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Abstract—Testing wireless networks is a challenging task, so
many research papers limit their evaluation section to simulation.
At the same time, several large-scale publicly shared testbeds
such as ORBIT, w-iLab.t, or IoT-LAB propose valuable means
for validating new protocols. They make experimenting possible
and support some level of experiment reproducibility. However,
they offer operating conditions that are fixed and significantly
differ from real-world deployments. As the performance of
wireless networks strongly depends on the platform, topology, and
operating conditions, validating protocols in artificial conditions
may not lead to meaningful results. In this paper, we describe
WalT, a reproducible platform to run reproducible experiments.
WalT nodes are single-board computers on which users can
deploy their OS (filesystem, kernel) packaged as a docker image
for easy customization and sharing. With low-cost small-sized
standard components and free software, researchers can easily
reproduce their own WalT platform to validate results in real-
world conditions. WalT can support mobile demos that you can
bring around in your backpack. The total control on WalT
nodes allows setting up diverse experiment scenarios ranging,
for instance, from Wi-Fi handover measurements to evaluating
routing protocols in wireless sensor networks.

I. INTRODUCTION

Validating new protocols for wireless networks is a chal-
lenging task for which we can mainly use simulations or per-
form experiments. Simulations are quite limited and can only
give us the first insight into the behavior of a chosen protocol
under simplified assumptions [1], [2]. Usually, simulations
do not take the underlying topology into account sufficiently
well so the validation may lead to interesting results and
comparisons at first, but eventually, the results may be different
in real deployments.

Performing real-world experiments is considered as the
prerequisite for a true validation of a protocol proposal and
it requires both repeatability and reproducibility [3]. Repeata-
bility requires that the same experiment is run in the same
conditions several times by the investigator, producing similar
results, and it is necessary to guarantee that experimental re-
sults are sound. Reproducibility is guaranteed if an experiment
can be replicated under differing conditions, while providing
sufficiently similar results. This is essential to prove that the
scientific proposal is robust across various environments and
not only in a particular setup. It is also crucial for allowing
researchers to reproduce experiments, build upon, and compare
their results with the previous work.

Experiments involving wireless networks are difficult to
run. We have a choice between using specialized platforms

(like ORBIT [4], w-iLab.t [5], IoT-LAB [6], and others) or
setting up some ad hoc testbeds. Specialized platforms make
the experimentation task easier and offer good support for
experiment repeatability. However, they only offer operating
conditions that are far away from real-world deployments:
nodes are usually distributed on a regular grid in one large
room, and reproducibility in varying environmental conditions
is very limited. As the performance of wireless networks
strongly depends on their topology, environment, and operat-
ing conditions, validating protocols in artificial conditions may
not lead to meaningful results, and reproducibility is de facto
limited. Moreover, researchers do not have physical access to
the equipment so debugging is tedious and some measure-
ments like fine-grain energy consumption may be impossible.
Ad hoc testbeds can help validating a given protocol, but they
do not scale and it is difficult to reproduce results since most
of the time a precise specification is missing.

In this paper, we propose WalT, a reproducible platform to
run reproducible experiments. Our goal is threefold: (i) easily
setup a platform to develop, debug and make preliminary
validation, (ii) allow deployment and control of experiments on
a larger scale, (iii) provide a way for others to deploy exactly
the same experiment in a different environment, to challenge
reproducibility and also guarantee a suitable starting point and
adequate repeatability when comparing with other proposals.
It follows an approach that lies somewhere in between spe-
cialized platforms with rigid and limited topology, and ad hoc
testbeds. WalT nodes are single-board computers on which
users can deploy their OS (filesystem, kernel) packaged as a
docker image for easy customization and sharing.

A WalT platform provides:

— full remote control over nodes: rebooting, remote shell
sessions, deploying OS images,

— management of node OS images: clone from the docker hub,
modify locally, and publish images,

— log management: means to collect, store, and query exper-
iment logs and event traces are provided,

— automated discovery of the platform topology.

WalT presents the following advantages:

— it can be easily replicated at the required deployment places,
— it is cost-effective, built from inexpensive components run-



ning open source software!,

— it is lightweight, it can serve for a portable demo or as
a development platform in an office without a tedious
deployment in a whole building,

— it is adaptable, you can use it for sensor networks or
experiments with IEEE 802.11,

— it is easy to install and use.

