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Abstract—Smart cities employ latest information and com-
munication technologies to enhance services for citizens. Sens-
ing is essential to monitor current status of infrastructures
and the environment. In Mobile Crowdsensing (MCS), citizens
participate in the sensing process contributing data with their
mobile devices such as smartphones, tablets and wearables. To
be effective, MCS systems require a large number of users
to contribute data. While several studies focus on developing
efficient incentive mechanisms to foster user participation, data
collection policies still require investigation. In this paper, we
propose a novel distributed and energy-efficient framework for
data collection in opportunistic MCS architectures. Opportunistic
sensing systems require minimal intervention from the user
side as sensing decisions are application- or device-driven. The
proposed framework minimizes the cost of both sensing and
reporting, while maximizing the utility of data collection and,
as a result, the quality of contributed information. We evaluate
performance of the framework with simulations, performed in a
real urban environment and with a large number of participants.
The simulation results verify cost-effectiveness of the framework
and assess efficiency of the data generation process.

I. INTRODUCTION

Cities are facing the challenge for a sustainable and efficient
development. While half of the worldwide population lives in
metropolitan areas, this figure is projected to increase signifi-
cantly in the next three decades [1]. Sustainable development
requires precise monitoring of resource utilization, including
water, electricity, gas among the others. Sensing plays an
essential role on this regard. Sensors enable monitoring of
the current status of infrastructures, transportation systems, en-
vironment and health [2]. Deploying new sensing infrastructures
is typically expensive, while active participation of citizens can
improve spatial coverage of already deployed infrastructures
with no need of further investments. Mobile devices include a
rich set of built-in sensors, suitable for monitoring in multiple
domains, such as smart homes, personal health care, public
safety [3]. Mobility and intelligence of human participants
guarantee higher coverage and better context awareness, if
compared to traditional sensor networks. In addition, users
maintain by themselves the mobile devices and provide periodic
recharge.

Mobile Crowdsensing (MCS) leverages active participation
of citizens1 in sensing activities, which are required to
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1In the rest of the paper, we will use the terms citizens, participants and
users interchangeably.

contribute data from sensors of their mobile devices. This
contribution is reported using commonly available cellular
or WiFi communication technologies to a collector, typically
located in the cloud, for data processing and analysis. In MCS,
data collection frameworks define the set of steps necessary
to collect and report the information. Frameworks can be
participatory or opportunistic [4]. In participatory sensing
systems, users are directly involved in the sensing process and
they need to accomplish specified tasks (e.g., taking a picture).
On the contrary, opportunistic sensing systems minimize user
involvement and sensing decisions are device-driven (e.g.,
recording ambient light). In both types of frameworks, proper
recruitment of the participants is essential [5]. Hassani et
al. [6] proposed Context-Aware Task Allocation (CATA), which
allocates tasks after having recruited users in opportunistic MCS
systems. The recruitment policy selects the most appropriate
users to fulfill the sensing task by determining the similarity
between the participants and the tasks. The policy considers
energy consumption of sensing and data delivery operations to
determine the eligibility of the participants. Zhu et al. [7] focus
on the upload planning of real-time information collected by
IoT devices, where the network context changes dynamically.
They present a prototype system called SCALECycle, and
propose a two-phase approach exploiting the knowledge of IoT
deployments and heterogeneous nature of IoT applications.

Devising efficient frameworks for data collection is funda-
mental. MCS follows a Sensing as a Service (S2aaS) business
model, which makes data collected from sensors available to
cloud users [8]. Consequently, companies and organizations
have no longer the need to acquire an infrastructure to perform
a sensing campaign, but they can exploit existing ones in a
pay-as-you-go basis. Efficiency of S2aaS models is defined in
terms of the revenues obtained and the costs. The organizer of
a sensing campaign, such as a government agency, an academic
institution or a business corporation, sustains costs to recruit
and compensate users for their involvement [9]. The users
sustain costs while contributing data too, i.e., the energy spent
from the batteries for sensing and reporting data and, eventually,
the data subscription plan if cellular connectivity is used for
reporting.

