi

))
) ≤ − log(Ps)

(4.7)

where the variables f(u, v), f(li1), f(l
i
2), ..., f(l

i
mi

) indicate

the cost of links (u, v), li1, li2,..., limi
, respectively. Con-

straint (4.7) ensures that the total probability of realiz-

ing the total cost is no more than Ps. In Eq. (4.7), for

each MCG we apply the multi-dimensional CDF func-

tions to calculate the probability of realizing a cost.

Since the multi-dimensional CDF function is log-concave,



− log
(
CDFi(f(l

i
1), f(l

i
2), ..., f(l

i
mi

))
)

is convex, and by

summing all the MCGs’ CDFs together, it remains convex,

which indicates that Eq. (4.7) is convex. The other constraints

are also convex, which proves that the above formulation is a

convex optimization model.

V. RELATED WORK

In a network with each link having multiple additive link

weight metrics (e.g., delay, cost, jitter, etc.), the Quality of

Service (QoS) routing problem is to find a path that satisfies

a given metric vector constraint. Kuipers and Van Mieghem

[19] study the QoS routing problem under uncorrelated link

weights. Another common source of correlation is Shared-

Risk Link Groups (SRLGs). Sometimes one SRLG can also

be represented by one color, but they share the same meaning

in terms of reliability. In this context, Yuan et al. [15] prove

that the Minimum Color Single-Path (MCSiP) problem is NP-

hard. Yuan et al. also prove that finding two link-disjoint paths

with total minimum distinct amount of colors or least amount

of coupled/overlapped colors is NP-hard. Lee et al. [20]

propose a probabilistic SRLG framework to model correlated

link failures and develop an Integer Nonlinear Programming

Programming (INLP) to find one unprotected path or two link-

disjoint paths with the lowest failure probability.

There is also some literature dealing with correlated routing

problems in stochastic networks [21]. For example, in [22],

only two possible states are assumed, which are congested

and uncongested, and each state corresponds to a cost value.

A probability matrix Pu,v,wa,b , which represents the probability

that if (u, v) is in state a then (v, w) is in state b, is given. Two

similar link weight models called link-based congestion model

and node-based congestion model are proposed in [23]. Based

on these models, [22], [23] define and solve the least expected

routing problem, which is to find a path from the source to

the destination with the minimum expected costs. However, in

[22], [23] there are only two possible states for each link and

only the correlation of the adjacent links is known/assumed.

We assume a more general (and different) stochastic correlated

model, where as long as the links (not necessarily adjacent)

are correlated, their joint CDF for allocating costs is known.

VI. CONCLUSION

In this paper, we have studied the shortest path problem

under two correlated link weight models, namely (i) the deter-

ministic correlated model and (ii) the (log-concave) stochastic

correlated model. We have proved that the shortest path prob-

lem is NP-hard under the deterministic correlated model, and

cannot be approximated to arbitrary degree, unless P=NP. In

particular, we have shown that this problem is polynomial-time

solvable under the nodal deterministic correlated model. For

the stochastic correlated model, we have proposed a convex

optimization formulation to find the shortest path.
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