Besides supporting reproducible experiments, WalT also en-

ables the emergence of reproducible platforms—researchers

can set up their WalT platforms to validate the results of others
at different places or environments.

The rest of the paper discusses the initiatives for wireless
network experiments (Section II), describes the WalT archi-
tecture (Section III), presents some example experiments with
WalT: a comparison of NTP/PTP temporal synchronisation and
measurements of the 802.11 handover of smartphones (Section
IV), and proposes a demo for the workshop (Section V).

II. TESTBEDS FOR WIRELESS NETWORK EXPERIMENTS

The wireless medium presents complex characteristics as it
is sensitive to many external factors and varying conditions
difficult to model. Thus, the entire protocol stack must be
robust with respect to them and should be evaluated in
realistic situations that involve all factors that may influence
robustness. Moreover, research on wireless networks requires
a wide area of expertise since many aspects of the protocol
stack up to applications rely on specific functionalities: the
physical layer, medium access control, neighbor maintenance
and discovery, routing, just to name a few. Recent research
activities in wireless sensor networks have redefined an entire
body of standards to meet even tighter constraints found
in the context of the Internet of Things (IoT): low power,
scarce ressources (energy, processing power, and memory),
and lossy environments. IEEE 802.15.4 at the physical and
link layers, IETF 6LoWPAN at the network layer, RPL for
routing, and CoAP at the application layer are some of the
resulting standards for which many aspects still need to be
studied.

A. Wireless Network Experimentation

Once it gets to implementation, there are two main ways
to validate network and protocol proposals: simulation and
experiments. For obvious reasons, simulation, with or without
emulation, has been one of the preferred ways to validate
protocols at the large scale: easy development, cost, repeata-
bility, controlled environments to name a few advantages. In
this case, the validity of the results depends a lot on the
accuracy of the model of the entire system to study. This is
where simulation finds its breaking point: the electromagnetic
propagation in a real environment is almost impossible to
simulate accurately since models are complex and computation
intensive, and there is a huge variety of environments to take
into account according to planned deployment scenarios.

U All WalT resources are publicly available: http://walt.forge.imag.fr,
https://github.com/drakkar-lig, https://hub.docker.com/u/waltplatform/

Also, when studying wireless protocols, implementation
raises many issues: a lot of work has to take place at the
lower layers, and sometimes debugging and validating imple-
mentations requires to use oscilloscopes and digital analyzers.
This is particularly the case for IoT-related studies in which
the proposed solutions have to be implemented on highly
constrained devices [7] and protocols need to be optimized
to be energy efficient with tight synchronization contraints of
the order of us for example.

As we can see, there is a need for experimentations in real
conditions with testbeds spanning from a small size in the
development phase up to larger deployments for experiments
in conditions close to the real situation of utilization.

B. Repeatability and Reproducibility

In this context, repeatability and reproducibility of experi-
ments are two crucial challenges. First of all, to debug effi-
ciently and validate implementations, it is of prime importance
to be able to run the same test suites in exactly the same
conditions. Second, to be valuable for wireless networks,
scientific proposals must show their robustness under different
operating conditions found in real deployments. Shared large-
scale testbeds are great tools for experimenting with new
protocols and algorithms, however they have some limitations:
the artificial regular high density deployments for a large part
of the nodes, the stable conditions in which they operate, and
the limited choice of devices. In addition to such infrastruc-
tures, we need a way to deploy testbeds in real conditions
and replicate these testbeds in different places to show the
reproducibility of results.

We argue that validating wireless networking experiments
does not only rely on showing that the same experiment
repeated in exactly the same situation always gives the same
results. We must also show that new protocols and mechanisms
achieve good results in a wide range of real-world conditions,
which means that we must be able to deploy and run exper-
iments easily in a wide variety of situations. That is what
WalT is designed for, because once a new protocol has been
developed on a given topology, it can be run on any other
WalT platform. As each WalT platform is deployed in a real
world environment with a unique node topology, when a given
experiment is reproduced, we can conclude on the robustness
of the tested protocol.

Finally, we must also guarantee that our fellow researchers
will be able to run state of the art experiments and compare
their outcome with the results of the new proposals under
the same conditions to prove their improvements through
repeatability of the comparison. This is only possible if all
other parameters except the tested element are similar.