In this paper, we propose a distributed framework for data
collection in opportunistic MCS systems. The framework aims
to minimize the cost of sensing and reporting by estimating
in distributed manner the smartphone sensing potential, i.e.,
the utility of performing such operations. At the same time,



the quality of contributed information for the system is guar-
anteed through data collection utility feedback. The collector
announces estimated utilities by periodically broadcasting the
type and the minimum amount of data required to capture
a physical phenomena with a given level of accuracy. To
maximize the value of the collected data to the system at
the minimum cost of sensing, the crowd participants sense
and report data when there is a match between the sensing
potential and the data collection utility feedback the collector
provides. A match ensures that the mobile devices sustain a
cost to produce useful data for the cloud collector. On one
hand, the mechanism prevents the users to contribute too much,
e.g., draining the user battery completely for continuous use, or
too little. On the other hand, being the framework completely
distributed, each device is responsible to decide the timing
and the duration of the contribution. This minimizes manual
intervention of the users, lowering the barriers for participation
to the sensing process.

II. THE OPPORTUNISTIC DATA COLLECTION FRAMEWORK

The mobile devices decide to perform sensing and reporting
independently one from another one. For each sensor s, the
decisions occur on the basis of the data collection utility da

s , the
smartphone sensing potential sps, the environmental context
of the device Cs and a threshold δ, which defines the amount
of contribution each participant provides. Consequently, in this
work we do not consider correlation among the sensors for
taking decisions. The framework operates in distributed fashion
because each device is responsible to locally compute all the
parameters necessary to determine whether to participate to the
sensing process with the sole exception of da

s . The derivation
of the parameters da

s , sps , Cs and δ is illustrated in more detail
in the following paragraphs.

The decision policy is formally defined as follows:
Cs · [γ · sps + (1 − γ) · da

s ] > δ, (1)
where γ is a balancing coefficient which assumes real values in
the range [0, 1]. The parameter γ is computed by the collector
and broadcasted to the participants. High values of γ give
more relevance to the smartphone sensing potential, while low
values of γ make the data collection utility term dominant.
When the contribution given by the first member of (1) is
above δ, the smartphone performs both sensing and reporting.
When the environmental context is unfavorable (Cs = 0), the
devices never perform sensing and reporting. Unfavorable
occurs, when, for example, the smartphone is in the pocket and
the device needs to record current ambient light. The design
choice prevents the devices of performing useless operations
and allows to conserve resources, assuming the utility of such
samples would be low for the collector.

A. Data Collection Utility

Following the Sensing-as-a-Service (S2aaS) paradigm, the
collector is located in the cloud. Having received a request
for sensing in a given area, the cloud informs the sensors
and the mobile devices located in that area. They accomplish
the request and collect the information. Based on the sensing

interest, which is assumed to be known in advance, cloud
collector decides which samples need to be collected. Requests
can come from different applications and may require samples
from different location areas and types of sensors.

To define data collection utility, the cloud collector partitions
the monitored region in a set of areas A. In each area a ∈ A,
the mobile devices generate samples from a different set of
sensors S. We describe the average number of samples N

a

s |t

generated from sensor s in area a during the timeslot t through
the Exponential Weighted Moving Average filter (EWMA):

N
a

s |t = σ · N
a
s |t + (1 − σ) · N

a

s−1 |t, (2)
where Na

s |t corresponds to the number of samples collected
from sensor s in timeslot t in area a and N

a

s−1 |t is its previous
value. The parameter σ is the exponential weighting coefficient.
High values of σ limit the contribution of older values whose
utility, from the collector point of view, is lower than the
contribution of newly generated samples.

High values of N
a

s |t indicate a large number of samples
have been already received at the cloud collector and further
reporting is not needed. Viceversa, low values of N

a

s |t indicate
the need for more samples and the data collection utility is high.
These considerations suggest that the data collection utility can
be defined as the following sigmoid function:

da
s =

1

1 + e−
ϕs
ρs
·(−N

a
s |t+(1− ρs2 ))

, (3)

where ϕs and 1 − ρs/2 coefficients control position and the
speed of the incline. The data collection utility can assume
real values in the range [0, 1].

The cloud collector computes da
s per area a and sensor

s and informs the participants in each area by transmitting
periodically beacon messages.

B. Smartphone Sensing Potential

Each smartphone computes individually and independently
from the others the smartphone sensing potential as function of
locally spent energy Es for sensing and reporting. The approach
is similar to the methodology proposed in [10], where the goal
is to minimize prediction error for MCS tasks with classification
purposes. Similarly to the data collection utility, the relation
between sps and Es is defined with a sigmoid function:

sps =
1

1 + e−
ζs
θs
·(−Es+(1− θs2 ))

. (4)

The smartphone sensing potential sps can assume real values
in the range [0, 1], while the parameters 1−θs/2 and ζs control
position of the center and speed of the incline respectively.
On one hand, a steep increase of the incline reduces transition
between low and high values of the smartphone sensing
potential and makes the device to work preferentially in on/off
mode, i.e., the device is either an excellent or the worst
candidate for contribution. On the other hand, the position of
the center of the function defines which range of values of Es

makes the device to be an excellent candidate for contribution.
The energy the mobile devices spend in contributing data

can be attributed to sensing (Ec
s ) and reporting (Er

s ) operations:
Es = Ec

s + Er
s . (5)



For sensing, the contribution Ec
s has to be taken into account

only if sensor s is not already in use by another application,
which is defined by the utilization context of s, Us . Otherwise,
the energy spent by s is equal to zero. Ec

s is defined as follows:

Ec
s = E

c

s ·Us, (6)

where E
c

s is the actual energy spent by sensor s and the
utilization context Us is defined as:

Us =



0, if the sensor s is used by another application;
1, otherwise.

(7)

Data reporting implies delivering information collected from
the set of sensors S and transmitting it to the cloud collector
wirelessly. Reporting is always performed at the beginning of
the timeslot t for samples collected during timeslot t−1. Energy
cost related to communication Er

s depends on the employed
technology, LTE or WiFi, and is defined as follows:

Er
s =




EW , if WiFi or both WiFi and LTE are enabled;
EL1, if WiFi is disabled and LTE is idle state;
EL2, if WiFi is disabled and LTE is connected state.

(8)

When both WiFi and LTE interfaces are active, transmissions
take place via WiFi as it is more energy efficient [11], [12]
and users do not consume the data plan they pay to the cellular
operators [13]. The energy EW spent during the transmission
time τtx is defined as:

EW =

∫ τt x

0
PW
tx dt, (9)

where PW
tx is the power consumed for transmissions of WiFi

packets generated at rate λg [14]:
PW
tx = ρid + ρtx · τtx + γxg · λg . (10)

The parameters ρid , ρtx and γxg represent the energy in idle
mode, the transmission power and the energy cost to elaborate
a generated packet.

The Radio Resource Control (RRC) state machine and the
simplified model proposed in [15] are used to model LTE power
consumption. The model defines different energy consumption
levels in relation to the initial state. Although initial states of
the system can be connected, tail and idle [11], we focus on
connected and idle states, as idle state can be considered as a
worst case scenario of tail state.

Whenever the smartphone is idle and needs to communicate,
it transitions into the connected state and after the transmission
is over it goes into the tail state before finally returning back to
idle. In this case, the energy consumption for the smartphone
during reporting can be defined as:

EL1 = PP · TP + PL
tx · Ttx + PL

tx · DRXIT + PDRX · RRCIT, (11)
where TP and PP are the promotion delay and power, Ttx
and Ptx are time and power transmission, DRXIT is the
Discontinuous Reception (DRX) Inactivity Timer, PDRX is
the power consumed when the smartphone is in one of the two
DRX modes and RRCIT is the RRC Inactivity Timer.

When the smartphone is already in RRC connected state and
transmitting, its energy consumption can be defined considering

only the contribution of signal transmission:

EL2 =

∫ Ttx

0
PL

tx dt . (12)

The power consumption for transmitting data Ptx is given by
the model of [11]:

PL
tx = αul · Tul + β, (13)

where Tul represents the uplink throughput and the parameters
αul and β are the power spent during transmission and the
base power respectively [11].

C. Profiling the Environmental Context

Environmental context Cs of sensor s defines the set of
facts and circumstances happening around the mobile device,
such as the location or the mobility pattern [16]. Having
knowledge of the environmental context is essential to avoid
performing sensing under unfavorable conditions that affect
the overall energy budget without providing any benefit for the
collector. The utility of each sample is defined according to
the environmental context. Although a few practical solutions
exist [17], estimating the environmental context is not simple.
For the sake of simplicity, in this work we assume Cs to take
binary values:

Cs =



1, if the sample contributes to the sensing objective;
0, otherwise.

(14)

When starting a new sensing campaign, the collector first
broadcasts profiles defining the environmental context to all the
devices. This is because each sensing campaign is application-
based and environmental context profiles must be tailored to
it.