WalT aims to ease this process based on two main features:
(i) it relies on off-the-shelf low-cost hardware, (ii) it uses
docker to build and run experiments, which allows to distribute
a snapshot of the entire software environment used during
the experiment. These two features offer the conditions for
repeatability, since the same software will be executed for
every run in exactly the same conditions, the same images



being restarted from scratch over and over in a genuine
environment, as well as for reproducibility, since the same
platform can be deployed in any other place, running the same
experiment in a flash.

III. ARCHITECTURE OF WALT

A. Overview

Figure 1 presents the functional structure of a WalT plat-
form. From the user point of view, WalT consists of a set of
remotely managed nodes. They are low-cost SBCs—Single-
Board Computers such as Raspberry Pi on which users can
deploy a given operating system.

Pullimages
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Image
WalT
Image

WalT Server
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Figure 1. Functional structure of WalT

The brain of WalT is a GNU/Linux based server that con-
trols the other components of the platform, interacts with the
client-side software, and provides log management (collecting,
storing, querying). The client-side software, which delegates
all complex tasks to the server, consists of a lightweight
and portable tool for exploring the topology, interacting with
nodes, deploying a given operating system image on them,
customizing such an image, and exploring logs.

The network is composed of cost-effective switches provid-
ing a small set of features, most notably remote management
and Power-over-Ethernet (PoE). PoE simplifies deployment
by providing power and data communication up to each
node using the same Ethernet cable, allowing for reusing any
existing cabling (e.g. in a building).

WalT internally relies on the docker virtualization platform.
Docker offers efficient packaging and easy publishing of the
operating systems deployed on nodes.

The ultimate goal of the WalT design was platform re-
producibility—instead of running experiments on a publicly
shared testbed, WalT proposes to reproduce the platform
for any experimentation need. WalT achieves platform re-
producibility because the platform is composed of low cost,
standard components, free software, and it is easily deployable
thanks to PoE. The software running on nodes is packaged
into a docker image allowing other researchers to deploy it
instantly, rerun images of other experiments in different condi-
tions, or perform new experiments. To wrap up, the networking
community can easily reproduce the WalT platform and WalT
experiments.

The rest of this section will provide more details on the key
components of WalT and describe our uses of WalT at the LIG
laboratory.

B. WalT Images

WalT introduces the concept of a WalT image—it contains
an operating system ready to be deployed on a WalT node. The
operating system is composed of a filesystem and a kernel. A
WalT image is internally packaged as a docker image, which
presents two immediate benefits. First, WalT reuses docker
image management features. For instance, the client command
walt image shell <image-name> works by running
a shell in a docker container. This allows modifying the
image in a very convenient way. Adapting an image to a
given experience (e.g. installing more software packages or
experiment scripts) or to a given platform setup (e.g. installing
a driver for a Wi-Fi device connected to the node) is just a
few commands away. The second benefit is the WalT ability
to use the docker hub, the public repository of docker images.
Since a WalT image is actually a docker image, WalT images
may be published and shared on the docker hub. The WalT
client allows searching for the published images and cloning
them locally.

An advanced feature of the WalT server allows mounting a
docker image and making it available as a NFS (Network File
System) share, which allows WalT nodes to boot the system
contained in a WalT image. Being able to instantly turn a
virtualized operating system into a real deployment is one of
the most remarkable features of WalT.

WalT images contain a thin middleware layer providing
tools to generate experiment logs. Logs are sent to the server
for storage and processing.

C. WalT Nodes

WalT nodes are PoE-powered cost-effective SBCs. Cur-
rently, WalT supports Raspberry Pi boards. They do not
support PoE so we use an external PoE splitter.

The robustness of cost-effective SBCs is an issue. Our
experience has shown that their main point of failure is the
SD card. We have solved this issue by keeping the SD-cards
read-only. We did not observe a single node failure in more
than two years of usage since this change.

The bootup procedure of WalT nodes is a two-step process.
First, a node boots a read-only and minimal operating system
from the SD-card. Then, the operating system stored in the
target WalT image is accessed using NFS and booted. The
kexec Linux kernel feature allows us to switch from one kernel
to the other.

All filesystem changes are stored in the RAM of the node
(thus discarded when the node reboots). This ensure that a
WalT node associated with a given WalT image will always
boot exactly the same operating system.

Having such a level of control about the operating system
running on nodes makes the platform very versatile. For
instance, to run experiments on routing protocols in Wireless
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Figure 2. WalT architecture specialized for WSN

Sensor Networks, we have specialized the WalT architecture
to obtain the one shown in Figure 2.