D. Threshold for Sensing and Reporting

Sensing and reporting operations occur when data collection
utility and smartphone sensing potential are greater than a
threshold δ, which means that the mobile devices sustain a cost
to produce useful data for the cloud collector. The mechanism
prevents the users from contributing too much or too few of
data. The threshold δ is computed locally at the mobile device.
A proper setting of this parameter is essential to define the
amount of data each device opportunistically contributes. To
define δ, we take into account current level of battery of the
devices (denoted as B) and the amount of reported data that
devices have already contributed to the system (denoted as D).
The parameter δ is defined as follows:

δ = f (δb, δd), (15)
where all the parameters δ, δb and δd are real values in
the range [0, 1]. Both δb and δd are function of B and D
respectively. When any of the two parameters assumes a value
equal to 1, δ becomes 1 as well. As a result, the devices
stop contributing upon meeting any of the two conditions: a
low remaining charge of the battery or a high amount of data
already contributed. Although f can be chosen arbitrarily, in
this work we provide equal weights to δb and δd:

f (δb, δd) = (δb + δd)/2. (16)
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Fig. 1. User distribution of mobility trace “kth/walkers”

Level of Battery: We define the level of battery B as the
remaining charge of the device, where 0 ≤ B ≤ 1. High values
of B correspond to a high level of charge and the device can
contribute data from its sensors. On the other hand, when
the battery is almost empty the users would like to preserve
the remaining charge. These considerations suggest that the
relation between B and δb follows a negative exponential law.
As a result, low values of B will make δb to assume values
close to 1. δb is defined as follows:

δb = α
λ·B . (17)

The parameter α can assume arbitrary real values between
[0, 1], and λ > 1.
Amount of Reported Data: The amount of reported data D
defines a total amount of data that is delivered using WiFi
(DW

s ) and cellular (DL
s ) connections and is contributed by the

set of sensors S of a single device. D is defined as follows:

D =
∑
s∈S

DW
s + DL

s . (18)

The more data the device contributes, the higher the values
parameter δd assumes. As a result, the devices that have already
delivered a significant amount of data to the collector, make
further contribution only if it is necessary. On the other hand,
low values of the parameter δd will facilitate contribution from
the devices that have provided little contribution to the system.
The relation between D and δd is modeled as follows:

δd =




1, if D ≥ Dmax;

log
(
1 +

D
Dmax

)
, otherwise;

(19)

where Dmax is the maximum amount of data each device is
willing to deliver. This parameter can be tuned by the users
periodically.

III. PERFORMANCE EVALUATION

We evaluate performance of the proposed framework with a
custom crowdsensing simulator, CrowdSenSim [18]. We first
present its detailed functionality, then the simulation scenario
and the obtained results.

A. Simulation Set-up

CrowdSenSim supports pedestrian mobility in citywide
scenarios and users contribute data according to the designed
opportunistic framework. Data generation exploits sensors
commonly available in mobile devices. The simulation results
can be obtained at the level of individual devices as well as the

system level, which helps to analyze data reporting progress
and efficiency of the employed crowdsensing techniques.

The layout of the city consists of a set of coordinates
C containing information on <latitude, longitude, altitude>
defining the streets of the city where the users move. C can be
obtained with online tools like OpenStreetMaps or DigiPoint.
In this work, we exploit Digipoint, which is a crowdsourced
application providing free access to street-level maps2. The
center of Luxembourg city covers an area of 1.11 km2 with
a population of 110 499 inhabitants as of end of 2015. The
city center of Trento occupies an area of 1.18 km2 and has a
population 117 317 inhabitants as of beginning of 2016 while
the city center of Madrid covers approximately an area of 5.23
km2 with a resident population of 149 718 residing inhabitants.
The number of participants is fixed to 20 000.

Each participant has only one mobile device and walks for
a period of time that is uniformly distributed between [10, 20]
minutes with an average speed uniformly distributed between
[1, 1.5] m/s. We employ two user arrival patterns. In the first, the
users arrive with a uniform probability between 8:00 AM - 1:40
PM. The second arrival pattern is based on real-world traces,
which are the results of a study on pedestrian mobility and
are public available on Crawdad (ostermalm_dense_run2) [19].
Fig. 1 shows the probability density function of the user arrival
resulting from the study of the traces. In practice, to obtain
the results presented later, the density computed in Fig. 1 was
scaled and adapted to the considered arrival time period.