In this setup, each WalT node connects and monitors one or
more Sensor Nodes. The selected WalT image contains tools
to flash the sensor board and monitor sensor traces on USB-
serial links.

D. WalT Client

Users interact with the platform by using a command line
tool called walt. It provides five categories of commands:
image, node, log, device, and advanced.

The image category provides commands to list WalT
images, duplicate, copy, rename, remove, or modify them
(using a virtualized shell), transfer files between the client
machine and WalT images, search images on the docker hub,
and clone an image from the docker hub to the local platform.

The node category allows to run a command or a shell on
a node, to list nodes, transfer files between the client machine
and WalT nodes, deploy an image on a set of nodes, and
perform debugging tasks such as power cycling a node, making
a led blink for physical identification of a node, etc.

The log category allows the user to explore experiment
logs. They are saved in a database at the server. The user may
query the historical data at any time. Another option allows
the user to view the logs in pseudo real-time.

The device and advanced categories are oriented to-
wards platform management, customization, and maintenance.
For instance, one may want to rename nodes or network
switches in a more user-friendly way.

In spite of this extensive platform control offered to the user,
the command line tool remains lightweight and easy to install,
since the server handles complexity. The tool is published on
the Python Package Index (PyPI) and can be installed in just
one command using the pip package management tool.

We have also developed a visual tool for Wireless Sensor
Networks called VizWalT, implemented as a Cooja plugin.
Cooja is a WSN simulator: it allows to run a simulation
by emulating each sensor node. When loaded with VizWalt
plugin, this behavior is modified: each node seen on the user
interface reflects the behavior of a real node deployed in

the WalT testbed. Figure 3 presents a screenshot of Cooja
presenting WalT traces.

cunwon | T

Figure 3. Screenshot of Cooja presenting WalT traces

E. WalT Experiments

One of the design goals of walt tool was to support
the development of experiment scripts with any programming
language the user is used to. The script can handle both
the deployment and the control of an experiment. Since the
complexity is handled in the WalT middleware, writing such a
script is straightforward. Sharing an experiment script together
with a description of the physical setup (network topology,
Wi-Fi devices connected to nodes, etc.) makes the experiment
reproducible, both in a similar or in a different physical
environment.

We still work on the improvement of the walt tool with
new options to ease the management of WalT experiments. In a
near future, the tool will embed options to record, publish, and
replay experiments, and to publish or download experiment
results.

E Walt Server

The WalT server controls the platform, interacts with the
docker hub, the nodes, and clients. One of the main server
functions is log management. The server receives logs coming
from nodes, saves them in a local database, and optionally
forwards them to clients for real-time viewing. When the user
requests historical data, the server just queries the database.

The server also handles communication with the docker
backend, and mounts or unmounts WalT images as NFS shares
depending on the client requirements.

The server maintains the platform topology data by querying
switches using the SNMP protocol. The switches use the
LLDP protocol to discover their immediate neighbors.

The platform network and the external network (allowing
to reach the docker hub) are isolated on dedicated VLANSs
to avoid any network disturbance during experiments. This
network setup is fully automated.

Installing a WalT server is just a matter of minutes. A
bootable image was created with debootstick? for this

purpose.

2debootstick is a tool we developed to turn a filesystem tree into a
bootable image. It has been part of the Debian system since July 2015.



G. WalT Platforms at LIG Laboratory

Although WalT was still in an intensive development phase
a few months ago, we started working with early versions more
than two years ago. As a consequence, our main deployment
in the lab building has already been used for several research
projects. Since WalT is also well suited to small size testbeds,
we have set up a WalT-based mobile demo platform with a
small number of nodes, an Intel NUC mini-PC as a server,
and a dozen of STMicroelectronics 802.15.4 sensor motes.
The mobile demo showed multi-hop topology creation in
Cooja through the VizWalT interface at the CALIPSO final
review>. We have also been using WalT for debugging smart
object protocols with temporary on-desk setups or by simply
extending the main platform in a given office (unplug one
of the nodes deployed in the office, replace it with a switch,
connect a few nodes to it, and run walt device rescan
for topology update).

WalT users especially appreciate being able to use the same
platform for debugging, for experiments, and for demonstra-
tions.