Data generation takes place using as sensing equipment
the FXOS8700CQ 3axis linear accelerometer from Freescale
Semiconductor 3 and the BMP280 from Bosch 4, which is a
digital pressure and temperature sensor. Communications occur
over the WiFi link, having obtained the precise location of WiFi
hotspots in form of <latitude, longitude>. Table I presents the
detailed information on communication and the parameters.
The parameter δb is determined using (17) by setting α = 0.7
and λ = 10. These values proved by the conducted analytical
analysis to perform better, which we omit for the space reasons.
The parameter δd is set to 0 during initialization. The utilization
context Us is modelled using random uniformly distribution in
the range [0, 1] and is generated during each timeslot for each
user device. For the analysis, the parameter γ is fixed to 1/2
to give equal importance to the data collection utility and the
smartphone sensing potential.

B. Simulation results

Fig. 2 presents the distribution of users and their energy spent
for sensing with the uniform- and traces-based user arrival
patterns. For demonstration purposes, we show the results
obtained for the sole city of Luxembourg. As expected, the
user arrival pattern does not influence consumption of energy,
which only depends on the amount of time the users generate
data. The profiles of Fig. 2(b) and Fig. 2(a) follow a normal
distribution as the users contribute data for time periods as low

2DigiPoint 3, http://www.zonums.com/gmaps/digipoint.php
3http://www.nxp.com/files-static/sensors/doc/data-sheet/FXOS8700CQ.pdf
4https://www.bosch-sensortec.com/bst/products/all-products/bmp280



TABLE I
SENSOR AND COMMUNICATION EQUIPMENT PARAMETERS USED FOR PERFORMANCE EVALUATION

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(a) Sensor Equipment

SYMBOL VALUE UNIT DESCRIPTION

ρid 3.68 W Power in idle mode
ρt x 0.37 W Transmission power
ρr x 0.31 W Reception power
λg 1000 fps Rate of generation of packets
γxg 0.11 · 10−3 J Energy cost to elaborate a generated packet

(b) Communication Equipment
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(b) Communication Cost
Fig. 2. Energy spent for sensing and communication

as 10 minutes up to a maximum of 20 minutes. Current drain of
sensing operations is on average 373.41 µAh and 368.80 µAh
for uniform- and traces-based arrival patterns respectively. In
the worst case, few users experience a cost that is nearly more
than double with respect to the average. Comparing to the
battery capacity available in modern smartphones, which is
in the order of 2000 mAh, it is possible to conclude that the
energy cost for sensing is negligible with respect to the energy
spent for communications (see Fig. 2(b)).

Fig. 3 shows the geographical distribution of the amount
of collected data at the end of the simulation period for
Luxembourg, Trento and Madrid. To better analyze the data
generation process, we define a new metric called Sample
Distribution (SD). SD measures the amount of generated
samples per meter and is defined as follows:

SD = Na
s |t/∆, (20)

where ∆ is the average distance between samples and Na
s |t

is the number of samples generated per sensor s, area a at
timeslot t. The parameter ∆ is defined as follows:

∆ =

∑n
i, j
i≥ j

d(i, j)

n(n − 1)
2

. (21)

The term d(i, j) is the distance (in meters) between the location
where the samples i and j were generated and the denominator
accounts for the number of pairs of samples.

Fig. 4 shows the distribution of SD for Luxembourg for
the entire simulation period. The city has been divided into 5
areas of similar size. In this experiment, the users are located
with the uniform arrival pattern. It is interesting to notice that

the lowest values of SD occur for the initial and final time
intervals (8:00 AM - 9:00 AM and 1:00 PM -2:00 PM). During
the initial and final time intervals the number of participants
is lower than in the other intervals as the simulator locates
the users with a uniform distribution between 8:00 AM and
1:40 PM and they move for at maximum 20 minutes. In this
analysis, only accelerometer samples were utilized. The SD
metric weakly depends on the size of the area. Although being
a bit wider than Area 3, a large part of Area 2 is a public park
with a fewer number of streets. As the SD metric measures
the distribution of the samples taking into account the location
where they have been generated, high density areas, such as
Area 5, exhibit high values of SD.

IV. CONCLUSION

This paper proposes a new data collection framework
for opportunistic MCS systems. The framework works in
distributed fashion and aims at minimizing the cost of sensing
and reporting of data for the participants, while maximizing
data collection utility. The performance of the framework is
verified through simulations in realistic urban environments. We
analyze the relation between the cost imposed on participants
and the efficiency of the data generation process. Results
highlight that the major contribution to energy consumption
is attributed to reporting, not sensing. The simulation results
confirm effectiveness of the proposed approach for a large
number of participants. As future work, we plan to implement
the current model with an application to verify the performance
of the framework experimentally.
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