IV. EXAMPLE EXPERIMENTS WITH WALT

A. Comparison of NTP/PTP Temporal Synchronisation

2. Master RPi send a broadcast
ping in the air

1. RPis boot and synchronize their
clock using NTP/PTP

3\\\\\

Master
~

Slaves

7

3. Slave RPis timestamp their
reception time Received at XXX

4. Timestamps are sent over the
WalT log channel

Received at YYY

Figure 4. Clock drift measurement scenario

Synchronizing all WalT nodes is quite challenging because
Raspberry Pis do not have a dedicated clock and every time
a node reboots, it looses synchronization. We have decided to
use the Network Time Protocol (NTP) and the Precision Time
Protocol (PTP) for time synchronization. Evaluating the clock
drift between nodes was a good test case to show how WalT
can be used.

Figure 4 illustrates the scenario: we use three nodes with
Wi-Fi dongles. We built WalT images so that they are con-
nected to the same Wi-Fi ad hoc network. One node acts as a

3EU FP7 CALIPSO project on “Connect All IP-based Smart Objects!”.

master and sends a broadcast ping to all slaves. They receive
the message almost at the same time, which they timestamp
locally. Finally the reception timestamps are logged on the
server so that we can compute the clock offset.
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Figure 5. NTP offset variation between two nodes and the time master
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Figure 6. PTP offset variation between two nodes and the time master

WalT allows us to repeat the experiment during a long
duration with three slave nodes. The results highlight that NTP
offers a clock offset of tenth of milliseconds right after boot up,
but precise synchronization may require a very long time as
illustrated in Figure 5 —up to 13 h to achieve synchronization
within 100 us. Figure 6 shows much faster convergence for
the same experiment with PTP.

B. Measuring 802.11 Handover Duration

Another example experiment was conducted with WalT to
measure the duration of IEEE802.11 handover with recent
smart devices. Figure 7 presents the scenario involving two
Raspberry Pi model B nodes with Wi-Fi dongles. We have
built a WalT image* to run these nodes in AP mode —Wi-
Fi access points. In the scenario, the first node starts an AP
and waits for a device to connect. We consider the device
connected once it is associated with the AP and they can ex-
change IP packets. To check IP connectivity, the device sends
UDP packets periodically. After the connection is established,
the first node notifies the second one to start its access point
too. As soon as the second AP is up and running, we suddenly
stop the first one, so that the connected device does not receive
any notification about the AP going down. Then, we measure

“4walt image clone hub:brunisholz/rpi-handover-measurement
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Figure 7. Wi-Fi handover measurement scenario

the time until the device restores IP connectivity through the
second AP.
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Figure 8. Measured Wi-Fi handover delay

Using WalT, we can automate the entire process and ef-
fortlessly repeat the experiment a large number of times for
different devices. Here, we have collected 300 measurements
for each device, a Nexus 7 (2012) (N7) running Android 4.4
and a Moto X 2" Gen. (MX) with Android 5.1. Figure 8 shows
the measured Wi-Fi handover delays: the time to associate
with the other AP (A) and the time to resume UDP traffic
(UDP), either using a fixed IP address or DHCP when not

specified. The results show relatively long delays for Nexus 7
and important variations for Moto X.

V. PROPOSED DEMO

To show the features of the WalT platform, we propose to
bring a mobile set up consisting of one Intel NUC as a WalT
server, two managed switches with associated RPis connecting
a dozen of STMicroelectronics 802.15.4 sensor motes. The
demo will present VizWalT, a plugin for Cooja, used to
visualize sensor network traffic: Cooja displays traces gathered
on the operational network and presents the timeline of events
as well as the topology view during network discovery and
topology construction.

VI. CONCLUSIONS

This paper describes WalT, a reproducible platform for
running reproducible experiments. It complements existing
specialized platforms with the possibility of reproducing and
deploying our own experiment platform for debugging, com-
parisons, and testing networks in production environments
under real-world conditions. WalT offers low cost and standard
components, free software, and easy installation based on
PoE cabling. We have described two example experiments
that can be easily reproduced just by deploying WalT and
running experiment images: NTP/PTP time synchronization
and measurements of the 802.11 handover of smartphones.

In the near future, we will work on WalT images compatible
with IoT-LAB experiments. Our goal is to be able to run on
any instance of WalT the same experiments that run on IoT-
LAB. We also plan to extend WalT with support for more
powerfull SBCs, like RPi 2 and UDQOO, and study the support
for Android to run experiments with mobile applications
easily.
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